Dic
21
Fuerzas y Constantes…¡El Universo!
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil. Seguramente ese será el motivo por el cual, encontrar al Bosón mediador de la fuerza, el Gravitón, resulta tan difícil.
Muchos han sido los intentos de localizar al gravitón, sin éxito alguno. ¿Será el de arriba? Seguramente no. Sin embargo, aunque no será fácil, debemos seguir la búsqueda del bosón que intermedia en la fuerza gravitacional.
Las fuerzas fundamentales
Tipo de Fuerza | Alcance en m | Fuerza relativa | Función |
Nuclear fuerte | <3×10-15 | 1041 | Une Protones y Neutrones en el núcleo atómico por medio de Gluones. |
Nuclear débil | < 10-15 | 1028 | Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z– |
Electromagnetismo | Infinito | 1039 | Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones. |
Gravitación | Infinito | 1 | Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies |
La Fuerza nuclear fuerte es la más potente de las cuatro fuerzas fundamentales. Los núcleos de los átomos están conformados por protones y neutrones que, a su vez están hechos de quarks. Los quarks están confinados dentro de los hnucleones y sujetos por las partículas mediadoras de la fuerza, los Gluones que no permiten que los quarks se separen manteniendo así, el debido equilibrio.
Las constantes fundamentales
Constante | Símbolo | Valor en unidades del SI |
Aceleración en caída libre | g | 9,80665 m s-2 |
Carga del electrón | e | 1,60217733(49) × 10-19 C |
Constante de Avogadro | NA | 6,0221367 (36) × 1023 mol-1 |
Constante de Boltzmann | K=R/NA | 1,380658 (12) × 10-23 J K-1 |
Constante de Faraday | F | 9,6485309 (29) × 104 C mol-1 |
Constante de los gases | R | 8,314510 (70) × J K-1 mol-1 |
Constante de Loschmidt | NL | 2,686763 (23) × 1025 mol-3 |
Constante de Planck | h | 6,6260755 (40) × 10-34 J s |
Constante de Stefan-Boltzmann | σ | 5,67051 (19) × 10-8 Wm-2 K-4 |
Constante eléctrica | ε0 | 8,854187817 × 10-12 F m-1 |
Constante gravitacional | G | 6,67259 (85) × 10-11 m3 Kg-1 s-2 |
Constante magnética | μ0 | 4π × 10-7 Hm-1 |
Masa en reposo del electrón | me | 9,1093897 (54) × 10-31 Kg |
Masa en reposo del neutrón | mn | 1,6749286 (10) × 10-27 Kg |
Masa en reposo del protón | mp | 1,6726231 (10) × 10-27 Kg |
Velocidad de la luz | c | 2,99792458× 108 m s-1 |
Constante de estructura fina | α | 2 π e2/h c |
Desde el Big Bang, cuando aparecieron las fuerzas fundamentales, también lo hicieron las constantes universales que contribuyen a que, nuestro Universo sea tal como lo conocemos y posibilitan la presencia de vida aquí en la Tierra, y posiblemente, en otros muchos planetas.
Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces.
La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e indicamos con α, es como decimos en el comentario siguiente, una combinación de e, c y h (el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si e, h y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza.
Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo. Cuando trató de desarrollar este principio, Einstein tuvo dificultades; no encontraba la manera de expresarlo con la formulación matemática adecuada. Pidió ayuda a su amigo Marcel Grossmann, matemático, quien sabiendo de las necesidades exactas de Einstein, le envió la copia de una conferencia que dio un tal Riemann, unos sesenta años antes.
Einstein fue muy afortunado, ya que durante la última parte del siglo XIX en Alemania e Italia, matemáticos puros habían estado inmersos en el estudio profundo y detallado de todas las geometrías posibles sobre superficies curvas. Habían desarrollado un lenguaje matemático que automáticamente tenía la propiedad de que toda ecuación poseía una forma que se conservaba cuando las coordenadas que la describían se cambiaban de cualquier manera. Este lenguaje se denominaba cálculo tensorial. Tales cambios de coordenadas equivalen a preguntar qué tipo de ecuación vería alguien que se moviera de una manera diferente.
