“Las estrellas se mueven más rápido de lo que deberían por algo que no vemos”
La arqueóloga galáctica Amina Helmi, experta en los orígenes de la Vía Láctea, sueña con desentrañar su componente más desconocido: la materia oscura.
Laura Chaparro
Cuando hace casi veinte años la joven Amina Helmi(Bahía Blanca, Argentina, 1970) defendía su tesis doctoral, la Agencia Espacial Europea (ESA por sus siglas en inglés) daba luz verde a la misión Gaia, el satélite que iba a cartografiar mil millones de estrellas de nuestra galaxia, la Vía Láctea. Lo que la astrónoma no sabía es que su carrera iba a estar ligada a Gaia de una forma casi platónica.
Los trabajos de Helmi ayudaron a configurar el instrumento del satélite que mide las velocidades radiales, es decir, cómo se mueven las estrellasrespecto a quienes las observan. Dos décadas después, con Gaia a 1,5 millones de kilómetrosfotografiando cuerpos celestes sin parar, la astrónoma forma parte del consorcio que procesa toda información generada y la hace pública para que puedan trabajar con ella investigadores de todo el mundo.
“Es lindo“, afirma Helmi, que es catedrática de Dinámica, Estructura y Formación de la Vía Láctea en el Instituto Astronómico Kapteyn de la Universidad de Groninga (Países Bajos). La arqueóloga galáctica – como la suelen llamar por sus estudios sobre el origen de la Vía Láctea – ha impartido una conferencia en el ciclo La ciencia del cosmos, la ciencia en el cosmos organizado por la Fundación BBVA y ha charlado antes con EL ESPAÑOL.
¿En qué punto se encuentra Gaia? La misión iba a durar hasta 2018 pero la ESA la acaba de ampliar hasta el 31 de diciembre de 2020.
Esperamos que siga observando un par de años más. Ya se han publicado los datos del primer año de observaciones y ahora, en abril de 2018, será la siguiente publicación. Estamos trabajando como locos porque son muchos datos. Nadie tuvo nunca tantos de la Vía Láctea y estamos tratando de validarlos y de hacerlos públicos para que sean fáciles de manejar. Uno ve la calidad de los datos y es espectacular.
Imagina todo lo que se va a descubrir con esos datos después.
Sí. Para mí especial porque cuando empecé a trabajar en astronomía, mi tesis doctoral coincidió con el momento en que Gaia empezó a concebirse. Me doctoré en el 2000 y ese año fue elegida como una de las próximas misiones espaciales de la ESA. La vi desde su concepción y contribuí en un instrumento que mide las velocidades radiales. Haber arrancado con eso y hoy tener la posibilidad de analizar los datos y ver lo que se puede hacer es increíble.
¿Gaia es como la niña de sus ojos, que decimos en España?
Algo así. Aunque hay mucha gente que siente lo mismo que yo (ríe).
En su tesis descubrió que en la Vía Láctea, un grupo de estrellas, que llamaron la Corriente de Helmi en su honor, pertenecía a otra galaxia. ¿Nuestra galaxia engulle a otras?
Sí, es como una fusión. La Vía Láctea tiene varios componentes: un disco con estrellas que se formaron en el propio disco y, alrededor, un halo. Pensamos que las estrellas del halo se formaron en galaxias más pequeñas que se fusionaron por la atracción gravitacional mutua. Es como un árbol genealógico, con muchas galaxias pequeñas que se fusionan y dan lugar a una más grande y en esa se forma el disco. Creemos que estos procesos eran muy frecuentes en el universo temprano, cuando era joven, porque el universo era más pequeño y las posibilidades de colisionar con otra galaxia, mayores. Varias de estas galaxias han dado lugar al halo estelar. La cuestión es encontrarlas, aunque con Gaia se debería poder.
Hay estrellas en el halo de nuestra galaxia que tienen la misma edad que el Universo.
¿De hace cuántos millones de años estamos hablando?
No lo sabemos bien. Eso también es lo interesante. Si la edad del Universo es de 15.000 millones de años, el disco se formó más o menos a los 7.000 millones. Lo que pasó antes es más difícil de estudiar y es entonces cuando creemos que ocurrieron estas fusiones. Pero no sabemos en qué momento, ni cuántas fueron. Hay estrellas que ahora se encuentran en el halo cuya edad es la misma que la del Universo. Son la segunda o tercera generación de estrellas. Eso también es muy interesante porque son una ventana a los procesos que tuvieron lugar cuando el Universo era muy joven. Y son estrellas que ahora están en nuestras vecindades. De pronto puedes dar un salto del presente hacia el pasado, un salto muy grande, con mucha información que va a permitir reconstruir cómo se formó una galaxia.
¿Con Gaia vamos a poder ver la Prehistoria galáctica?
Vamos a ver toda la Historia, desde la Prehistoria hasta hoy.
En un estudio que publicó con datos de Gaia explicaba que muchos grupos de estrellas se desplazaban por el halo como si fueran bandadas de pájaros. ¿Qué les empuja a seguir esa dirección?
