miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Todo ha tenido un comienzo y … ¡No deja de evolucionar!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                 Imagen de la ‘Montaña Mística’, captada por el telescopio Hubble. | NASA | ESA

Lo cierto es que los pensamiento son libres (quizá la única libertad de la que podemos gozar), y mirando tan bella imagen de tres años-luz de extensión, cada cual puede, dejando volar su imaginación, ver en ella el más fantástico escenario que ni la más avanzada técnica empleada en películas de ciencia ficción, nos podría proporcionar. Estamos viendo la Nebulosa Carina situada a 7.500 años-luz de nuestro mundo que, gracias al Telescopio Espacial Hubble, nos muestra una bella vorágine de gas y polvo que, en un falso Caos y con ayuda de la Gravedad, no deja de crear estrellas y mundos que se reparten por toda esa inmensa región en la que van apareciendo grandes explosiones de luz y radiación que ionizan el material circundante. Los colores corresponden a fluídos de oxígeno, el azul, de hidrógeno y nitrógeno, el verde, y de sulfuro, el carmesí.

La imagen fue la elegida por la NASA para conmemorar los veinte años del Hubble que, desde su puesta en escena en la órbita de la Tierra no ha dejado de ofrecernos maravillas:

  • Abrió la veda del estudio de planetas extrasolares y buscar la vida en ellos.
  • Desde 1990 ha realizado 600.000 grabaciones de unos 30.000 objetos.
  • Ha ayudado a explicar el nacimiento de estrellas y planetas.
  • Estimó la edad del Universo en unos 13.700 millones de años.
  • Nos hizo viajar en el tiempo y poder contemplar galaxias que nacieron hace 13.000 M. de años

http://stopestigma.files.wordpress.com/2013/01/mirando-el-universo.jpg

Nuestra mirada queda fija, prisionera de tanta belleza como el Universo nos puede mostrar. Cuando nos muestran las imágenes tomadas por los distintos telescopios que el ingenio humano ha sido capaz de construir para ver el universo y los objetos que lo pueblan en las distintas maneras que la física de la luz nos permiten, no podemos hacer otra cosa que asombrarnos al tiempo que tan fantásticos escenarios nos hablan de una grandeza que no siempre llegamos a comprender. Lo que el Universo nos muestra es la obra de muchos miles de millones de años de “construcción” a partir de un “universo niño” en el que nada de lo que ahora podemos contemplar, existía.

Imagen conocida como Campo profundo extremo. Un montaje de diez años de observación del Hubble. En esta pequeña región de la constelación de Fornax se pueden contemplar más de 5500 galaxias, muchas de ellas situadas tan lejos que las vemos tal y cómo eran cuando el Universo apenas tenía 450 millones de años. Una verdadera máquina del tiempo a nuestra disposición. Y no es una simple forma de hablar: entre los objetos que se pueden ver en este campo están algunos de los más lejanos -y por lo tanto jóvenes- conocidos. Claro que, antes de que estos objetos existieran… ¡Hay un largo camino que recorrer hacia atrás en el Tiempo!

Cuanto más hacia atrás viajamos en el Tiempo, menos “cosas” podemos encontrar y comprobamos que, las grandes estructuras que ahora captan nuestros telescopios… ¡No existían! Hubo un tiempo en que el Universo era muy diferente a como ahora lo podemos contemplar y tuvieron que pasar muchas cosas para llegar a que en estos momentos, observadores inteligentes puedan contarlo.

Nadie sabe lo que pudo pasar en aquel primer momento y si fueron las “cuerdas” las precursoras de la materia, o, por el contrario, esa misteriosa sustancia cósmica que permea todo el Universo fue la precursora de las partículas que, más tarde se constituyeron en átomos, moléculas, sustancias y cuerpos.

Como nadie estuvo allí para contarlo, como ni las matemáticas han podido llegar a “aquel momento” inicial que llamamos Big Bang, como no hemos sido capaces de sobrepasar esa línea prohibida que nos marca el “Tiempo de Planck”… En cosmología, el tiempo de Planck representa el instante de tiempo más antiguo en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:


t_P =
\sqrt{\frac{\hbar G}{c^5}}
\; \approx \quad
5,39106(32) \cdot 10^{-44}
 segundos.

Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por  segundos, donde G es la constante gravitacional (6’672 59 (85) ×10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2π = 1’054589 × 10-34Julios segundo) y c es la velocidad de la luz (299.792.458 m/s).

Mapa. La imagen muestra las ‘hiperfrecuencias’ del universo que surgieron hace 13 mil millones de años.