Riemann , Georg Bernhard
Einstein se quedó literalmente paralizado al leer la Conferencia de Riemann. Allí, delante de sus propios ojos tenía lo que Riemann denominaba Tensor métrico. Einstein se dio cuenta de que era exactamente lo que necesitaba para expresar de manera precisa y exacta sus ideas. Así llegó a ser posible la teoría de la relatividad general.
Einstein pudo expresar su principio de covariancia expresando sus leyes de la naturaleza como ecuaciones tensoriales, que poseían automáticamente la misma forma para todos los observadores.
Tensor métrico de Riemann:
La geometría de los espacios curvos de Riemann hizo posible la relatividad general de Einstein que se pasó siete años buscando la formulación adecuada a su ideas.
Este paso de Einstein completó un movimiento espectacular en la concepción física de la naturaleza que ha sido completado en el siglo XX. Está marcado por una evolución que se aleja continuamente de cualquier visión privilegiada del mundo, sea una visión humana, basada en la Tierra, o una visión basada en patrones humanos, la naturaleza tiene sus propios patrones (el 137 es un ejemplo de ello).
El Universo es igual en todas partes
Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos:
Quarks y Leptones que formaron los hadrones llamados bariones (como protones, neutrones y otros) para conformar la materia que vemos a nuestro alrededor, en los cielos y en el Universo profundo. Todo eso, grande o pequeño, está formado por la materia que está hecha de estos infinitesimales objetos ciudadanos del mundo cuántico y que se juntan por miles y cientos de miles de millones para dejarse ver en forma de mundos, de estrellas y galaxias y, ¿por qué no? también de seres vivientes racionales o no (aunque la definición de racionales no parece muy convincente).
emilio silvera
Dic
21
¡La Mecánica cuántica! ¿Quién la entiende?
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (1)
Werner Hesinberg
Sí, el principio cuántico es muy extraño. Cuando en 1927, el joven físico alemán Werner Heisenberg llegó al Principo de Indeterminación, la física moderno rompió de manera decisiva con la física clásica, una nueva Era comenzaba con otra manera de mirar el mundo que nos rodea a través de la Física. Heisenberg descubrió que se puede conocer, o bien la posición exacta de una partícula determinada, o bien su trayectoria exacta, pero no ambas.
¡¡La mecánica cuántica!!, o, la perplejidad de nuestros sentidos ante lo que ese “universo cuántico” nos ofrece que, generalmente, se sale de lo que entendemos por sentido común. Ahí, en el “mundo” de los objetos infinitesimales, suceden cosas que, no siempre podemos comprender. Y, como todo tiene una razón, no dejamos de buscarla en cada uno de aquellos sorprendentes sucesos que en ese lugar tienen lugar. Podríamos llegar a la conclusión de que, la razón está en todo y solo la encontramos una vez que llegamos a comprender, mientras tanto, todo nos resulta extraño, irrazonable, extramundano y, algunas veces…imposible. Sin embargo, ahí está. Dos elementos actúan de común acuerdo para garantizar que no podamos descorrer el velo del futuro, de lo que será después (podemos predecir aproximaciones, nunca certezas), el principal de esos elementos es la ignorancia nunca podremos saber el resulktado final de éste o aquél suceso sin tener la certeza de las condiciones iniciales. En la mayoría de los sistemas físicos son, en mayor o menor medida dada su complejidad, del tipo caótico es tal que, el resultado de las interacciones entre elementos eson sumamente sensibles a pequeñísimas variaciones de los estados iniciales que, al ser perturbados mínimamente, hacen que el suceso final sea y esté muy alejado del que se creía al comienzo.