Una galaxia es un conglomerado de estrellas que están juntas y se mueven juntas sobre el espacio. Pero cuando este conglomerado se acerca a la Vía Láctea, siente una fuerza de marea. De la misma manera que se deforma la Tierra por la fuerza de atracción entre la Luna y la Tierra, la galaxia más pequeña también se deforma. Como la Vía Láctea es mucho más grande, más pesada, la más pequeña no sobrevive, se estira y se destruye. Las estrellas siguen la misma trayectoria que seguiría la galaxia y forman una corriente de estrellas que se mueven en el halo y que giran en torno a la Vía Láctea. Esa es la bandada de pájaros.
Otra de sus líneas de investigación es la materia oscura. ¿Qué sabemos de ella a día de hoy?
Poco (ríe). Si miras cómo se mueven las galaxias en el universo o las estrellas en la Vía Láctea, lo hacen más rápido de lo que uno derivaría en base a la cantidad, porque hay una relación entre la velocidad y la cantidad de masa: veo tanta masa y debería medir tanta velocidad, pero la velocidad es diez veces mayor. De ahí viene el término materia oscuraporque en realidad no la vemos. Sabemos que hay algo que hace que las estrellas se muevan más rápido y la idea fundamental es que son partículas fundamentales que todavía tienen que ser detectadas en la Tierra. Hay muchos experimentos de física que están tratando de detectar materia oscura de forma directa. El modelo cosmológico se basa en asumir este tipo de partículas y hacer predicciones. Como el modelo funciona, es muy posible que la materia oscura sean estas partículas que tenemos que detectar en algún momento.
Amina Helmi. Fundación BBVA
¿Gaia no va a observar esta materia de manera directa?
No, pero en algún momento hay que detectarla (ríe). A partir de las velocidades determinas el campo de fuerzas, y ese campo debería ser de determinada forma si las partículas son materia oscura. Si resulta que las estrellas se mueven de forma diferente a la que esperamos y no encaja, hay que empezar a pensar, a encontrar otra formulación.
¿Cuál fue el papel de la materia oscura en el origen de la Vía Láctea?
Hay cinco veces más materia oscura que materia común en el Universo, así que la materia oscura dicta, domina la dinámica. Si uno mira la masa total de la Vía Láctea, es posible que sea hasta diez veces mayor que la masa de estrellas que vemos. Por ejemplo, en los procesos de fusión, la Vía Láctea atrae otras galaxias por la cantidad de masa que tiene. La materia oscura tiene un rol importante en atraer y destruir estas otras galaxias.
¿Su sueño es averiguar qué es realmente esta materia?
Sí, me gustaría contribuir a entender qué es esto de la materia oscura. Lo que pasa es que, en mi caso, estudiando las estrellas del halo, tengo acceso tanto a la materia oscura como a la historia de la Vía Láctea y eso es lindo también.
Si vas a un congreso, las mujeres tienden a ser un poco menos protagonistas, no están gritando, tratando de imponer sus ideas, frente a hombres que quieren mostrar que saben.
¿Desde niña ha querido dedicarse a la astronomía?
Sí. Recuerdo que la primera vez que leí algo de astronomía fue en el último año de primaria y me encantó. Me quedé enamoradísima. En Geografía la profesora dedicó un mes a la astronomía y es curioso porque de esa clase hay otro chico que también es astrónomo. Nos dejó huella. La capacidad deexplicar la inmensidad me parece fascinante.
En su grupo de investigación hay un equilibrio entre hombres y mujeres. ¿La astronomía es una disciplina más paritaria, a diferencia de otras ramas de la ciencia?
En astronomía también hay más hombres, sobre todo en los países del norte de Europa y en Estados Unidos. En los países del sur de Europa y en Latinoamérica está más equilibrado. Éramos 50%-50%o cuando estudiaba, pero en Holanda somos muy pocas las mujeres. Las que tienen un título de profesor en Holanda son casi todas extranjeras. Tuve suerte con mi grupo pero no fue algo que hice a propósito, ha resultado así y me alegro mucho. Es bueno que haya un equilibrio.
¿En su carrera ha tenido dificultades por ser mujer?
Creo que no, salvo una vez que participé en una convocatoria. Uno de los evaluadores dijo en uno de los comentarios que no quedaba claro si lo que proponía como plan de investigación era mi propio plan o era el de mi supervisor. Hacía cuatro años que no trabajaba con mi supervisor de tesis. Había publicado de forma independiente. Un comentario así es muy dañino, porque son ayudas prestigiosas, quieres empezar un grupo, desarrollarte… Era un comentario malintencionado. Mi supervisor es una persona muy conocida y yo no sé si un estudiante varón hubiese recibido un comentario así. Por otra parte, si vas a un congreso, las mujeres tienden a ser un poco menos protagonistas, no están gritando, tratando de imponer sus ideas, frente a hombres que quieren mostrar que saben.
Conozco personas que han vuelto a España con un contrato Ramón y Cajal, y se han vuelto a ir. Es muy triste que no se haya sabido retenerlos.