Mapa. La imagen muestra las ‘hiperfrecuencias’ del universo que surgieron hace 13 mil millones de años. AFP. Al menos eso es lo que creemos que pudo pasar y, para tratar sobre toda esa inmensa estructura construimos modelos cosmológicos que, con el paso del tiempo se van refinando.

Así, nos tenemos que conformar con “saber” lo que pasó a partir de aquel momento y no antes. Todo lo que pudo ocurrir en aquella primera fracción de segundo antes del tiempo de Planck, queda en la más completa oscuridad y nunca hemos sabido lo que pudo ocurrir y, como consecuencia, tampoco somos capaces de realizar ninguna representación de aquel momento que pueda ser fidedigna y auto consistente, científicamente hablando, nos faltan datos y elementos para poder realizar un modelo que nos permita representar aquella imagen primera. Pero vayamos por parte.

Para tratar de saber cómo llegó aquí la materia que todo lo conforma (galaxias de estrellas y mundos), hemos tenido que construir inmensas máquinas que, utilizando ingentes cantidades de energías, nos llevan hacia atrás en el tiempo y nos hablan de lo que pudo pasar. En esas máquinas que llamamos aceleradores de partículas, hacemos chocar haces de protones u otras partículas para que, literalmente, haciéndolas “papilla” nos enseñen lo que llevan dentro.

Un átomo es una estructura muy compleja. Tiene un nucleo compacto, cargado positivamente, y un enjambre de electrones en órbitas. Por el contrario, una mezcla de núcleos y electrones no ligados es un sistema relativamente simple. Después de todo, para hacer un átomo hay que colocar todas las piezas constituyentes  en su lugar exacto. Para hacer una mezcla basta con echar todo aquello junto de manera aleatoria y sin orden, de cualquier manera. Es como hacer una maleta colocando cuidadosamente todas las cosas dentro, o, tirarlas sin orden dentro de ella para quitarlas de enmedio.

La historia de cómo llegaron los átomos es típica de aquellos primeros tiempos del Universo joven. A medida que la temperatura seguía bajando como resultado de la expansión de Hubble, se formaron estructuras más y más complejas. Los átomos, que son las estructuras más grandes y ligeras que por el momento queremos considerar, se formaron los últimos después de una sucesión de transiciones. Si nos movemos hacia atrás en el Tiempo, la siguiente estructura que se congeló fueron los nucleos mismos.

Los núcleos que suponen una parte entre cien mil del átomo, en realidad son los que tienen consigo la verdadera materia y, para describirlos, no vale con decir que están formados por nucleones, es decir, por protones y neutrones que cuando son golpeados con violencia en los aceleradores de partículas, se ven literalmente desmembrados y allí aparecen otras partículas de las que están formados y que llamamos Quarks que, en tripletes, están confinados en una sopa de Gluones que son los bosones transmisores de la fuerza nuclear fuerte, la responsable de que los núcleos puedan existir. Así que debió de haber un tiempo en el que no existían los núcleos de los átomos y un tiempo en el que nacieron.

Del mismo modo se cree que los protones y neutrones y otras partículas elementales que forman el núcleo están a su vez hechos de esas otras partículas más elementales que llamamos Quarks, al menos ese es, el comportamiento observado en los aceleradores de partículas en el que, esos protones al ser pulverizados, dejan “ver” algo más de lo que llevan dentro.

Fijáos que si destruimos un neutrón, nos aparecen otras partículas que lleva dentro: un electrón, un protón y un neutrino electrónico que sale huyendo de allí a la velocidad de la luz. Todo eso subyace dentro de un neutron que está formado por tres Quarks, dos quarks dowm y un Quarks up. No resulta nada fácil de asimilar ese mundo cuántico de lo muy pequeño en el que podemos encontrarnos con maravillas que están muy alejadas de nuestro “mundo” cotidiano.

Cuando la temperatura del Universo era muy alta, los Quarks no estaban confinados juntos dentro de los protones y neutrones que aún no se habían formado y, se supone, que vagaban libres. En otras palabras, en aquellos primeros momentos no existían ninguna d elas partículas que ahora conocemos como elementales y que residen dentro de los núcleos. Hubo un Tiempo en el que no existíeron y un Teimpo en el que nacieron.

Por tanto, cuando la temperatura era suficientemente alta, la materia era una mezcla de Quarks y partículas como electrones, esas partículas que los físicos llaman Leptones (“que interaccionan muy débilkmente”). De acuerdo con nuestras ideas actuales y después de haber estudiado todos los posibles procesos por los que pudo pasar la formación de los átomos de materia, este es el final del proceso: La materia no se puede partir más. Todo lo que nos rodea está hecho de diferentes combinaciones de quarks y leptones.

