jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Divagar de la Mente

Autor por Emilio Silvera    ~    Archivo Clasificado en Divagando    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Los procesos científicos que comentamos en este lugar lugar, los fenómenos del Universo que hemos debatido y, ,  los misterios y secretos que el inmenso Cosmos nos oculta han contribuido, aunque inadvertidamente, a comprometer e involucrar a nuestra especie en la vastedad del universo. La astronomía al destrozar las esferas cristalinas que, según se decía, aislaban la Tierra de los ámbitos etéreos que se hallan por encima de la Luna, nos puso en el universo. La Física cuántica  destruyó la metafórica hoja de cristal que supuestamente separaba al observador distante del mundo observado; descubrimos que estamos inevitablemente enredados en aquello que estudiamos.

portaless

             Escenarios presentes en nuestro universo en mundos perdidos en las “infinitas distancias”

La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, reveló una unidad cósmica que se extiende la fusión nuclear en las estrellas la química de la vida que allí se produce a lo largo de todo el Universo. La evolución darwiniana, al destacar que todas las especies de la vida terrestre están relacionadas y que todas surgieron de la materia ordinaria, puso de manifiesto que no hay ninguna muralla que nos separe de las otras criaturas de la Tierra, o del planeta que nos dio la vida: que estamos hechos del mismo material del que están hechos los mundos.

La convicción de que, en cierto sentido, formamos una unidad con el universo, por supuesto, ha sido afirmada antes muchas veces, en otras esferas de pensamiento. Hahvé creó a Adán del polvo; el griego Heráclito escribió que “todas las cosas son una sola”; Lao-tse, en China, describió al hombre y la naturaleza gobernados por un solo principio (“lo llamó el Tao”); y la creencia en la unidad de la Humanidad con el cosmos estaba difundida los pueblos anteriores a la escritura, como lo puso de relieve el jefe indio suquamish Seattle, quien declaró en su lecho de muerte que, “todas las cosas están conectadas, como la sangre que une a una misma familia. Todo es como una misma familia, os lo digo”.

hay algo sorprendente en el hecho de que la misma concepción general ha surgido de ciencias que se enorgullecen de su lúcida búsqueda de hechos objetivos, empíricos. los mapas de cromosomas y los registros fósiles que representan las interconexiones de todos los seres vivos de la Tierra, hasta la semejanza de las proporciones químicas cósmicas con las de las especies vivas terrestres, nos muestran que realmente formamos del universo en su conjunto.

La verificación científica de nuestra participación en las acciones del cosmos, luego, muchas implicaciones. Una de ellas es, si la vida inteligente ha evolucionado en este planeta, también puede haberlo hecho en otras partes. La Teoría de la evolución de Darwin, aunque no explica el antiguo enigma de por qué existe la vida, deja claro que la vida puede surgir de la materia ordinaria y evolucionar hasta una “inteligente”, al menos en un planeta como la Tierra que gira alredeedor de una estrella como el Sol (más de dioez mil millones en la Vía Láctea solamente) y, presumiblemente, más que unos pocos planetas semejantes a la Tierra, podemos especular que no somos la única especie que ha estudiado el universo y se ha preguntado sobre su papel en él.

Nuestra comprensión de la relación la Mente el el Universo puede depender de que podamos tomar con otra especie inteligente con la cual compararnos. Raramente la ciencia ha obtenido buenos resultados al estudiar fenómenos de los que sólo tenía un ejemplo: Las leyes de Newton y Einstein habrían sido mucho más difíciles -quizá imposibles- de fortmular si sólo hubiese habido un planeta para someterlas a prueba, y a menudo se dice que el problema de la cosmología es que sólo tenemos un universo para examinar. (El descubrimiento de la evolucoión cósmica reduce un poco dificultad al ofrecer a nuestra consideración el muy diferente del universo en los primeros momentos de la evolución cósmica.) La cuestión de la vida estraterrestre, pues, va más allá de problemas  el de si estamos solos en el universo, o si podemos esperar tener compañia cósmica o si debemos temer invasiones exteriores; también es un modo de examinarnos a nosotros mismos y nuestra relación con el resto de la Naturaleza.

Aunque mucho de esto es,  el interés reciente por la vida extraterrestre considerarse como un resultado del último vuelco en la fortuna del materialismo, la doctrina filosófica según la cual es posible explicar los sucesos exclusivamente en términos de interacciones materiales, sin recurrir a conceptos insustanciales tales como el espíritu. El darwinismo engendró una nueva actitud de respeto hacia las potencialidades de la materia ordinaria: un montón de barro en un charco de agua de lluvia empieza a parecer mágico, si se piensa que sus iguales de antaño lograron elevarse hasta dar origen a todo el conjunto de la vida terrestre, inclusive la del individuo que contempla el barro. Una persona reflexiva, recordando que su ascendencia se remonta, a través de los mamíferos, hasta los peces, los aminoácidos, los azúcares de la materia prebiótica, no puede estar de acuerdo con Martín Lutero en que la Tierra es “sucia” y “nociva”, o aceptar el veredicto de la Christia Sciencie de que “no hay vida, verdad, sustancia ni inteligencia en la materia”.