En Gaia participan equipos españoles. ¿Cómo diría que es el peso de España en la astronomía a nivel internacional?
En algunos temas, España está al frente. En Gaia hay un grupo muy fuerte, de Barcelona, que está muy involucrado en la misión. Hay una científica, Teresa Antoja, que vino a trabajar conmigo tres años a la Universidad de Groninga tras doctorarse. Después estuvo dos años en la Agencia Espacial Europea en Holanda y ahora está de vuelta en Barcelona. Es una de las personas en las que tengo puestas muchas expectativas porque tiene un conocimiento muy especial que nos va a ayudar a entender cómo funciona el disco de la Vía Láctea. A nivel general, volviendo a España, creo que hay campos en los que está muy bien en astronomía, aunque hay otros en los que está más atrasada y ha perdido gente.
¿Se aprecian desde fuera los recortes en investigación realizados en los últimos años?
La situación es más difícil. Yo conozco personas que han vuelto a España con una Ramón y Cajal, un tipo de contrato temporal para doctores, que tienen un calibre muy alto. Pero España no ha sabido retenerlos y se han ido. Es muy triste perder gente tan buena y que tiene tantas capacidades porque eso se refleja en las generaciones siguientes. Sería bueno si hubiera un poco más de esfuerzo para invertir en ciencia y retener a esta gente, para atraer de nuevo al talento que se ha escapado de España.
Cuandio pienso en aquel pensamiento de Leibniz y miro la Nebulosa de Orión, puedo comprender ese Principio que en la Física llamamos causalidad:
“Todo estado presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro”.
Así, un día muy lejano ya en el pasado, una Supernova sembró el espacio interestelar con una Nebulosa que conocemos como Orión, en ella se han ido produciendo transiciones de fase como consecuencia del nacimiento de estrellas y mundos, y, la materia que en el pasado era simple, en el presente es más compleja y se está preparando para que en el futuro pueda llegar hasta ¡la vida! Ahí, en esa Nebulosa que arriba podemos contemplar, están todos los ingredientes de las estrellas, los mundos, la Vida y… ¡los pensamientos!
Los finales del siglo XX quizá sean recordados en la
de la Ciencia como la época en la que la Física de partículas, el estudio de las estructuras más pequeñas de la Naturaleza (al menos hasta donde sabemos), unió sus fuerzas a la cosmología, el estudio del Universo como un todo. Juntas estas dos disciplinas esbozarían el esquema de la historia cósmica, investigando el pasado de las estructuras naturales en un çambito de escala enorme, desde los núcleos de los átomos hasta los cúmulos de galaxias.
La evolución de Darwin comienza en el inmenso Cosmos, donde las estrellas fabrican los materiales de la Vida. En las estrellas se “fabrican” los materiales de los que estamos hechos los seres vivos.
El
Hubble nos llevó hasta los confines del Universo profundo para ver viejas galaxias de 13.000 millones de años de edad, y, cercanas al
del Universo primitivo, cuando aún no existían estrellas y, la materia, se estaba formando.
Como decimos, la física y la cosmología hicieron un matrimonio de conveniencia y apresurado, se juntaron dos disciplinas muy diferentes. Los cosmólogos son solitarios y mantienen sus miradas fijas en ese horizonte lenano y profundo de los cúmulos de galaxias situados en el espacio-tiempo profundo y, acumulan, amorosamente sus
de hilillos de antigua luz estelar que le traen mensajes y les cuentan la historia del universo.
Los físicos de partículas, en contraste con ellos, son relativamente gregarios -tienen que serlo, pues ni siquiera un
Einstein sabe suficientemente de física como para hacerlo todo el sólo- y físicos: son por tradición transmitida estudiosos del aquí y ahora, inclinados a curvar cosas, volar cosas y desmontar cosas. Los físicos trabajan dura y rápidamente, obsesionados por la leyenda de que es improbable que tengan muchas ideas nuevas útiles después de cumplir los cuarenta, mientras que los cosmólogos son más a menudo jugadores de finales, adeptos a las visiones de vasto alcance, de quienes cabe esperar que realicen investigaciones productivas cuando sus cabellos blanquean por la edad. Los físicos son los zorros de los que Arquiloco decía que saben muchas cosas, los cosmólogos son más afines a los erizos, que saben una sóla
.
Claro que, como nos decía Marco Aurelio:
“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin: pues todas las cosas son de la misma clase y la misma forma.”
Leyendo ese pensamiento, me digo yo: sólo el paso del tiempo las transforma para finalmente, hacerlas desaparecer para que, de inmediato, puedan surgir otras nuevas que, en realidad, serán las mismas cosas que ya fueron.
Lo que arriba vemos, un día fue como nuestro Sol
A finales de los años setenta, los físicos de partículas se aventuraron a acudir a seminarios de cosmología a estudiar las galaxias y los quásars, mientras que los cosmólogos alquilaron
del CERN y el Fermilab para trabajar en física de altas energías en instalaciones subterráneas desde donde se veína las estrellas. Algún famoso físico de aquellos tiempos dijo: “La física de partículas elementales y el estudio del universo primitivo, las dos ramas fundamentales de la ciencia de la naturaleza, se han fundido esencialmente”.
Hay cosas que no sabemos como existen
Son muchas las disciplinas científicas que hoy día, se están uniendo en la
de objetivos comunes. Se investiga de manera conjunta y cada uno de esos apartados científicos, finalmente aunan los resultados para llegar a un todo que, nos mostrará la verdadera naturaleza del Universo, la materia que contiene y…¿por qué no? también de la vida misma.
El
de encuentro entre físicos y cosmólogos fue el
Big Bang. los físicos identificaron simetrías en la naturaleza que hoy están rotas pero que estuvieron intactas en un entorno de altas energías. Los cosmólogos informaron que el universo estuvo antaño en tal estado de alta energía, durante las etapas iniciales del big bang. Unidas ambas cosas, aparece el
de un universo perfectamente simétrico cuyas simetrías se quebraron a medida que se expandió y se enfrió, creando las partículas de materia y energía que encontramos hoy a nuestro alrededor y estampándoles las pruebas de su genealogía.
Claro que, si no existieran simetrías, en la Tierra habría días de 24 horas y otros de cinco minutos; viviríamos en un planeta deforme en la gravedad proyectaría objetos en todas direcciones; habría explosiones inexplicables. Sería un mundo peligrosamente caprichoso.
Por fortuna, hay simetrías, hay reglas que nos dicen que los planetas son esféricos, que los rostros son simétricos, que todos los días duran lo mismo, que hay frío y calor, día y noche, que hay positivo y negativo, que todo en el universo se rige por el equilibrio que se consigue en la igualdad de fuerzas contrapuestas, y, de esa manera, se llega a la simetría que nos rodea y podemos contemplar por todas partes. Sin embargo, nuestro Universo es el de simetrías rotas.
Tres Físicos recibieron el Nobel por las “simetrías rotas de la Naturaleza” Dos japoneses y un Yanqui (bueno, Estadounidense) ganaron el Premio Nobel de Física del 2008 por cosas que ayudan a explicar el comportamiento de las partículas más pequeñas de materia.
Makoto Kobayashi, Toshihide Masukaway el japonés nacido estadounidense, Yoichiro Nambu
En física, la idea de simetría refiere a un tipo de igualdad o equivalencia en una situación. En el nivel subatómico, por ejemplo, no deberías poder decir si estás viendo desplegados directamente en un espejo, o si una película de esos eventos está corriendo adelante o atrás. Y las partículas deberían comportarse justo como sus alter egos, llamadas antipartículas.
Si cualquiera de estas reglas es violada, la simetría se rompe.
Una gran simetría rota surgió inmediatamente después del Big Bang, cuando sólo una infinitesimal fracción más de materia que antimateria fué creada. Debido a que estos dos tipos de partículas se aniquilan entre sí al encontrarse, ese exceso de materia fue de sembrar el Universo. En el suceso, sucedió la rotura de la simetría de la “fuerza única” que contenía todos los mecanismos y leyes de aquel primer universo.
Nadie pudo estar allí para tomar una instantánea de aquel Universo primitivo
Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para y formar protones y neutrones los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos. Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.
El Universo está lleno de información que debemos buscar para tratar de entender qué mensajes nos envía, lo que nos quiere decir. Sabemos que el Universo es todo lo que existe desde la materia, las fuerzas que con ella interaccionan y el Espacio y el Tiempo pero, seguimos preguntándonos ¿qué hacemos nosotros aquí?
La materia evolucionada llegó hasta nosotros valiéndose del Carbomo, ese elemento esencial para la vida que conocemos
Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados. Avanza creando en el termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.
Puesto que el peso promedio de los protones en los de fisión, como el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante E = mc2. Esta es la fuente de energía que subyace en la bomba atómica.
¿Qué sabemos de la Energía ? ¿La sabemos utilizar?
Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie , se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.
Cuando alguien oye por vez primera la de la vida de las estrellas, generalmente, no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución.
En cualquier Nebulosa podemos cúmulos de estrellas
Cuando mentalmente me sumerjo en las profundidades inmensas del universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos en realidad con relación al universo. Como una colonia de bacterias que habitan en una , allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno. Y, sin embargo, por otra parte, al pensar en la Mente de la que somos poseedores, me paso a otro pensamiento que es, totalmente opuesto y me dice que, algo más que simples seres vivientes sí que somos. El simple hecho de ser conscientes del Universo que nos da cobijo, es ya un síntoma de una más elevada categoría.
Igualmente, nosotros nos creemos importantes de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados. Podemos decir que hemos dado los primeros pasos para dar el salto hacia otros mundos, pero aún nos queda un largo recorrido por delante. Uno de los principales problemas con los que tenemos que luchar, es el hambre en el mundo, la igualdad de los pueblos, y, seguidamente, tendremos que pensar en nuevas fuentes de energías que cubran las exigencias de una población creciente y exigente.
En todo este galimatias de conocimientos restringidos por una enorme ignorancia, sería poder saber lo que realmente son los fotones y los electrones, esas dos minúsculas partículas elementales de las que sospecho, que pueden encerrar las verdades del mundo, es decir, los secretos más profundos de la naturaleza. (137 que enlace con e, h, y c, donde pueden estar escondidas las a lo que no sabemos: ahí está la esencia de la relatividad, también nos habla de cuanto de acción de Planck y, por si fuera poco, el electromagnetismo está representado pro el electrón.
¿Sabremos alguna vez? Hilbert, en su tumba, tiene grabado que sí, en su epitafio nos dice: Tenemos que , ¡sabremos!
Me gustaría que tal predicción fuera cierta.
emilio silvera
Es posible que estas bacterias tempranas consumieran aminoácidos de manera natural para poder generar energía. Los aminoácidos, azúcares y otros compuestos se formaron de manera espontánea en la atmósfera y luego se diluyeron en agua líquida. Después de digerir estas moléculas, la bacteria temprana produjo metano y dióxido de carbono a modo de producto de desecho. Las bacterias fermentadoras podría ser un ejemplo actual de cómo debieron ser estas primeras bacterias. Para hacer cerveza, se combinan cebada y trigo con agua. La cebada o trigo descompuesto se convierte en azúcar. La bacteria se come los azúcares y como producto de desecho produce alcohol y gas de dióxido de carbono. En la Tierra temprana, el alcohol y el dióxido de carbono se convirtieron en parte del medio ambiente natural.
Con el transcurrir del tiempo, nuevas formas de vida evolucionaron, las cuales eran capaces de obtener su energía de un fuente diferente — ¡el Sol!
“La historia de la Tierra, por otro lado, es la historia del propio universo, de cómo hace 13.700 millones de años se originó la materia que conocemos, y cómo a lo largo del tiempo astronómico se ha ido organizando en estrellas, planetas, compuestos químicos complejos, moléculas que se replican, metabolismos y organismos. Tenemos sólidas evidencias de que estos procesos han tenido lugar tanto en nuestro Sistema Solar como por todo el universo, así que empecemos estudiando lo que tenemos cerca e intentemos extrapolar el conocimiento a los sistemas planetarios a los que, de momento, no podemos acceder más que indirectamente.
«El descubrimiento de organismos extremófilos ha hundido nuestra concepción del medio que es habitable, y ha obligado a replantear cuáles son los requisitos ambientales mínimos que la vida necesita»
Hace cinco mil millones de años, la Tierra que hoy habitamos era un ardiente e informe conglomerado de rocas fundidas, gas y polvo, una pequeña parte del disco de materia que estaba formando nuestro Sistema Solar. Unos quinientos millones de años más tarde, ya diferenciada del resto de planetas, la actividad volcánica era intensa y la superficie se encontraba sometida a un bombardeo constante por los fragmentos de materia remanente. Era una Tierra hostil a cualquier intento de organización química, y así se mantuvo, creemos, durante quinientos millones de años más. Sin embargo, hoy debatimos en qué preciso momento las primeras células dejaron su huella fósil en las rocas más antiguas. Sabemos que fue por lo menos hace 3.500 millones de años, quizá incluso 3.800. La conclusión que se deriva de ello está clara: una vez la temperatura de la superficie terrestre había bajado lo suficiente como para permitir que ciertas moléculas complejas fuesen estables y el agua líquida se convirtió en un elemento común, la vida apareció y rápidamente colonizó el planeta. Aparentemente, el paso de materia inerte a materia viva se produjo en unos pocos cientos de millones de años, en una forma o formas que aún no hemos descubierto ni imaginado. Es muy posible que la Tierra no fuera el único mundo donde se han llevado a cabo estas transformaciones.
Las primeras células que aparecieron son las que llamamos procariotas, células sin núcleo que en la actualidad se clasifican en los dominios Bacteria (eubacterias) y Archaea (arqueobacterias). Casi con certeza, la vida empezó en el agua líquida, quizá en una zona de costa o aguas someras, o quizá en una región cálida del fondo oceánico. Hay indicios de que la vida puede haber tenido un origen termófilo o hipertermófilo, es decir, que las primeras células se formaran en ambientes notablemente cálidos. Aunque no hay acuerdo sobre esta posibilidad, se han encontrado fósiles de organismos hipertermófilos de 3.200 millones de años de edad, lo que avala cuando menos una aparición temprana. En la actualidad se investiga los diversos ecosistemas y la variedad de reacciones químicas que pueden tener lugar en el fondo oceánico, una región donde se ha encontrado una gran cantidad de organismos adaptados a altas temperaturas.
© NASA/JPL-Caltech
Vehículo todoterreno Curiosity. El 6 de agosto de 2012, el Curiosity se posó en el cráter Gale, 5° 24’ S 137° 48’ E. Es el vehículo más grande que hemos enviado hasta ahora al espacio, pesa 400 kg y tiene una altura de más de dos metros. Entre sus instrumentos se encuentra REMS (Rover Environmental Monitoring Station), desarrollada en el Centro de Astrobiologia (INTA-CSIC). La página de la NASA <gob/msl/> ofrece información actualizada sobre la misión.