Cuando el Universo se expande y enfría más y más, los quarks se congelan en partículas elementales; luego las partículas se congelan en núcleos y finalmente  los núcleos y electrones se congelan en átomos. Esa es, la evolución que se sigue para la formación de la materia que ahora conocemos como Bariónica, la que emite radiación, la materia luminosa que al unirse los átomos formaron las estrellas y más tarde las galaxias.

Claro que la simplificación del Universo no se puede detener en la materia. Una vez que la materia ha sido rota en sus elementos básicos, hay todavía otra fuente de complejidad en el Universo y son las fuerzas fundamentales que gobiernan el modo en que las partículas interaccionan entre sí para que el universo sea tal como lo podemos contemplar, para que las estrellas brillen en el cielo y formen elementos que serán los precursores de la vida, el estado más evolucionado que de la materia, hemos podido constatar… ¡Hasta este momento! ¿Quién sabe ni siquiera lo que es la luz? La luz está presente en las estrellas de las que cada segundo salen disparados a velocidades relativistas cientos de miles de cuatrillones de de fotones formando haces que marchan de manera isotrópica hacia regiones lejanas del Cosmos.

Resultado de imagen de La luz se expande manera isotrópica

En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la velocidad de la luz …

Como podréis comprender, el presente trabajo podría seguir y seguir durante cientos y miles de páginas para describir todo lo que hemos aprendido observando el Universo y las fuerzas que marcan el ritmo al que todo se mueve, incluso nosotros, seres conscientes, estamos supeditados a esas fuerzas fundamnetales de las que tantas veces hemos hablado aquí y que, al ser las que rigen el comportamiento de la materia y de todo lo que existe que podamos conocer, es también, sin lugar a ninguna duda, la que hace que, en otros mundos, esté presente la vida como lo está en la Tierra.

¿Cuándo podremos comprobarlo?

emilio silvera

La expansión acelerada del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

El Modelo del Big Bang, que justo es reconocerlo, coincide con las observaciones realizadas, algunos, sin embargo, no lo tienen tan claro y dudan de que, a partir de un punto de infinita densidad y energía saliera todo esto que llamamos universo.

El Premio Nobel de Física de 2011 se otorgó a los tres físicos que arriba podéis contemplar “por el descubrimiento de la expansión acelerada del universo gracias a observaciones de supernovas lejanas”. Es sin duda una de los hallazgos más extraordinarios que nos ha ofrecido la cosmología desde el descubrimiento del fondo cósmico de radiación de microondas. Gracias a estas observaciones, ahora sabemos que el universo no sólo se expande sino que lo hace de forma acelerada, en contra de lo esperado si estuviera compuesto de materia ordinaria, así que, hipotéticamente existe alguna clase de materia que lo hace comportarse de esa manera. (Al menos eso es lo que se cree… por el momento).

(Es curioso que, después de que los premios fuesen concedidos a estos físicos, ha salido un español que, según dice y ha sido publicado, tenía registrado el trabajo, o uno similar, al que ha valido el novel de 2.011 a estos de arriba. La polémica está en marcha).

 

Esta imagen compuesta muestra conglomerado de galaxias 1E 0657-56. Este conglomerado se formó despues del choque de dos grandes grupos de galaxias, el suceso más energético que se conoce en el universo luego del Big Bang. Lo cierto es que, cuando ese punto (singularidad) del que surgió todo, es decir, el nacimiento del Universo, mediante el llamado Big Bang, la expansión del universo fue exponencial y ciertamente tuvo que ser máyor que c, lo cual nos lleva a pensar en cómo pudieron formarse las galaxias, si todo se estaba expandiendo a tal velocidad, la materia no tendría que haberse podido aglomerar (juntar) para formarlas. ¡Es todo tan extraño!

Los astrónomos dicen que han encontrado las mejores pruebas hasta la fecha sobre la Materia Oscura, la misteriosa sustancia invisible que se cree constituye la mayor parte de la masa del universo. En la imagen de arriba han querido significar, diferenciándola en colores, las dos clases de materia, la bariónica y la oscura que, en este caso, sería la azulada -según dicen-. Sin embargo, la imagen no refleja la proporción que dicen existe entre la una y la otra.

Resultado de imagen de Lanzamos con fuerza una pelota hacia arriba

Para poder comprender este resultado tan extraordinario, podríamos poner un ejemplo sencillo: Por ejemplo, si lanzamos una pelota con fuerza hacia arriba, ésta sale despedida en la medida de la fuerza que la impulsó, y, llegado a un punto, la Gravedad que ejerce la Tierra sobre ella, la hará caer de nuevo. Sin embargo, si lanzamos la pelota con mucha más fuerza, ésta podría vencer la gravedad terrestre y salir al espacio exterior y escapar a velocidades cada vez menores. Sin embargo, lo que han observado los investigadores que han recibido el Nobel en 2011, es que el universo no se comporta de esta manera. En lugar de frenarse conforme se expande, el universo parece expandirse de forma acelerada. En la analogía de la pelota, es como si esta, una vez escapara de la Tierra, se alejara con una velocidad cada vez mayor. De esta realidad observada, se deduce de manera clara que, sobre el Universo, está actuando una fuerza desconocida que lo atrae y supera la atracción gravitacional de toda la materia que contiene conocida por nosotros.

BOSS measures the three-dimensional clustering of galaxies at various redshifts, revealing their precise distance, the age of the universe at that redshift, and how fast the universe has expanded. The measurement uses a "standard ruler" based on the regular variations of the temperature of the cosmic microwave background (CMB), which reveal variations in the density of matter in the early universe that gave rise to the later clustering of galaxies and large-scale structure of the universe today. (Click on image for best resolution. Credit: Eric Huff, the SDSS-III team, and the South Pole Telescope team. Graphic by Zosia Rostomian)

Pero antes de describir las observaciones, recapitulemos sobre lo que sabemos del universo hasta ahora. La expansión del universo fue descubierta en los años 20 del pasado siglo por Vesto Slipher, Knut Lundmark, Georges Lemaítre y Edwin Hubble. El ritmo de exdpansión depende del contenido de energía, y un universo que contiene sólo materia termina frenándose gracias a la fuerza de gravedad.

                     Las galaxias se alejan las unas de las otras ganando velocidad

Las observaciones de la recesión de las galaxias, así como de las abundancias de elementos ligeros, pero sobre todo del fondo de radiación de microondas, nos han permitido construir una imagen del universo en expansión, a partir de un origen extremadamente caliente y denso, que se va enfriando conforme se expande. Hasta hace unas décadas se creía que esa expansión era cada vez más lenta y se especulaba sobre la posibilidad de que eventualmente el universo “recolapsara”. Sin embargo, las observaciones de la luz que nos llega de supernovas a distancias astronómicas, de hasta siete mil millones de años-luz -hechas por dos colaboraciones independientes: El Supernovae Cosmology Project,  liderado por Saul Perlmutter, y el High Redshift Supernova Project,  de Brian Schmidt y Adam Riess- mostraron que actualmente el ritmo de expansión está acelerándose, en lugar de decelerarse.

La hipótesis más común para dar cuenta de la expansión acelerada del universo es asumir la existencia de un tipo de energía exótica llamada energía oscura. De acuerdo con los cálculos cuantitativos alrededor del 70% del contenido energético del Universo consistiría en energía oscura, cuya presencia tendría un efecto similar a una constante cosmológica de tipo expansivo como el observado; sin embargo, la naturaleza exacta de este tipo de energía es desconocida.Pero, ¿qué pasa con las observaciones realizadas?

Estas observaciones han sido posible gracias  a que las supernovas de tipo Ia son explosiones extraordinariamente violentas que se ven a enormes distancias y afortunadamente siguen un patrón de luminosidad característico, llegando a su máximo pocos días después de la explosión y a partir de ahí lentamnete decreciendo en luminosidad hasta que dejamos de verla. La relación entre la máxima luminosidad y el período de decrecimiento se puede calibrar con supernovas cercanas, de manera que midiendo estos períodos para muchas supernovas podemos deducir su distancvia a nosotros y de ahí el ritmo de expansión del universo desde el momento en que la supernova explotó hace miles de millones de años. Las medidas de las supernovas lejanas muestran no sólo que el universo se está expandiendo aceleradamente hoy día, sino también que en el pasado lo hacia de forma decelerada, lo que concuerda con nuestras predicciones basadas en la Teoría de Einstein.

En el contexto del Modelo estándar cosmológico, la aceleración se cree causada por la energía del vacío -a menudo llamada “energía oscura”- una componente que da cuenta de aproximadamente el 73% de toda la densidad de energía del universo. Del resto, cerca del 23%, sería debido a una forma desconocida de materia a la que llamamos “materia oscura”. Sólo alrededor del 4% de la densidad de la energía correspondería a la materia ordinaria, es decir, la que llamamos Bariónica, esa que emite radiación, la luminosa y de la que estamos nosotros constituidos, así como las estrellas, los mundos y las galaxias. Es, precisamente esa luz, la que nos permite adentrarnos en lo más profundo del universo desconocido, lejano y oscuro para poder saber, sobre estos misterios.