¿La Vida? ¡Podría estar presente en tantos lugares! El Universo es inmenso, está lleno de galaxias de estrellas y de mundos. Pensar en la remota posibilidad de que la vida, solamente apareciera aquí, en la Tierra, es ir contra la lógica y despreciar las leyes de la Naturaleza que, en todas partes, actúa de la misma manera.

Históricamente, los materialistas se han inclinado a pensar que hay vida en otros mundos. El atomista Metrodoro escribió en el siglo IV a. de C. que “considerar la Tierra el único mundo poblado en el espacio infinito es tan absurdo como afirmar que en todo un campo sembrado de mijo sólo un grano crecerá”. Cinco siglos más tarde, el Epicuréo Lucrecio sostuvo que “hay infinitos mundos iguales y diferentes de mundo nuestro”. La Iglesia católica romana, convencida de que los seres humanos son esencialmente espíritus inmateriales, se sintió amenazada por el punto de vista materialista: cuando Giordiano Bruno, el decano renacentista del misticismo popular, afirmaba que la materia “es en verdad toda la naturaleza y la madre de todo lo vivo, y declaró que Dios “es glorificado, no en uno, sino en incontables soles; no es una sola Tierra, sino en mil, que digo, en infinidad de mundos”, fue atado a una estaca de hierro y quemado vivo, el 19 de febrero de 1600, en la Piazza Campo dei Fiori de Roma.

Sin embargo, cuando la ciencia creció también lo hizo el materialismo, y con él la creencia de una pluralidad de mundos. Podríamos seguir por camino y filosofar sobre lo que fue, lo que es y, lo que probablemente será pero, el tiempo se me acaba y, luego, no quisiera cerrar este sin dejar una falsa sensación.

Es cuerioso como los humanos tendemos a simbolizarlo todo, sabemos del ADN y de cómo estamos conformados, tratamos de indagar sobre la conciencia y los mecanismos de la Mente, ese lugar inmaterial que genera el cerebro y del que surgen las ideas y los penamientos, allí está todo lo somos y también, en ese misterioso lugar, se crean los sentimientos que crecen y crecen. Sin embargo, tendemos a idealizar los sentimientos con el corazón. ¿Por qué será?

     Algunas formas de materia evolucionada, guardan en sus recuerdos esa memoria de la que hablamos

Sí, la materia memoria y deja sus huelllas por todas partes… ¡Hay que saber buscar! En el lugar más inesperado la materia habrá evolucionado hasta el protoplasma vivo que nos llevará hasta la vida, ese estado en el que la materia puede llegar a generar pensamientos, y, hasta sentimientos.

La Ciencia está muy bien, el materialismo viene a poner nuestros pies en el suelo y que no fijemos en las cosas tal como son o, al menos, tal como creemos que son. Sin embargo, una cuestión me tiene desconcertado: ¿Cómo podemos sentir en la que sentimos? ¿De donde vienen esos sentimientos? ¿Será quizá una muestra suprema de la evolución del mundo material? ¿Tendrá memoria la materia?

Por si acaso, yo dejaría aquí un gran signo de interrogación, ya que, hemos alcanzado una pequeña cota de la altísima montaña que nos hemos propuesta escalar, y, luego, no sabemos lo que nos podremos encontrar lleguemos a cotas más elevadas, ya que, pensar en llegar al final…no parece nada fácil.

emilio silvera

Espacio-tiempo curvo y los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Sin categoría    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. Esta sencilla ecuación es la demostración irrebatible de la grandeza de la mente humana que, con unos pocos signos nos puede decir tánto. De las ecuaciones de campo de Einstein, se pudieron deducir muchas cosas, tales como que el espacio se curva en presencia de grandes masas, como mundos, estrellas y galaxias para configurar la geometría del espacio.

 

 

 

 

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distosiona el esapcio-tiempo. En estos lugares que, como océanos de gas y polvo iniozado por la radiación de las estrellas masivas más jóvenes, existen moléculas complejas que, en algún caso, son esenciales para la existencia de la vida.

 

 

Resultado de imagen de La teoría cuántica de campos en espacio-tiempo curvoResultado de imagen de La teoría cuántica de campos en espacio-tiempo curvo

 

Donde es la masa invariante de la partícula, es la velocidad relativa de la partícula, vorb es la respectiva velocidad orbital del observador de la partícula, Ges la constante gravitacional, M la masa que crea el campo gravitatorio, r es el radio del campo gravitatorio donde se encuentra el observadory c es la velocidad de la luz en el vacío.

 

 

Resultado de imagen de La teoría cuántica de campos en espacio-tiempo curvo

 

La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski).  Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.

La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.

File:3D coordinate system.svg

En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad  nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.

En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

 Resultado de imagen de Las rosas más bonitas del mundo

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un nombre. (¿Qué hay en un nombre? Lo que llamamos rosa, / con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-) – La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.

También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.

Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.

Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividadespecial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividadgeneral nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividadgeneral que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.

En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Resultado de imagen de El genoma

Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…

Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.

Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender  que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.

Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

 

 Esta pretende ser la imagen de un extraño objeto masivo, un quásar  que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).

Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

 Resultado de imagen de El hidrógeno es el elemento básico del Universo

Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

                          Supernova 1987 A

El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.

Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espaciotiempo y dibujar la geometría del universo.

Resultado de imagen de UN FENÓMENO DE GRAN VIOLENCIA GALÁCTICA

Abajo la Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA. En el Espacio suceden acontecimientos de grandes energías que, para nosotros, los habitantes de la Tierra, no tienen consecuencia por la lejanía a la que nos encontramos de regiones violentas. Hemos tenido la suerte de venir a “caer” a una zona relativamente tranquila que nos permite evolucionar.
Resultado de imagen de Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.

Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercewr aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

Una galaxia gemela de la Vía Láctea

      En presencia de uno de estos objetos, el Tiempo se ralentiza y el Espacio se curva sobre sí mismo

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividadgeneral deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.

Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negroencontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.

Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta  la extenuación:

“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado”  Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.

 

El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

File:Cassini-science-br.jpg

Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debidad resulta engañosa poreque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.

¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!

En el Universo todo es fruto de dos fuerzas contrapuestas:

Resultado de imagen de En el Universo todo es fruto de dos fuerzas contrapuestas:

Las dos fuerzas contrapuestas, al fin se equilibran y dan establidad

Por ejemplo, las estrellas son estables por el hecho de que, la energía de fusión tiende a expandir la estrella y, la fuerza de Gravedad generada por su ingente masa, la hace contraerse. De esa manera, las dos fuerzas se contrarrestan y consiguen estabilizar a la estrella que vive miles de años. Cuando se agota el combustible nuclear de fusión, la estrella queda a merced de la Gravedad y se contrae (implosiona) bajo el peso de su propia masa, la gravedad la aplasta más y más hasta convertirla en una estrella de neutrones y un agujero negro si es una estrlla masiva.

Imagen relacionada

En el átomo, el equilibrio se alcanza como consecuencia de que, los protones (los nucleones que forman el núcleo), están cargados positivamente, y, los electrones que orbitan a su alrededor, están cargadas eléctricamente con cargas negativas equivalentes, con lo cual, el equilibrio queda servido y se alcanza la establidad.

Diagrama de Kruskal-Szekeres para un agujero negro. Las rectas azules son superficies de tiempo constante. Las curvas verdes son superficies de radio constante. -Las regiones I y II (sólo la parte blanca) son el exterior y el interior de un agujero negro. -La región III es una región exterior al agujero negro “paralela”. -La región IV (sólo la parte blanca) es un agujero blanco. Las zonas grises adyacentes a las regiones II y IV son las singularidades.

¿Se transforman los agujeros negros en 'agujeros blancos'?

           El agujero Blanco, al contrario del Agujero negro, en lugar de engullir materia la expulsaria

El agujero negro de Schwarzschild es descrito como una singularidad en la cual una geodésica puede sólo ingresar, tal tipo de agujero negro incluye dos tipos de horizonte: un horizonte “futuro” (es decir, una región de la cual no se puede salir una vez que se ha ingresado en ella, y en la cual el tiempo -con el espacio- son curvados hacia el futuro), y un horizonte “pasado”, el horizonte pasado tiene por definición la de una región donde es imposible la estancia y de la cual sólo se puede salir; el horizonte futuro entonces ya correspondería a un agujero blanco.

Así, nos encontramos con el hecho cierto de que, en el Universo, todo es equilibrio y estabilidad: el resultado de dos fuerzas contrapuestas.

Siempre hemos querido saber sobre todo aquello que no podíamos comprender y luchamos por desvelar los secretos de la Naturaleza. Poco a poco, supimos de las estrellas y galaxias, de las distancias siderales y de los exóticos objetos que pueblan nuestro universo y, fuimos conscientes de que, nosotros, insignificantes seres habitantes de un insignificante planeta de entre cientos de miles de millones, podíamos “comprender” el inmenso Universo en el que todo es energía.

Resultado de imagen de La energía del Universo

Definir la energía no ha sido nunca cosa fácil, dado que está presente en todo lo que podamos mirar desde una piedra que yace en las finas arenas del fondo de un río, la montaña que majestuosa nos mira desde su altanera e imponente figura, la simple visión de un hermoso árbol, y, sobre todo, energía para mí… ¡son las estrellas del espacio interestelar! que crean el material del que se forjan los mundos y surje la vida, la más elevada  del energía que está presente en nuestro Universo.

El conocimiento moderno de la energía incluye un  de descubrimientos fundamentales: la masa y la energía son equivalente; los diferentes tipos de energía están relacionados por muchas transformaciones; durante esas transformaciones, la energía no se destruye (primer principio de la termodinámica) y esta conservación de la energía está inexorablemente acompañada por una pérdida de utilidad (segundo principio de la termodinámica).

El primer descubrimiento, descrito en una carta de Einstein a un amigo suyo  una “idea atrevida, divertida y atractiva”, se resume en su ecuación m = E/c2, que en su versión más famosa se escribe como E = mc2; la ecuación más conocida de la física.

emilio silvera