El Agua es mucho más de lo que se deja ver
Publica El Español en el apartado de Química
El agua es más rara de lo que piensas
IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR
por Emilio Silvera ~ Clasificado en General ~ Comments (3)
Está comenzando a comprenderse cómo es la estructura íntima de un líquido con propiedades aberrantes a las que debemos la existencia de la vida en la Tierra.
¿Qué ocurriría si el hielo se hundiera en lugar de flotar? A primera vista, no gran cosa: tal vez habría que remover el gin & tonic de vez en cuando para que se mantuviera frío. Y, sin duda, el Titanic habría llegado a puerto sano y salvo. Pero en realidad, todo sería muy diferente. De hecho, ni siquiera estaríamos aquí: si el agua congelada cayera al fondo del mar, y se formara nuevo hielo que a su vez se hundiera, el resultado final durante las grandes glaciaciones de la Tierra habría sido una gran masa de océanos sólidos que no podría haber sostenido la existencia de vida.
Así pues, debemos nuestra existencia al hecho de que el hielo flote, es decir, que el agua en estado sólido sea menos densa que en fase líquida. Pero lo cierto es que esto es una completa anomalía. Como las demás sustancias, el agua aumenta su densidad al enfriarse, pero por debajo de los 4 oC sucede algo extraño: a medida que comienza a pasar al estado sólido, su volumen aumenta, lo que reduce su densidad.
Y ésta es sólo una de las cualidades aberrantes del agua, la única sustancia que en las condiciones ambientales terrestres puede encontrarse en tres estados distintos: sólido, líquido y gas. Nada en el agua es típico, aunque la costumbre nos tenga habituados.
Fijémonos en su temperatura de ebullición: 100 oC. El agua, H2O, es la combinación de hidrógeno y oxígeno. Este último encabeza un grupo de la tabla periódica formado por otros elementos con los que comparte propiedades, como el azufre (S), el selenio (Se) o el teluro (Te). Si sustituimos el oxígeno por sus compañeros, obtenemos la tendencia que siguen sus puntos de ebullición: de abajo arriba, el H2Te hierve a -4 grados, el H2Se a -42 y el H2S a -62. Así, el agua debería hervir por debajo de los 80 grados bajo cero. Algo similar ocurre con los puntos de congelación: si se comportara como el resto de su grupo, el agua debería helarse a unos 100 bajo cero.
Otra propiedad que nos parece normal, pero en realidad sumamente insólita, es su inmensa tensión superficial, la mayor en un líquido exceptuando el metal mercurio. Vemos esta tensión superficial cuando llenamos un vaso por encima del borde sin que rebose, o en las gotas de rocío sobre las hojas, y algunos insectos acuáticos la aprovechan para deslizarse patinando sobre la superficie de las charcas.
La tensión superficial del agua permite que algunos insectos puedan caminar sobre ella. Markus Gayda (CC)
El agua lubrica y adhiere al mismo tiempo: podemos resbalar sobre un suelo mojado, pero prueben a despegar dos láminas de vidrio unidas por la humedad. El agua es un solvente universal, capaz de disolver sustancias tan dispares como las sales, los alcoholes, los ácidos o los álcalis. Y por si fuera poco, en ciertos casos el agua caliente se congela más deprisa que el agua fría; es el llamado efecto Mpemba, descubierto por un estudiante de secundaria de Tanzania cuyo profesor se carcajeó de él… hasta que un científico lo confirmó.
Así prosigue una lista de anomalías que ha mantenido perplejos a los científicos durante siglos. En 1612, Galileo Galilei escribía: “A mi juicio, el hielo debería ser agua rarificada más que condensada; […] el agua al congelarse aumenta de volumen, y el hielo que se produce es más ligero que el agua sobre la cual nada”. Obvio hoy para nosotros, pero no en su día para los detractores de Galileo, que atribuían la flotación del hielo a su forma.
Las peculiaridades del agua dieron pie a uno de los episodios más rocambolescos de la historia de la ciencia. En 1966, un científico soviético llamado Boris Deryagin presentó en Londres un chocante hallazgo. Un colega suyo, Nikolai Fedyakin, había descubierto que el agua presentaba un comportamiento excepcional cuando se aislaba en finos tubos capilares de cuarzo. El líquido así confinado era mucho más denso y viscoso de lo normal, su punto de ebullición se disparaba hasta los 150o C y el de congelación se desplomaba hasta -40o C, solidificándose en una especie de masa marrón.
La fiebre se desató cuando un equipo de investigadores de EEUU repitió los experimentos y confirmó sus resultados en la revista Science, bautizando la nueva sustancia con un nombre irresistible: poliagua. La hipótesis sugería que el agua confinada formaba un polímero del que se derivaban exóticas propiedades. La revista Time, el diario The New York Times y otros grandes medios cubrieron aquel extrordinario hallazgo que olía a premio Nobel. La revista Popular Sciencepublicaba instrucciones sobre “cómo crear tu propia poliagua”. En la revista Nature, un científico advertía de que la poliagua podía ser “el material más peligroso de la Tierra”, ya que su simple contacto con el agua normal podía polimerizarla y dejar el planeta seco, como un “facsímil de Venus”. El Pentágono se involucró, temeroso de que la URSS llevara ventaja en la explotación de sus posibles aplicaciones militares.
Hasta que a un científico de EEUU llamado Denis Rousseau, pensando que podía tratarse simplemente de agua contaminada, se le ocurrió repetir las pruebas practicadas a la poliagua analizando el sudor de su camiseta después de un partido de balonmano. Y resultó que la presunta poliagua y el sudor eran, a todos los efectos y valga la expresión, como dos gotas de agua. La poliagua no era más que agua normal con impurezas.
La homeopatía es una medicina alternativa ampliamente discutida y considerada por la comunidad científica como una pseudociencia.
Las propiedades del agua están también en el corazón de otro mito, la homeopatía. En 1988 el francés Jacques Benveniste logró publicar en Nature un estudio que decía aportar pruebas sobre la capacidad del agua de recordar las sustancias que había contenido.
El principio homeopático sostiene que, cuanto menos compuesto, más efectividad; sus preparaciones se basan en diluir un ingrediente una y otra vez hasta que desaparece de la solución, quedando sólo agua con una especie de memoria. Otros investigadores trataron sin éxito de reproducir los resultados de Benveniste, que fueron después refutados, y la hipótesis de la memoria del agua ha sido repetidamentedesacreditada. Sin embargo, en este caso el mito no ha desaparecido; a diferencia de la poliagua, la homeopatía sostiene una poderosa industria.
Hoy la ciencia ha descubierto que las propiedades anómalas del agua tienen mucho que ver con una estructura muy cambiante y dinámica, todo lo contrario de un material con memoria. El secreto está en la química del H2O. El oxígeno es uno de los elementos más electronegativos de la tabla periódica; es decir, que atrae con más fuerza los electrones. En el átomo de oxígeno predomina la carga negativa, mientras que en los dos hidrógenos se acumula la carga positiva. Ambas se compensan de modo que la carga neta es cero, pero esta estructura convierte a la molécula de agua en lo que se llama un dipolo: polo negativo y polo positivo. Ninguna de las moléculas parecidas a ella tiene un carácter dipolar tan marcado. Y esta es la razón de la enorme tensión superficial, ya que las moléculas de agua tienden a pegarse fuertemente unas a otras a través de estos polos, que se unen por un tipo de enlace llamado puente de hidrógeno.
… la teoría de que las moléculas de agua podían presentarse unidas formando dodeicosaedros de caras hexagonales y pentagonales a las que llamó clatratos.
Hasta hace poco más de una década, primaba la idea de que el agua líquida tenía una estructura homogénea. En el hielo, el agua está ordenada formando pirámides triangulares, o tetraedros, con una molécula en su centro y otras cuatro en los vértices, unidas a la central por puentes de hidrógeno. Se pensaba que al pasar a líquido se mantenía la misma estructura básica, pero los huecos del tetraedro se rellenaban con más moléculas, y de ahí su mayor densidad. Hasta que en 2004 los suecos Anders Nilsson y Lars Petterson lo pusieron todo patas arriba.
Mientras estudiaban por rayos X la estructura de otra molécula en disolución, Nilsson, de la Universidad de Stanford, y Pettersson, de la de Estocolmo, descubrieron que lo más interesante estaba en el agua. En contra de lo que decían los libros de texto, su potente fuente de rayos X les revelaba que sólo una pequeña parte de las moléculas de agua líquida formaban tetraedros. La inmensa mayoría estaban en una configuración más desordenada y compacta con sólo dos puentes de hidrógeno, y no cuatro. “Proponíamos que la estructura dominante estaba seriamente distorsionada”, resume Nilsson a EL ESPAÑOL.
Resultó que esta estructura en dos fases distintas, tetraedros y masa desordenada, lo explicaba todo. Por ejemplo, cuando el hielo se derrite, el agua comienza a pasar a la estructura compacta, lo que eleva su densidad. Pero por encima de 4 oC, al aumentar las moléculas desordenadas, la vibración de éstas las aparta unas de otras, lo que resulta en un agua más ligera a mayor temperatura.
… meta-estables, en el cual un fluido bajo ciertas condiciones de temperatura y de presión pude alcanzar temperaturas por debajo del punto de congelación ..
Curiosamente, el modelo de Nilsson y Pettersson se parecía mucho a una hipótesis propuesta varios años antes para el agua superenfriada. Se llama así al agua por debajo del punto de congelación que se mantiene en estado líquido al impedirse la formación de hielo; en la naturaleza existe, por ejemplo, en las nubes a gran altura. En 1992, un equipo de la Universidad de Boston propuso que el agua superenfriada se compone de dos fases, una de baja y otra de alta densidad. Estas dos fases se han relacionado con una estructura en tetraedros, la primera, y otra más desordenada, la segunda.
Así, las dos líneas de investigación, la del agua que vemos a diario y la de la superenfriada, han confluido en un mismo modelo: una mezcla de dos estructuras que conviven y que se dan en mayor o menor grado dependiendo de la temperatura. En su última revisión, publicada en Nature Communications en diciembre de 2015, Nilsson y Pettersson cuentan que el agua es heterogénea, una mezcla cambiante de fases de alta y baja densidad. “La estructura distorsionada que proponíamos se relaciona con el líquido de alta densidad que es dominante a temperatura ambiente”, dice Nilsson. Y todo encaja, añade: “Las fluctuaciones entre los líquidos de alta y baja densidad explican las propiedades anómalas del agua”.
Un iceberg es una enorme masa de agua en forma de hielo que flota. Dan Rea, USAF (PD)
Esta idea del agua como la mezcla de aceite y vinagre en el aliño, pero ambos compuestos por una misma sustancia, aún se está abriendo paso en la comunidad científica. Por el momento, no todos están dispuestos a dejarse convencer. Pero mientras los expertos debaten, también comienzan a reflexionar sobre un intrigante enigma.
Cuando Nilsson y Pettersson dibujan un gráfico con presiones en un eje y temperaturas en el otro, resulta que las propiedades anómalas del agua se dan exclusivamente en una región central con forma de embudo. Por encima y por debajo de esta zona desaparece la doble personalidad del agua, que adopta sólo un estado y se comporta como un líquido cualquiera. Pero se da la circunstancia de que la región del embudo corresponde a las condiciones de la Tierra. “Al parecer, el agua se vuelve anómala a las temperaturas a las que suele existir la vida”, apunta Nilsson. “¿Es pura coincidencia o es algo significativo?”, se pregunta.
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Así representan algunos como sería el camino para burlar la velocidad de la luz y desplazarnos por el espaciotiempo a distancias inmensas en tiempos y espacios más cortos. Es el famoso agujero de gusano o el doblar el espacio trayendo hacia tí el lugar que deseas visitar.
Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.
Los moelos de universo que pudieran ser, en función de la Densidad Crítica (Ω) sería plano, abierto o cerrado. La Materia tiene la palabra.
La curvatura del espacio–tiempo es la propiedad del espacio–tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividadgeneral de Einstein, nos explica y demuestra que el espacio–tiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).
En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.
Los Modelos Cosmológicos son variados y todos, sin excepción, nos hablan de una clase de universo que está conformado en función de la materia que en él pueda existir, es decir, eso que los cosmólogos llaman el Omega negro. La Materia determinará en qué universo estamos.
En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espacio–tiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson–Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio–tiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein–de Sitter tiene densidad críticaexacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.
La geometría del espacio-tiempo en estos modelos de universos está descrita por la métrica de Robertson-Walker y es, en los ejemplos precedentes, curvado negativamente, curvado positivamente y plano, respectivamente (Alexander AlexandrovichFriedmann). Y, las tres epresentaciones gráficas de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.
¿Cómo medirán una hora aquel que pasa ese Tiempo con el Ser amado en comparación con aquel otro que, lleno de dolor, la ve transcurrir lentamente en la cama de un Hospital?
Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividadespecial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.
Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, era ya un anciano jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. Parece mentira que la velocidad con la que podamos movernos nos puedan jugar estas malas pasadas.
Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.
Durante diez dias del mes de enero de 1999 astrofísicos italianos y estadounidenses efectuaron un experimento que llamaron Boomerang. El experimento consistió en el lanzamiento de un globo con instrumentos que realizó el mapa mas detallado y preciso del fondo de radiación de microondas (CMB) obtenido hasta el momento. Su conclusión: el universo no posee curvatura positiva o negativa, es plano.
La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein–de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.