La energía del vacío es una clase de energía del punto cero existente en el espacio incluso en ausencia de todo tipo de materia. La energía del vacío tiene un origen puramente cuántico y es responsable de efectos físicos observables como el efecto Casimir y otros.

En nuestras vidas cotidianas, los efectos de la energía de vacío son ínfimos, diminutos, pero aún así detectables en pequeñas correcciones a los niveles de las energías de los átomos. En Teorías de campos relativistas, la energía de vacío está dada por una expresión matemáticamente idéntica y físicamente indistinguible de la famosa constante cosmológica, o por el contrario varia con el tiempo, algo que tendría consecuencias importantísimas para el destino del universo y que es un tema de investigación candente en cosmología, con varios experimentos propuestos para detectarlo.

Tipos de espacio según la densidad crítica del universo. Es decir, dependiendo del valor de Omega, tendremos un universo abierto, cerrado o plano. De momento, todos los indicios nos dicen que estamos  en un universo plano que se expandirá para siempre.

En fin amigos, el tema es interesante y lo continuaremos en otro momento…

Le he robado un rato al trabajo para dejar esta página en el Blog por estimarla de interés para que todos, estén al día de los últimos descubrimientos en relación al universo en el que vivímos y de lo que los científicos nos cuentan de vez en cuando que, no siempre (creo), coincide con la realidad.

emilio silvera

El Complejo Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

La tesis de Stephen Hawking sobre la expansión del Universo colapsa la Web de la Universidad de Cambridge.

La página ha recibido más de 670.000 visitas hasta este miércoles

 Reportaje de Prensa: El País

Stephen Hawking en la Universidad de Cambridge en octubre de 2016. NIKLAS HALLE’N AFP/ EPV

La publicación en Internet de la tesis doctoral de Stephen Hawking sobre la expansión del universo ha colapsado la página web de la Universidad de Cambridge. El documento, titulado Propiedades de universos en expansión, que el físico británico publicó con 24 años, ha recibido 677.709 visitas hasta este miércoles y se ha convertido en el más solicitado del centro. “Cualquier persona, en cualquier parte del mundo, debería tener acceso libre y sin obstáculos, no solo a mi investigación, sino a la de cualquier mente grande e inquisitiva”, ha señalado en sus redes sociales el físico de 75 años.

Resultado de imagen de Propiedades del Universo en Expansión

La Universidad inició el pasado lunes la Semana de Libre Acceso, que inauguró con la publicación de la tesis de Hawking. Es la primera vez que el documento es de libre acceso desde que el científico lo escribió en 1966. Solo el primer día, tuvo 60.000 descargas, un volumen que colapsó la página web de Cambridge, que estuvo inaccesible durante casi toda la jornada. La Universidad logró resolver el problema al día siguiente, a partir de la una de la tarde, momento en el que se registró la mayor cantidad de usuarios únicos cuando más de 26.000 personas intentaron acceder a la página.

Las visitas a la tesis doctoral de Hawking proceden de distintos puntos del planeta, según ha confirmado el coordinador de la biblioteca digital, Andrew Corrigan, y han superado las consultas a la primera edición anotada de los Principia de Newton y de las primeras obras de impresión en color en chino.

Resultado de imagen de Propiedades del Universo en Expansión

 

 

Propiedades de universos en expansión, un estudio de 115 páginas sobre las implicaciones y consecuencias de la expansión del universo, ha emocionado a miles de estudiantes y apasionados de la ciencia. Pese a los inconvenientes por el colapso de la web, muchas personas festejaron a través de sus redes sociales la noticia sobre el libre acceso a este documento.

La universidad quiere socializar el saber. “Las tesis doctorales contienen información única y sin explotar que está esperando a ser utilizada, pero que a menudo está bloqueada, fuera de la vista y el escrutinio”, señala Arthur Smith, subdirector del departamento de comunicación.

Resultado de imagen de Historia del Tiempo

El autor de Breve historia del tiempo quiere inspirar a quienes, como él, investigan el universo. “Espero que mi trabajo le inspire a alguien a perseguir sus propias investigaciones, a encontrar las respuestas a tantas preguntas sin respuestas sobre el universo, como los trabajos de Isaac Newton, James Clerk Maxwell y Albert Einstein me inspiraron alguna vez”, escribió Hawking en su cuenta de Facebook. El científico espera no decepcionar a sus lectores. En caso de que esto sucediera, los invita a dirigir las quejas y preguntas al joven Hawking. Solo tendrán que viajar en el tiempo para hacerlo.