miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Gravedad cuántica, fluctuaciones de vacío…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

 

Las partículas recorren todos los caminos posibles para ir de un punto a otro. Así lo dice la hipótesis de múltiples historias. Dos partículas alejadas por miles de años luz pueden estar conectadas, otras se trasladan de un punto a otro del espacio sin recorrer las distancias que separan esos dos puntos (Efecto túnel) y, así, podríamos contar historias cuánticas alucinantes. Los sucesos de ese mundo extraño de los objetos infinitesimales, no son los mismos que podemos contemplar en nuestro mundo cotidiano, el macro mundo de los objetos grandes. El “universo” de las partículas es… ¡otro “universo”!

Por otra parte, existen hipótesis de todo tipo sobre lo que pudo pasar en aquellos primeros momentos.

“La hipótesis de la dimensión transicional que explica la gravitación y la materia oscura no conceptúa la hipótesis del Big-Bang en el sentido que el universo se crea a través de la explosión de un super-átomo, que crea la materia y el tiempo a partir de un punto único en el Universo. Y que ésta materia y tiempo se expanden en el espacio a partir de éste punto, en todas direcciones.

 

 

Resultado de imagen de El universo surgió de una singularidad

 

Esta hipótesis sólo puede conceptuar el Big-Bang como un evento simultáneo de creación de materia y tiempo en todo el Universo. Es decir, que no hubo ninguna explosión focal y dispersión de materia y energía en todas direcciones, sino que la materia y energía se creó instantáneamente en infinitos puntos del Universo. ( Un Big-Bang Multiple y simultaneo.).

 

Resultado de imagen de Las primeras galaxias

 

 

Casi inmediatamente, por la acción de las fuerzas de la gravedad y el tiempo, se crearon los elementos y la materia como tal, así como la formación de Galaxias, Soles, Planetas y otros cuerpos celestes.

Todos los fenómenos que se dieron en ese momento y que aún se dan, obedecen a las Leyes de la Física Clásica, incluyendo la Expansión o Contracción de sectores del Universo, y no están directamente relacionados con el Big-Bang.”

 

 

Resultado de imagen de fascinante mecánica cuçanticaResultado de imagen de fascinante mecánica cuçantica

Hay aspectos de la física que me dejan totalmente sin habla y quedan fuera de nuestra realidad inmersa en lo cotidiano de un mundo macroscópico que nos aleja de ese otro mundo misterioso e invisible donde residen los cuantos que, con su comportamiento, me obligan a pensar y me transportan de  

      En el mundo cuántico se pueden contemplar cosas más extrañas

Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.

De todas las maneras, en este  

Como nos dicen en este anuncio del Kybalion, nada es estático en el Universo y, todo está en continuo movimiento o vibración. Habreis oido hablar de la energía de punto cero que permanerce en una sustancia en el cero absoluto (cero K). Está de acuerdo con la teoría cuántica, según la cual, una partícula oscilando con un movimiento armónico simple no tiene  

                         Efecto Casimir

Me llama poderosamente la atención lo que conocemos 

Algunos han postulado que el Universo pudo surgir de una fluctuación del vacío que rasgó el espacio tiempo de otro universo.

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se vacío theta (vacío θ), que es el gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un vacío theta es análogo a una función de Bloch* en un cristal. Cuando hay un fermión sin masa, el efecto túnel fermiónicos con masa pequeña, el efecto túnel es mucho menor que gauge puros, pero no está completamente suprimido. El vacío theta es el punto de partida para comprender el estado de vacío de las teoría gauge fuertemente interaccionantes, como la cromodinámica cuántica.

 

En astronomía, el vacío está referido a regiones del espacio con  

El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de Sabemos referirnos al producto o cociente de las unidades físicas básicas, elevadas a las potencias adecuadas, en una cantidad física derivada. Las cantidades físicas básicas de un sistema mecánico son habitualmente la masa (m), la longitud (l) y el tiempo (t). Utilizando estas dimensiones, la velocidad, que es una unidad física derivada, tendrá dimensiones l/t, y la aceleración tendrá dimensiones l/t2SI, la corriente, IPero volvamos de  http://francisthemulenews.files.wordpress.com/2008/02/dibujo26ene2008a.jpg

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Está en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son para los electrones. Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutrones mantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.