Desde las certezas que parecía darnos la mecánica clásica de Newton sobre la posición, trayectoria y velocidad de cualquier partícula microscópica o cuerpo celeste se nos echaba en brazos de la indeterminación cuántica. Ya no podía conocerse simultáneamente la posición y la velocidad de una partícula con la infinita exactitud que se suponía, y el principio de indeterminación de Heisenberg parecía habernos desterrado del paraíso de las certidumbres clásicas. Pero ese paraíso nunca existió en realidad, desde un punto de vista puramente clásico se puede demostrar que la predictibilidad que se suponía a los sistemas clásicos nunca fue esencialmente cierta. Independientemente de la precisión con que conozcamos el estado inicial de un sistema clásico (no cuántico) las imprecisiones tienden a crecer, de forma natural, con el tiempo y nuestra información inicial puede llegar a ser inútil para predecir su evolución futura.
Ahora bien, esto se trata de ignorancia pura. Si fuésemos capaces de contralar las condiciones iniciales, y además pudiésemos considerar el estado de cada una de los cientos o miles de variables que influyen sobre el sistema, podríamos predecir con exactitud la velocidad y la trayectoria de unas bolas de billar, por ejemplo, en cualquier tiempo futuro. De hecho, la Ciencia se está volviendo extremadamente buena en controlar y calcular las condiciones de un sistema. Somos capaces de enviar naves espaciales a sitios muy distantes con una exactitud enorme (la Cassini es un buen ejemplo y, ayer mismo, teníamos aquí la partida de la Curiosity hacia el planeta Marte). Si sabemos contralar las condiciones iniciales (y no ocurren accidentes por el camino) podemos predecir, con ciertas garantías que, la nave llegará a su destino como se había calculado. Es decir, de alguna manera, estamos impidiendo ese principio de incertidumbre que está presente en todo lo que acontece en nuestras vidas, en el mundo y, en el Universo.
Nunca podremos estar seguros del resultado en una tirada de dados. En verdad, son pocas las cosas en las que podemos tener una completa certeza, y, aunque no lo sepamos, la razón está en la ignorancia de las condiciones iniciales y, en el caso de los dados en los factores que intervienen en el movimiento. Decimos entonces que la Naturaleza es aleatoria. Claro que, si yo tuviera que apostar con esos dados, sin dudarlo, escogería el 7. Esto es porque hay más maneras de formar 7 que cualquier otro número. Para más precisión, hay seis combinaciones de dados que darán un 8 o un 6. Claro que la certeza no existe y, entonces, recurrimos a las probabilidades. (Schrödinger creó su ecuación de la función de onda (Ψ) precisamente para contraponerla al principio de incertidumbre de Heisenberg, él nos situó en el campo de las probabilidades para “saber” dónde podría estar uan partícula.
Si observamos un protón que atraviesa una cámara de niebla (ahora cámara de chispas, más moderna y efectiva), registrando su trayectoria podemos conocer la dirección en la que se mueve, pero en el proceso de abrirse camino a través del vapor de agua de la cámara el protón disminuirá su velocidad, restándonos información de dónde estaba en un momento determinado.
Alternativamente, podemos irradiar el fotón -tomar una instantánea de él, por decirlo así- y de este modo determinar su situación exacta en un instante determinado, pero la luz o cualquier otra radiación que usemos para tomar la fotografía apartará al fotón de su recorrido fijado, impidiéndonos el conocimiento de dónde habría estado si no hubiésemos actuado sobre él. Así que, el resultado es que estamos limitados en nuestro conocimiento del mundo subatómico. Sólo podemos obtener respuestas parciales, cuya naturaleza está determinada en cierta medida por las cuestiones que optamos por indagar.
Cuando Heisenberg calculó la cantidad mínima ineludible de incertidumbre que limita nuestra comprensión de los sucesos de pequeña escala, halló que está definida nada menos que por h, el cuanto de acción de Planck.
Esquema de la formación de una traza en la cámara de niebla
Los físicos de partículas suelen encontrarse en sus vidas profesionales con el inconveniente de que aquello con lo que trabajan es tan sumamente pequeño que se vuelve indetectable tanto para el ojo humano como para los más avanzados sistemas de microscopía. Es cierto que en la actualidad se pueden conseguir imágenes en las que se distinguen átomos individuales cuando estos son lo suficientemente grandes, pero de ahí a poder visualizar un sólo protón, o un aún más pequeño electrón, hay un escalón insalvable para la técnica actual. Se han tomado espectros del electrón y, cada día, se avanza en esa direccción.
