viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Naturaleza! ¿Cuantas maravillas puede realizar?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://1.bp.blogspot.com/_b1AE8x4eLKI/TKRuENLNSZI/AAAAAAAAZVw/dssMrxE-rlM/s1600/485056main_GJ581g_FNLa_946-710.jpg

Hemos llegado a saber que, otros planetas, situados en la zona habitable de su estrella, también pudieran tener Vida. La Astrofísica nos llevará de la mano hasta lejanos lugares y mundos de fantásticas posibilidades que, cuando las podemos contemplar, nos asombraran y, sobre todo, nos enseñará que estamos muy bien acompañados.

Como se trata de una Ciencia que estudia la naturaleza Física del Universo y de los objetos contenidos en él, fundamentalmente estrellas, galaxias y la composición del espacio entre ellas, así como las consecuencias de las interacciones y transformaciones que en el Cosmos se producen, aquí dejamos una breve secuencia de hechos que, suceden sin cesar en el ámbito del Universo y, gracias a los cuales, existe la Tierra…y, nosotros.

La evolución cósmica de los elementos nos lleva a la formación de los núcleos atómicos simples en el big bang y a una posterios fusión de estos núcleos ligeros para formar otros más pesados y complejos en en el interior de las estrellas, para finalizar el ciclo en las explosiones supernovas donde se plasman aquellos elementos finales de la Tabla Periódica, los más complejos y pesados.

 Los ojos que miran desde los confines del universo

Una potente simulación de la naturaleza nos permite ser testigos de los procesos que se generan en la colisión de dos cuerpos galácticos y, nuestros modernos telescopios, nos permiten captar imágenes como las que arriba podemos contemplar, en la que, galaxias inmensas como la propia Vía Láctea, se funden en un abrazo… ¿De Amor o de Muerte? Bueno, casi siempre, el resultado final es la Vida nueva.

File:Deuterium-tritium fusion.svg

La fusión libera energía. La energía liberada está relacionada con la famosa ecuación de Einstein, E=mc2. En el ciclo básico de fusión del Hidrógeno, cuatro núcleos de hidrógeno (protones) se unen para formar un núcleo de Helio. Esta es la versión más simple de la historia. En realidad existen electrones, neutrinos y fotones involucrados en esta historia que hacen posible la fusión de Hidrógeno hacia helio .Lo importante es recordar que esta fusión desprende energía en el centro de una estrella. Esta es la fusión que genera energía en nuestro Sol. Conocemos esta energía cuando sentimos calor en un día de verano.

La fusión en el centro de las estrella se logra cuando la densidad y temperatura son suficientemente altas. Existen varios ciclos de fusión que ocurren en diferentes fases de la vida de una estrella. Estos diferentes ciclos forman los diferentes elementos que conocemos. El primer ciclo de fusión es la fusión del Hidrógeno  hacia Helio. Esta es la fase en la que se encuentra nuestro Sol.

          El Proceso Triple Alfa:

1) He-4 + He-4 → Be-8 + Energia

2) Be-8 + He-4 → C-12 + Energía

3) C-12 + He-4 → O-16 + Energía

En las estrellas con temperaturas muy altas ocurren otros ciclos de fusiones (ciclos CNO ). A temperaturas aún más altas , el helio que se quema produce Carbono. Finalmente, a temperaturas extremadamente altas se forman los elementos más pesados como el Hierro.

Las reacciones de fusiones que ocurren en las estrellas forman a los neutrinos que llegan a la Tierra. Al detectar estos neutrinos, los científicos pueden aprender sobre las fusiones internas en las estrellas. En el proceso de fusión nuclear denominado reacción Protón-Protón las partículas intervinientes son el protón (carga positiva), el neutrón (carga neutra), el positrón (carga positiva, antipartícula del electrón) y el neutrino.

Archivo:Keplers supernova.jpg

En las explosiones supernovas que viene a ser el aspecto más brillante de estos sucesos de transformación de la materia, literalmente, es que la explosión de la estrella genera suficiente energía para sintetizar una enorme variedad de átomos más pesados que el hierro que es el límite donde se paran en la producción de elementos estrellas medianas como nuestro Sol.

Pero, en las estrellas masivas y supermasivas gigantes, con decenas de masas solares, cuando el núcleo de hierro se contrae emite un solo sonido estruendoso, y este retumbar final del gong envía una onda sonara hacia arriba a través del gas que entran, el resultado es el choque más violento del Universo.

La imagen es un zoom del centro de la galaxia M82, una de las más cercana galaxias con estrellas explosivas a una distancia de sólo 12 millones de años luz. La imagen de la izquierda, tomada con el Telescopio Espacial Hubble (HST), muestra el cuerpo de la galaxia en azul y el gas hidrógeno expulsado por las estrellas explosivas del centro en rojo.