La degeneración de los electrones impide que la gravedad continúe comprimiendo a una estrella electrones se degeneran y, “protestan” porque no quieren estar tan juntos (son fermiones), y, es la fuerza de esa degeneración la única que frena la implosión de la estrella y queda convertida en una enana blanca que, en el centro de la nueva Nebulosa radia con fuerza 

De manera similar ocurre cuando la estrella es más masiva que nuestro Sol. Entonces, llegado el final de su vida y quedando a merced de la fuerza de Gravedad, ésta trata de comprimir la masa estelar al máximo. protones y electrones se  fusionan neutrones que, al verse tan comprimidos “protestan” y se degeneran para neutrones estable. Si la estrella es demasiado masivo, ni el Principio de exclusión de Pauli para los fermiones, puede frenar la inmensa gravedad que genera y, el final del proceso es un Agujero Negro.

De la misma  

Hace tiempo que sabemos (Einstein y así se desprende de L/V2 que podríamos expresar como m = E/c2. Si despejamos la energía, adquiere una Decir lo que pueda haber en ese “espacio vacío, no será nada fácil, sin embargo, parece que no sería un disparate pensar en la existencia allí de alguna clase de materia que, desde luego, al igual que la bariónica que sí podemos ver, genera energía y ondas gravitacionales que, de alguna manera que aún se nos oculta, escapa a nuestra vista y sólo podemos constatar sus efectos al medir las velocidades a las que se alejan las galaxias unas de otras: velocidad de expansión del universo, que no se corresponde en absoluto con la masa y la energía que podemos ver.

Hay que seguir atando cabos sueltos, uniendo piezas y buscando algunas que están perdidas de tal manera que,  

¡Quién sabe! Quizá sea el LHC el que, con sus resultados, nos pueda dar una respuesta de lo que realmente existe en ese mal llamado vacío y que, según parece, está lleno a rebosar. Sí, pero ¿de qué está lleno? Ya veremos. De Higgs, ese Bosón que le da la masa a las partículas y que fue presentado a bombo y platillo a todos los medios en 2012. Ahora, el LHC con más potencia energética, tratará de descubrir las partículas supersimétricas que supuestamente son las componentes de la “materia oscura” y también, intentará otras cosas que los físicos intuyen están ahí.

Estamos en un momento crucial de la física, las matemáticas y la cosmología, y debemos, para poder materia oscura o a una teoría cuántica de la gravedad, que también está implícita en la teoría M. Estamos anclados; necesitamos nuevas y audaces ideas que puedan romper las cadenas virtuales que atan nuestras mentes a ideas del pasado. En su momento, esas ideas eran perfectas y cumplieron su misión. Sin embargo, ahora no nos dejan continuar y debemos preparar nuestras mentes 

emilio silvera

La maravilla de… ¡Los cuantos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…

Resultado de imagen de Cuerpos que emiten radiación

 La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas  producidas por las vibraciones de las partículas cargadas  que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.

 Ley de Planck para cuerpos a diferentes temperaturas.

Curvas de emisión de cuerpos negros a diferentes temperaturas comparadas con las predicciones de la física clásica anteriores a la ley de Planck.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

                           Acero al  “rojo vivo”, el objeto está radiando en la zona de la luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

E = hv

Donde E es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

Fotografía que ilustra el símil de un electrón atrapado bailando alrededor del núcleo atómico. / Fotografía: López de Zubiría / Dirección de arte: Santos Bregaña / Bailarina: Itsaso Gabellanes.

Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.

Resultado de imagen de Baile de electrones alrededor del núcleo

                fotogramas de la película del movimiento de un par de electrones en el átomo …

Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.

Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

http://www.ecbloguer.com/cienciaaldia/wp-content/uploads/2012/11/luz-onda.jpg

           ¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.

Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.

Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.

Quizá funcione bien, pero ¿dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos,  incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!

La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecanocuánticos.

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.

Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

Resultado de imagen de Las ecuaciones de Einstein de la relatividad general

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?

Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.

emilio silvera