¿Cómo pueden, pues, los físicos saber que aquello con lo que trabajan no es un mero ente creado por su mente? ¿Cómo se pueden asegurar de que las partículas subatómicas existen en realidad?La respuesta es obvia: a través de su interacción con otras partículas o con otro sistema físico; y un ejemplo extraordinario de ello es, por ejemplo, en una cámara de niebla.
Claro que, la Indeterminación cuántica no depende del aparato experimental empleado para investigar el mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada compartirían con los más humildes físicos de la Tierra. En la Física atómica clásica se creía que se podía, en principio, medir las situaciones y trayectorias precisas de miles de millones de partículas -digamos protones– y a partir de los datos resultantes formular predicciones exactas de donde estarían los protones en determinado tiempo futuro. Heisenberg vino a demostrarnos que tal supuesto era falso, que nunca podremos saberlo todo sobre la conducta de siquiera una sola partícula.
Cualquier detector debe contener un medio sensible que quede perturbado al paso de la partícula a registrar (lo que “vemos” es la huella que deja la partícula al atravesar el medio) Esa perturbación debe poderse traducir a imágenes y datos numéricos que permitan reconstruir la trayectoria y calcular sus características.
Las imágenes de las partículas proceden de dos tipos de detectores: las cámaras de burbujas y los detectores electrónicos. En el primero, las partículas cargadas dejan a lo largo de su trayectoria una traza de burbujas de vapor que se puede ver y fotografiar. Es un proceso en cierto modo inverso al de la formación de una estela de vapor de agua al paso de los aviones a reacción.
Así que, el nuevo marco expuesto por el Principio de Indeterminación de Hesinberg cambió fundamentalmente nuestra visión del mundo de la física. Nos dio un nuevo conocimiento: A partir de aquel momento sabíamos que, no sólo la materia y la energía estaban cuantizadas sino que, también nuestro conocimiento del Universo lo estaba.
NO, esto no es el salto cuántico que, según explicamos más abono es otra cosa diferente
Cuanto más minuciosamente se examina el mundo subatómico, mayor parece la Indeterminación. Cuando un fotón choca con un átomo, haciendo saltar un electrón a una órbita más elevada, el electrón se mueve de la órbita inferior a la superior instantáneamente, sin tener que atravesar el espacio intermedio. Los mismos radios orbitales están cuantízados, y el electrón simplemente deja de existir en un punto para aparecer simultáneamente en otro. Es el famoso “salto cuántico” que tanto desconcierta. Eso nos viene a demostrar que predecir exactamente la conducta de los átomos.
De modo similar, a como vimos antes, es en virtud de la indeterminación cuántica como los protonespueden saltar la barrera de Coulomb, permitiendo que la fusión nuclear se produzca a una tasa suficiente para que las estrellas sigan brillando.
Imagen ilustrativa de la dualidad onda partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas, verdaderamente la mecánica cuántica puede resultar extraña debido a su complejidad, en su “universo” los comportamientos difieren de lo que nos dicta el sentido común en nuestras vidas cotidianas del mundo macroscópico.
Sin embargo, como todo lo grande está hecho de cosas pequeñas, necesitamos conocer lo pequeño para comprender lo grande. Hasta la estrella más grande y la galaxia más brillante del Cosmos, están conformadas de partículas subatómicas unas más elementales que otras.
En fin amigo, que tenemos en nuestras manos todos los interrogantes que debemos desvelar y, otros muchos, que ni conocemos, y, por delante una tarea de tal complejidad que, posiblemente, nunca podremos acabar. Un sin fin de misterios que desvelar, problemas que resolver y, preguntas que contestar y, siendo conscientes de que, sin descorrer el velo que esconde los secretos del Universo…poco podríamos avanzar, nos sumergimos en la difícil tarea de conquistar ese conocer de las cosas ignoradas para que, algún día en el futuro, podamos saber, al menos hacia dónde vamos.