Más arriba decíamos que aquí está el choque más violento del Universo. En un momento se forjan en la ardiente región de colisión toneladas de oro, plata, mercurio, hierro y plomo, yodo, estaño y cobre. La detonación arroja las capas exteriores de la estrella al espacio interestelar, y la nube, con su valioso cargamento, se expande, deambula durante largo tiempo y se mezcla con las nubes interestelares circundantes.

Los remanentes de supernovas cuyos filamentos nos hablan de complejos materiales que la explosión primaria formó hace ya mucho tiempo, y, que actualmente, sirve de estudio para saber sobre los procesos estelares en este tipo de sucesos.

Antes dejámos una relación de materiales que pueden ser formados en las explosiones supernovas y, cuando se condensan estrellas nuevas a partir de esas nubes, sus planetas heredan los elementos forjados en estrellas anteriores y durante la explosión. La Tierra fue uno de esos planetas y éstos son los antepasados de los escudos de bronce y las espadas de acero con los que los hombres han luchado, y el oro y la plata por los que lucharon, y los clavos de hierro que los hombres del Capitan Cook negociaban por el afecto de las tahitianas que, después de meses aislados en el mar, les parecían diosas salidas del paraiso.

estallido de una supernova

La muerte de una estrella supergigante, regenera el espacio interestelar de materiales complejos que, más tarde, forjan estrellas nuevas y mundos ricos en toda clase de elementos que, si tienen suerte de caer en la zona habitable, proporcionará a los seres que allí puedan surgir, los materiales y elementos necesarios para el desarrollo de sus ideas mediante la construcción de máquinas y tecnologías que, de otra manera, no sería posible. Incluso, sin estos materiales, ni esos seres podrían surgir a la vida.

Recreación de la muerte de una estrella supergigante

           RECREACIÓN DE LA MUERTE DE UNA ESTRELLA MUY MASIVA

¿No os parece una maravilla? Comenzando con el Hidrógeno, Helio Berilio y Litio en el Big Bang, se continuó con el Carbono, Nitrógeno y Oxígeno en las estrellas de la secuencia principal, y, como más arriba explicaba, se continúa en las estrellas moribundas con el Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc…Uranio. ¡Que maravilla!

El Hubble ha captado en los cielos profundos las más extrañas y variadas imágenes de objetos que en el Cosmos puedan estar presentes, sin embargo, pocas tan bellas como las de nuestro planeta Tierra que, es tan rico y especial, gracias a esos procesos que antes hemos contado que ocurren en las estrellas, en las explosiones de supernovas y mediante la creación de esos materiales complejos entre los que se encuentran la química biológica para la vida.

Orión en gas, polvo y estrellas

Si a partir de las Nebulosas que, al llegar al final de sus vidas, pueden surgir planetas como la Tierra, y, si la Tierra contiene la riqueza de todos esos materiales forjados en las estrellas y en el corazón de esas inmensas explosiones, y, si el Universo está plagado de galaxias en las que, de manera periódica suceden esas explosiones, nos podríamos preguntar: ¿Cuantas “Tierras” podrán existir incluso en nuestra propia Galaxia? Y, ¿Cuántos seres pueden haberse formado a partir de esos materiales complejos forjados en las estrellas?

Tendremos que convenir que la Naturaleza es sabia, ya que, como nos decía Lederman, el premio Nobel de Física:

Resultado de imagen de Quarks y Leptones

“Todo lo que hay en el universo pasado o presente, del caldo de pollo a las estrellas de neutrones, podemos hacerlo con sólo doce partículas de materia. Nuestros á-tomos se agrupan en dos familias: seis quarks y seis leptones. Los seis quarks reciben los nombres de up (arriba), down (abajo), encanto, extraño, top (cima) o truth (verdad) y bottom fondo) o beauty (belleza). Los leptones son el electrón, tan familiar, el neutrino electrónico, el muón, el neutrino muónico, el tau y el neutrinotau.”

Claro que Lederman y el mismo Demócrito mucho antes que él, además de hablar de átomos y de Quarks y Leptones, se dejaron por detrás eso que llegaron a generar tales “insignificantes” partículas: Pensamientos y sentimientos que, dicho sea de paso, puede que sea el más alto grado evolutivo alcanzado por la materia hasta el momento (al menos hasta donde hemos podido conocer).

Ahí, en esa visión cognitiva de nuestro cerebro, están todos los secretos del mundo. En nuestros genes que tienen memoria, están grabadas todas las cosas que han sucedido en el transcurso de los miles de millones de años que el Universo ha estado fabricando estrellas y mundos para que, nosotros, seres que pudimos alcanzar la consciencia de Ser, los podamos desvelar… ¡Con el Tiempo!

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting