Es nuestra Galaxia y, sin embargo, no la podemos contemplar en su totalidad y cómo es en realidad. Es una paradoja que podamos ver otras situadas a miles o millones de años luz de nosotros pero, la nuestro no.
Dicen que un enorme vacío hace que la Vía Láctea viaje por el Universo a dos millones de kilómetros por hora. Dos grandes fuerzas gobiernan su movimiento y la hace viajar a esa descomunal velocidad. Esa es la conclusión obtenida por un estudio que se publicó en Nature Astronomy.
Mientras lee estas líneas, usted atraviesa el universo a una velocidad de dos millones de kilómetros por hora. No se trata de una fantasía, sino de un hecho contrastado que, hasta ahora, los astrónomos no sabían explicar del todo.
La teoría más aceptada dice que el supercúmulo de Sharpley, la mayor concentración de galaxias en el universo cercano, nos atrae con su empuje gravitatorio, acelerando a la Vía Láctea a esa vertiginosa velocidad. Pero esa propuesta no cuadraba con las observaciones del movimiento y la trayectoria del grupo local, el cúmulo de galaxias que engloba a Andrómeda y la Vía Láctea, nuestro diminuto vecindario en la inmensidad del universo.
Ahora, un nuevo estudio publicado hoy apunta a un segundo culpable. Se trata de una enorme región del universo que está a unos 500 millones de años luz y que, en términos cosmológicos, está vacía.
Lo cierto es que nuestra galaxia es la única que no podemos ver directamente y, de ella, desconocemos aún, algunas cuestiones que las hemos clasificado en el ámbito de la conjetura.
Hasta ahora solo existían pequeños indicios de este vacío y nadie había conseguido cuantificar sus efectos o localizarlo”
El astrofísico Yehuda Hoffman, de la Universidad Hebrea de Jerusalén, y el resto de su equipo, ha realizado una simulación en tres dimensiones del movimiento de la Vía Láctea por el universo cercano. Se han basado en observaciones de la velocidad de 8.000 galaxias hechas con el telescopio espacial Hubble y otros instrumentos. Los resultados, publicados en Nature Astronomy, confirman la existencia de esa región con una baja densidad de estrellas y galaxias que repele a la Vía Láctea justo en la dirección del supercúmulo de Sharpley, que a su vez la atrae con la masa de sus miles de galaxias. La suma de ambas fuerzas hace que la Vía Láctea viaje a esos dos millones de kilómetros por hora respecto a la velocidad constante de la radiación cósmica de microondas, generada tras el Big Bang.
El universo se expande a una velocidad definida por la constante de Hubble, explica Hoffman. Si se resta esa aceleración, el “efecto neto [de la nueva región] sobre la Vía Láctea es de repulsión”, explica. “Hasta ahora solo existían pequeños indicios de este vacío y nadie había conseguido cuantificar sus efectos o localizarlo”, señala. Este vacío, bautizado como repulsor dipolo, “aporta la otra mitad de la historia para explicar al completo el movimiento de la galaxia tal y como lo observamos”, resalta Hoffman.
El nuevo mapa muestra cómo el “atractor” y el “repulsor” influyen en un área del universo de unos 500 millones de años luz y que contiene otras grandes concentraciones de materia como el supercúmulo de Perseo-Piscis, el cúmulo de Hércules, la constelación de Lepus y Laniakea, el supercúmulo que habitamos los terrícolas. “Hasta donde sabemos esta es la mayor reconstrucción del universo local que se ha realizado”, asegura Hoffman.
La nueva región del universo descrita en el estudio no está realmente vacía, pero sí tiene menos estrellas y galaxias de lo normal y, por lo tanto, es mucho menos densa que las agrupaciones de cúmulos galácticos. El equipo de Hoffman espera que en el futuro se consiga observar la luz de estrellas en esta región.
El astrónomo añade que las características observadas para la Vía Láctea no tienen nada de especial en un universo que contiene unos dos billones de galaxias. “Su comportamiento parece muy común y encaja perfectamente con el modelo estándar de la cosmología”, que describe la estructura y evolución del universo a partir del Big Bang, resalta. “En este sentido, Copérnico tenía razón, no hay nada que nos haga especiales dentro del universo”, concluye.
NASA Selecciona una Misión Para Estudiar los Agujeros Negros
04.01.17.- La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares.
Los objetos tales como los agujeros negros pueden calentar los gases circundantes a más de un millón de grados. La radiación de alta energía de rayos X de este gas puede ser polarizada, vibrando en una dirección particular. La misión Imaging X-ray Polarimetry Explorer (IXPE) transportará tres telescopios espaciales con cámaras capaces de medir la polarización de estos rayos X cósmicos, permitiendo a los científicos responder preguntas fundamentales sobre estos entornos turbulentos y extremos donde los campos gravitatorios, eléctricos y magnéticos están en sus límites.
“No podemos ver directamente lo que está pasando cerca de objetos como agujeros negros y estrellas de neutrones, pero estudiar la polarización de los rayos X emitidos desde sus entornos revela la física de estos enigmáticos objetos”, dijo Paul Hertz, director de división de astrofísica de la Dirección de Misiones Científicas de la NASA en Washington. “La NASA tiene una gran historia de lanzamiento de observatorios en el Programa de Exploración Astrofísica con nuevas y únicas capacidades de observación. IXPE abrirá una nueva ventana en el universo para que los astrónomos puedan mirar a través. Hoy, sólo podemos adivinar lo que vamos a encontrar”.
El Programa de Exploración de Astrofísica de la NASA solicitó propuestas para nuevas misiones en Septiembre de 2014. Se presentaron 14 propuestas y se seleccionaron tres conceptos de misión para su revisión adicional por un grupo de expertos y científicos externos. La NASA determinó que la propuesta IXPE proporcionaba el mejor potencial científico y el plan de desarrollo más factible.
La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares. Image Credit: NASA
10.04.15.- A medida que las misiones de la NASA exploran nuestro sistema solar y buscan nuevos mundos, están encontrando agua en lugares sorprendentes. El agua es una pieza fundamental en nuestra búsqueda de planetas habitables y vida más allá de la Tierra que vincula de forma sorprendente mundos aparentemente dispares.
“Las actividades científicas de la NASA han proporcionado en los últimos años una ola de descubrimientos asombrosos relacionados con el agua que nos inspiran para continuar investigando nuestros orígenes y las fascinantes posibilidades de vida en el Universo”, dijo Ellen Stofan, científico jefe de la agencia.”Podríamos estar cerca de responder finalmente a la pregunta de si estamos solos en nuestro sistema solar y más allá.”
Los elementos químicos que componen el agua, hidrógeno y oxígeno, son algunos de los más abundantes en el universo. Los astrónomos detectan la firma del agua en nubes moleculares gigantescas en el espacio interestelar, en los discos de materia de los que nacen nuevos sistemas planetarios, y en las atmósferas de planetas gigantes orbitando otras estrellas.
Existen muchos mundos que se piensa que tienen agua líquida debajo de su superficie, y muchos otros que tienen agua en forma de hielo o vapor. El agua se encuentra en cuerpos primitivos tales como cometas y asteroides, y en planetas enanos como Ceres. Las atmósferas y el interior de los cuatro planetas gigantes – Júpiter, Saturno, Urano y Neptuno – se cree que contienen enormes cantidades de materia líquida, y sus lunas y anillos tienen cantidades sustanciales de hielo de agua.
Tal vez los mundos oceánicos más sorprendentes son las cinco lunas heladas de Júpiter y Saturno que presentan fuertes evidencias de océanos debajo de sus superficies: Ganímedes, Europa y Calisto en Júpiter, y Encélado y Titán de Saturno.
El Telescopio Espacial Hubble proporcionó recientemente poderosas evidencias de que Ganímedes posee un océano de agua salada bajo su superficie, probablemente localizado entre dos capas de hielo.
La NASA está explorando nuestro Sistema Solar y más allá para comprender el funcionamiento del Universo, buscando agua y vida entre las estrellas. Image Credit: NASA
Europa y Encelado se cree que tienen un océano de agua líquida bajo su superficie, en contacto con rocas ricas en minerales, y podrían tener los tres ingredientes necesarios para la vida tal y como la conocemos: agua líquida, elementos químicos esenciales para los procesos biológicos, y fuentes de energía que podrían ser usadas por los seres vivos. La misión Cassini de la NASA ha revelado que Encelado es un mundo activo con géiseres de hielo. Investigaciones recientes sugieren que podría haber actividad hidrotermal en su suelo oceánico, un ambiente potencialmente adecuado para los organismos vivos.
Naves de la NASA también han encontrado indicios de agua en los cráteres en sombra permanente sobre Mercurio y la Luna, que mantienen un registro de impactos de hielo a través del tiempo como recuerdos criogénicos.
Mientras que por un lado nuestro Sistema Solar parece estar anegado en agua en algunos lugares, otros parecen haber perdido grandes cantidades de agua.
En Marte, las misiones de NASA han encontrado claras evidencias de que el Planeta Rojo habría tenido agua en su superficie durante largos periodos de tiempo en el pasado. El rover Curiosisty descubrió un antiguo lecho del río que existía en medio de condiciones favorables para la vida tal como la conocemos.
Más recientemente, los científicos de la NASA utilizando telescopios terrestres, fueron capaces de estimar la cantidad de agua de Marte que se ha perdido con el paso de los eones. Llegaron a la conclusión de que el planeta una vez tuvo agua líquida suficiente para formar un océano que ocupó casi la mitad del hemisferio norte de Marte, en algunas regiones alcanzando profundidades de más de 1,6 kilómetros. Pero, ¿dónde se fue el agua?
Está claro para algunos de que está en los casquetes polares de Marte y por debajo de la superficie. También parece que gran parte de la atmósfera primitiva de Marte fue despojada por el viento de partículas cargadas que fluyen del Sol, haciendo que el planeta se seque. La misión MAVEN de la NASA está trabajando en órbita alrededor de Marte para esclarecerlo.
La historia de cómo Marte se secó está íntimamente ligada a la forma en que la atmósfera del Planeta Rojo interactúa con el viento solar. Los datos de las misiones solares de la agencia – incluyendo STEREO, Observatorio de Dinámica Solar, SDO, y la planificada Solar Probe Plus – son vitales para ayudar a entender mejor lo que sucedió.
Comprender la distribución del agua en nuestro sistema solar es de gran importancia para comprender cómo se formaron los planetas, las lunas, cometas y otros objetos hace unos 4.500 millones de años a partir del disco de gas y polvo que rodeaba nuestro Sol.