Sabemos que el presente está cargado de pasado y que, el futuro, lo estará de presente. Si eso es así (que lo es), tratemos de mejorar este presente para que, el futuro, sea algo mejor de lo que hoy tenemos. Y, amigos, si queremos, podremos lograrlo.
Muchos de los pasajes aquí volcados han sido extraídos de la obra “La Aventura del Universo” de Timoty Ferris, profesor emérito de la Universidad de California que es un maestro indiscutible de la divulgación cientific, otros tienen otras fuentes y, alguna fracción del contenido puede ser de propia cosecha que, alguna cosa se va aprendiendo con el tiempo.
emilio silvera
Dic
21
La Masa y la Energía ¿Qué son en realidad?
por Emilio Silvera ~ Clasificado en Física ~ Comments (6)
Los del LHC dijeron haber hallado el Bosón de Higgss…
Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”. Ahora, por lo , tenemos una respuesta parcial, en absoluto completa. Una voz potente y ¿segura? nos dice: “!Higgs¡” más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgspresenta el problema en un contexto ; no se trata sólo del muón. Proporciona, por lo menos, una fuente común todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?
La variación de la masa con el de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean no saben encontrar la respuesta al problema planteado.
Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.
La idea de que la masa no es intrinseca la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs. ¡Que ahora parece haber sido puesto al desnudo!
¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero. El espín supone una direccionalidad en el espacio, el campo de Higgsda masa a los objetos dondequiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosónescalar” [sin dirección] por esa razón.
La interacción débil, recordareis, fue inventada por E. Fermin describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.
Fabiola Gianotti, portavoz del experimento ATLAS, ofreció algunos avances:
“En nuestros observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero falta un poco más de tiempo para preparar estos resultados cara a su publicación.”
El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgspodría ser el puente para comprender el 96% del universo que permanece oculto.
El 4 de julio de 2012 se anunció el descubrimiento de un bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.
¿Por qué, a pesar de todas las noticias surgidas el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Bosón de Higgs lo encontrado?
Hay que responder montones de preguntas. ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo. A pesar de todo (Nobel incluido), habrá que dar muchas explicaciones sobre el Higgs “dadort de masas”.
Este gráfico de arriba me recuerda el “efecto frenado” de Ramón Marquez
El campo de Higgs, tal y como se lo concibe ahora, se destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente Higgs. Pero la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así por ejemplo, antes de Higgs teníamos W, Z y fotones sin masa y la fuerza electrodébil unificada.
El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W–, Z0, y por otra una interacción electromagnética, llevada por los fotones. Es si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.
Para cada suceso, la línea del haz es el eje común de los cilindros de ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios
Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que …
De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar que todo encaje con la teoría.
¡Ya veremos en que termina todo esto! Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011—.
Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas. La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0 de masa grande. Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft. hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta. Además, ¿Cuántos teóricos hacen falta para encender una bombilla?
La verdad es que, casi siempre, han hecho falta muchos. Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.
Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia. Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales. La objeción principal: que no teníamos la menor prueba experimental que parece que va asomando la cabeza en el LHC.
Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.
Después de todo esto, tal como lo están planteando los del CERN, se llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs. Y ahora, por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.
¡La confianza en nosotros mismos, no tiene límites! el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.
¿Pasará igual con las cuerdas?
emilio silvera
Fuente: León Lederman
Dic
21
Viajando al pasado
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Descubren una de las primeras estrella de la Vía Láctea
lnvestigadores del Instituto de Astrofísica de Canarias (IAC) han identificado con el Gran Telescopio Canarias (GTC) una estrella clave para entender la formación de los primeros elementos químicos en la galaxia
Un estudio presenta el descubrimiento de una de las estrellas con menos contenido metálico que se conoce. Esta estrella se encuentra a 7.500 años luz de distancia del Sol, en el halo de la Vía Láctea
Noticia de prensa