«Marte nos ha fascinado desde que los primeros telescopios permitieron que fuera identificado como un planeta con la diversidad superficial que antes se había reconocido en la Tierra y en la Luna»
En las últimas décadas del siglo xx hemos sido testigos del descubrimiento y la caracterización de formas de vida excepcionales: los organismos extremófilos. La mayor parte pertenecen al dominio Archaea, aunque también conocemos bastantes eubacterias e incluso algunos animales capaces de vivir en lo que, desde nuestro punto de vista antropocéntrico, llamamos condiciones extremas. Algunos extremófilos soportan la alta presión de las fosas oceánicas, el frío permanente de los desiertos de hielo o la sequía de las regiones más áridas de la Tierra. Estos hallazgos han hundido nuestra concepción del medio que es habitable y han obligado a replantear cuáles son los requisitos ambientales mínimos que la vida necesita.
El descubrimiento de organismos extremófilos ha hundido nuestra concepción del medio que es habitable, y ha obligado a replantear cuáles son los requisitos esenciales para que la vida esté presente.
De hecho, basta con agua líquida, nutrientes y una fuente de energía. Los organismos psicrófilos crecen en minúsculos granos de polvo atrapados en el hielo, en cuyos alrededores hay pequeñas cantidades de agua líquida. Algunos hipertermófilos habitan las proximidades de chimeneas submarinas, lugares donde el calor del interior de la Tierra y la alta presión mantienen el agua líquida bastante por encima de los 100 ºC. El rango de temperaturas que la vida tolera va desde unos –20 ºC hasta los 120 ºC, y creemos que este intervalo no es definitivo. En la superficie, los termófilos dan color a las zonas de aguas termales, donde al fango en ebullición se unen compuestos de azufre que son su fuente de energía: la imagen más característica de estas regiones, a menudo espectaculares, está representada por el Grand Prismatic Spring del Parque Nacional de Yellowstone. Los microorganismos halófilos necesitan altas concentraciones de sales en el agua y resisten la desecación. Ellos son responsables del color rosado que vemos en muchas salinas. Otros microorganismos se han adaptado a una dosis de radiación miles de veces superior a la letal para un ser humano.”
El trabajo sigue y nos lleva al espacio y a otros planetas y nos habla de que, siendo igual el universo en todas partes, también en cualquier región, como en nuestro Sistema solar, será posible la presencia de vida.
En otro lugar llamado Tiempo Indómito, nos cuentan:
Los seres extremófilos son organismos, en la mayoría de los casos unicelulares, que logran vivir en condiciones muy hostiles para la mayoría de los seres vivos.
Estos seres han desarrollado un conjunto de mecanismos metabólicos para vivir en este tipo de medios
Anhidrobiosis
Es la capacidad de supervivencia en estado de máxima deshidratación.
Observamos este fenómeno en muchos animales acuáticos de pequeño tamaño (nematodos, rotíferos, tardígrados de agua dulce y terrestres…)
El ejemplo de los tardígrados que viven en un hábitat semiacuático, como líquenes y musgos, tienen la necesidad de soportar periodos largos de “sequía”, para lo cual realizan anhidrobiosis, que conlleva a una casi completa pérdida del agua en el cuerpo. Esto da lugar a una cutícula dura y protectora, parte esencial del proceso, ya que protege al tardígrado de todo tipo de temperaturas y exposiciones de radiación, ácidos…. Cuando se termina su formación, empieza la desecación, que puede producirse en un 0% de humedad relativa. Al finalizar la desecación, el animal ha entrado en estado criptobiótico y pueden pasar muchos años hasta que este organismo vuelva a su forma original. Se ha comprobado que pueden estar en este estado durante 120 años. La resucitación se produce un par de horas después de que las condiciones ambientales vuelvan a estar estables.
Tardígrados
Alcalófilos
Se consideran alcalófilos aquellos organismos que viven en ambientes con pH por encima de 9. Suelos cargados de carbonatos y lagos salinos. Los alcalófilos necesitan aislar el interior de la célula del medio alcalino exterior ya que algunas moléculas, especialmente las hechas a partir de ARN, se rompen con pH superior a 8. Como en el caso de los acidófilos las células se protegen con extremo-enzimas que se localizan en o cerca de la pared celular o también con secreciones externas. Ejemplo: Spirulina platensis
Spirulina platensis
Salina con una concentración de algas de la especie Dunaniella salina
Endolitos
El término “endolito”, que se refiere a un organismo, que coloniza el interior de todo tipo de roca, ha sido clasificado en tres clases:
– Chasmoendolito: coloniza fisuras y grietas en la roca (chasm = hendidura)
– Cryptoendolito: coloniza cavidades estructurales dentro de rocas porosas, incluidos espacios producidos y desarrollados por euendolitos (crypto = escondido)
– Euendolito: penetra activamente en el interior de las rocas formando túneles que se amoldan a la forma de su cuerpo, organismo que taladra la roca (eu = bueno, verdadero)
Viven en espacios microscópicos en rocas, normalmente en suelos profundos. Es posible encontrar un cierto número de especies microbianas vivas superando estas características:
Temperatura: la limitación principal para la supervivencia de estos extremófilos es la temperatura. Bajo la corteza oceánica la temperatura aumenta en 15 grados por cada kilómetro de profundidad, por lo que suponiendo una resistencia del microbio a unos 110 grados, sería posible encontrar vida a unos 7 kilómetros bajo el fondo marino. En el caso de la corteza continental el aumento es de 25 grados por kilómetro lo que supone unos 4 kilómetros de profundidad con el límite anterior de 110 grados.
Alimentos y agua: otro parámetro que limita la proliferación de estos microbios es la disponibilidad de alimento, es decir, la presencia de nutrientes como carbono, nitrógeno, fósforo, azufre y varios metales. Muchas rocas sedimentarias contienen estos elementos nutrientes en cantidades considerables y éstos provienen de la superficie ya que fueron arrastrados y compactados junto con el resto de materiales (detríticos o químicos) durante la formación de la roca sedimentaria.
Presión: cuanto más profunda esté una roca a más presión está sometida, lo que hace que los poros o pequeños huecos que quedaron durante su formación sean comprimidos. En otras ocasiones estos poros también pueden ser rellenados con minerales que proceden de corrientes que atraviesan la roca. Estos dos factores afectan al espacio disponible para el desarrollo de los microbios.
Como acabamos de ver el aumento de profundidad se traduce en un ambiente cada vez menos propicio para el desarrollo de los microbios. La distribución de vida se vuelve discreta llegando a encontrar colonias de células muy pequeñas e incluso células aisladas. Se han llegado a recoger organismos de rocas a 75 grados centígrados y profundidades de casi 3 kilómetros.
Acidófilos
Bacteria L. acidophilus, célula epiteliales escamosas vaginales
Se desarrollan en ambientes de alta acidez y son aquellos que viven con pH menor de 5. Hasta ahora se conocen muy pocos organismos capaces de vivir en medios con pH cercano a cero, sin embargo cuando los valores son más moderados hay una gran abundancia. Los ambientes ácidos surgen naturalmente de actividades geoquímicas, como puede ser la producción de gases sulfurosos de emanaciones volcánicas. También es posible crear ambientes ácidos debido a la propia actividad o metabolismo de los organismos. Otro lugar donde es posible encontrar acidófilos es en las escorias de las minas, donde vive un archaea Ferroplasma acidarmanus en disoluciones de pH 0.5 a 1.
Radiófilos
Soportan gran cantidad de radiación. Se han adaptado a una dosis de radiación miles de veces superior a la letal para el ser humano.
Thermococcus gammatolerans es el organismo más resistente a la radiación que se conoce por el momento.
Habita en una chimenea hidrotermal submarina a unos 2000 metros de profundidad en las costas de California.
Se desarrolla en temperaturas comprendidas entre los 55-95 ºC. El PH óptimo de su medio ambiente es de 6. Es el organismo con mayor resistencia a la radiación, soportando rayos gamma de 30KGy.
La resistencia a las radiaciones ionizantes de T.Gammatolerans es enorme ya que mientras que una dosis de 10 Gy es suficiente para matar a un ser humano, y una dosis de 60 Gy es capaz de matar todas células en una colonia de E. coli. El Thermococcus gammatolerans puede resistir una dosis instantánea de hasta 5000 Gy sin pérdida de viabilidad, y dosis de hasta 30000 Gy.
Xerófilos
Viven en un ambiente con muy baja humedad.
La pérdida de pequeñas fracciones del agua intracelular puede ser letal para muchas células, sin embargo existen ciertos organismos que pueden sobrevivir a una extrema desecación incluso durante largos periodos de tiempo.
Los organismos capaces de sobrevivir en condiciones de extrema sequedad van desde colonias de bacterias (estas bacterias colorean las rocas de los desiertos por lo que también se les conoce como barniz del desierto), hasta colonias simbióticas de algas con hongos (líquenes). Generalmente las colonias de bacterias sobreviven mejor en las rocas expuestas al sol, pero en el caso que las rocas hayan sido colonizadas previamente por líquenes, las bacterias no pueden desarrollarse plenamente. Esto puede deberse a diferencias en la humedad o por ácidos orgánicos producidos por los líquenes.
Psicrófilos
Habitan ambientes muy fríos. La temperatura óptima de desarrollo se encuentra entre 4-15 °C. Medran en minúsculos granos de polvo atrapados en el hielo, alrededor de los cuales hay pequeñas cantidades de agua líquida. El agua es el disolvente primordial para la vida y debe estar presente en estado líquido para que ésta ocurra. Esto pone un límite práctico para el crecimiento de organismos muy poco por debajo de los cero grados centígrados.
Chlamydomonas nivalis: es un alga microscópica que aparece frecuentemente en grandes cantidades en zonas de nieve, dándole a ésta un intenso color verde o rojo. Se supone que esto es debido a que vive en el interior de las capas de nieve en estado vegetativo, o sea, verde, y cuando las condiciones se vuelven intolerables, esporula en grandes cantidades y sus esporas son de color rojo.
Termófilos
Se desarrollan a temperaturas entre 60 y 80 ºC. Superiores a 45ºC, algunos de ellos colorean zonas de aguas termales, donde al lodo en ebullición se unen compuestos de azufre, que son su fuente de energía.
Hipertermófilos
Arqueas hipertermófilas, Ignicoccus parasitado por dos Nanoarchaeum a 90°C en una fuente hidrotermal de Islandia. Son hipertermófilos aquellos organismos que habitan a altas temperaturas, que normalmente llegan al punto de ebullición. Por lo común crecen bien y se reproducen a temperaturas mayores a 70 °C,1 un calor letal para la mayoría de los seres vivos.
Viven a temperaturas muy calientes, entre 80 y 121 °C. Habitan las proximidades de chimeneas submarinas, zonas donde el calor del interior de la tierra y la alta presión mantienen el agua líquida por encima de los 100ºC. El rango de temperaturas que tolera la vida abarca desde unos -20ºC hasta 121ºC. El límite de temperatura a la que se pueden encontrar organismos no es conocido todavía, aunque se cree que por encima de 150ºC ninguna forma de vida podría evitar la ruptura de los enlaces químicos que forman en ADN y otras moléculas esenciales.
Otros extremófilos más extraños y menos estudiados:
Hipolitos: viven dentro de las rocas de los desiertos fríos.
Litoautotrofos: pueden obtener energía por reducción de compuestos minerales como la pirita.
Metalotolerantes: capaz de tolerar altas concentraciones de metales pesados en solución, como cobre, cadmio, arsénico, y zinc.
Oligotrofos: pueden crecer en ambientes con nutrientes limitados.
Osmófilos:pueden crecer en ambientes con alta concentración de azúcares.”
Y, a todo esto, también aquí en este lugar, como en otros cientos y miles de sitios similares, muchos han dejado sus pensamientos sobre lo que es la vida en el Universo, sobre lo que podría ser la vida en otros mundos, sobre lo que es la vida en nuestro propio mundo y, también, hemos hablado de la vida presente en lugares imposibles, y, seguramente, en las próximas décadas, nos asombrará encontrar formas de vida en lugares como Europa, Ganímedes, Encelado, Marte, o, incluso Io, ese pequeño mundo plagado de volcanes, y, no digamos del futuro de Titán.
Inmensas galaxias cuajadas de estrellas, nebulosas y mundos. Espacios interestelares en los que se producen transmutaciones de materia que realizan el asombroso “milagro” de convertir unas cosas en otras distintas. Un Caos que lleva hacia la normalidad. Estrellas que explosionan y riegan el espacio de gas y polvo constituyentes de materiales en el que se forjarán nuevas estrellas, nuevos mundos y nuevas formas de vida. Así es como ocurren las cosas en este universo nuestro que no hemos llegado a conocer. De hecho, ni sabemos a ciencia cierta si su “nacimiento” fue debido, realmente, al Big Bang.
No, no es un cuadro salido de la mano de un pintor, es un paisaje que ha fabricado la mano de la Naturaleza. El sitio está a menos de 25 Km de mi casa y, con frecuencia, me acerco a contemplarlo y maravillarme de lo mucho que se nos ofrece y que no siempre, sabemos apreciar. De estas pequeñas cosas está hecha la felicidad. Ayer por la tarde, sin ir más lejos, estuve contemplo este paisaje mientras me tomaba un café y, en el fondo, el rumor de las olas al chocar contra la playa.
No pocas veces nos tenemos que maravillar ante las obras de la Naturaleza, en ocasiones, con pinceladas de las propias obras que nosotros mismos hemos sido capaces de crear. Así, no es extraño que algunos piensen que la Naturaleza nos creó para conseguir sus fines, que el universo nos trajo aquí para poder contemplarse así mismo.
Siempre hemos tratado de saber lo que el Universo es, lo que la Naturaleza esconde para conocer los mecanismos de que ésta se vale para poder hacer las maravcillas que podemos contemplar tanto en la Tierra como en el Espacio Interestelar donde moran las galaxias. En nuestro mundo, los Valles, ríos y montañas, hermosos bosques de lujuriante belleza , océanos inmensos llenos de formas de vida y criaturas conscientes de todo eso que, aunque algunas veces temerosas ante tanto poder, no por ello dejan de querer saber el origen de todo.
Lo cierto es que, sin la presencia de seres inteligentes (bueno, al menos que alcanzaron la consciencia de Ser), nunca se podría haber podido admirar tantas maravillas y, todo eso ha sido posible gracias a la presencia en el Universo, de la Vida.
emilio silvera