Los cosmólogos y astrofísicos, en sus obervaciones, notaron que las galaxias se alejaban las unas de las otras a mayor velocidad de la que correspondería en función de la materia que se puede ver en el Universo, había algo que las hacía correr más de la cuenta, así que, el primero en poner nombre all fenómeno que se ha dado en llamar “materia oscura” fue el astrofísico suizo Fritz Zwicky, del Instituto Tecnológico de California (Caltech) en 1933. Con su invento (intuición), dejó zanjado el tema que traía de cabeza a todos los cosmólogos del mundo, encantados con que al fín, las cuentas cuadraran.
Mencionamos ya la importancia que tiene para diseñar un modelo satisfactorio del universo, conocer el valor de la masa total de materia que existe en el espacio. El valor de la expansión o de la contracción del universo depende de su contenido de materia. Si la masa resulta mayor que cierta cantidad, denominada densidad crítica, las fuerzas gravitatorias primero amortiguarán y luego detendrán eventualmente la expansión. El universo se comprimirá en sí mismo hasta alcanzar un estado compacto y reiniciará, tal vez, un nuevo ciclo de expansión. En cambio, si el universo tiene una masa menor que ese valor, se expandirá para siempre. Y, en todo esto, mucho tendrá que decir “la materia oscura” que al parecer está oculta en alguna parte.
El símbolo Ω (parámetro de densidad) lo utilizan los cosmólogos para hablar de la densidad del universo.
Ω =r /rcrit
Tenemos así que para Ω>1 tenemos que el universo se contraería en un futuro Big Crunch, para Ω<1 e universo debería expandirse indefinidamente (Big Rip) y para Ω=1 el universo se debería expandir pero deteniéndose su expansión asintóticamente.
Además Las observaciones del fondo de microondas como las WMAP dan unas observaciones que coinciden con lo cabría esperar si la densidad total del universo fuera igual a la densidad crítica.
Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.
No dejamos de enviar ingenios al espacio para tratar de medir la Densidad Crítica y poder saber en qué clase de universo nos encontramos: Plano, cerrado o abierto.
En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).
Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. En la imagen se quiere representar tal efecto.
En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.
Esta fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea.
Un sistema solar en el que los planetas aparecen cohexionados alrededor del cuerpo mayor, la estrella. Todos permanecen unidos gracias a la fuerza de Gravedad que actúa y los sitúa a las adecuadas distancias en función de la masa de cada uno de los cuerpos planetarios.
No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.
No pocas veces hemos querido utilizar la fuerza electromagnética para crear escudos a nuestro alrededor, o, también de las naves viajeras, para evitar peligros exteriores o ataques. Es cierto que, habiéndole obtenido muchas aplicaciones a esta fuerza, aún nos queda mucho por investigar y descubrir para obtener su pleno rendimiento.
La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.
Describe a las partículas como una especie de campo de materia que se esparce por el espacio de modo similar a una onda. Hay una relación entre la localización de la partícula y los lugares del espacio donde el campo es más potente. La mecánica cuántica introduce un postulado en el que cuando se realiza una medida de la posición de la partícula se produce lo que se llama colapso de función de onda que asemeja al campo como una particula localizada. Se usa en el microscopio de electrones para obsevar objetos menores que los observados por la luz visible.
La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida. No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.
Se denomina cuerpo negro a aquel cuerpo ideal que es capaz de absorber o emitir toda la radiación que sobre él incide. Las superficies del Sol y la Tierra se comportan aproximadamente como cuerpos negros.
Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”, que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.
La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).
Existen en el Universo configuraciones de fuerzas y energías que aún no podemos comprender. La vastedad de un Universo que tiene un radio de 13.700 millones de años, nos debe hacer pensar que, en esos espacios inmensos existen infinidad de cosas y se producen multitud de fenómenos que escapan a nuestro entendimiento. Son fuerzas descomunales que, como las que puedan emitir agujeros negrosgigantes, estrellas de neutrones magnetars y explosiones de estrellas masivas en supernovas que, estando situadas a miles de millones de años luz de nuestro ámbito local, nos imposibilita para la observación y el estudio a fondo y sin fisuras, y, a pesar de los buenos instrumentos que tenemos hoy, siguen siendo insuficientes para poder “ver” todo lo que ahí fuera sucede.
¡El Universo! Todo lo que existe.
emilio silvera
por Emilio Silvera ~ Clasificado en Teoría de Supercuerdas ~ Comments (9)
T. Kaluza
Las dimensiones mas altas fueron introducidas en una teoria unificada por primera vez en 1919, en Alemania, por Theodor Kaluza. Kaluza le escribio a Einstein sugiriendole que su sueño de hallar una teoria unificada de la fuerza de gravitacion y el electromagnetismo podia realizarse si elaboraba sus ecuaciones en un espaciotiempo de cinco dimensiones. Einstein al principio se burlo de la idea, mas tarde, pensando y estudiando la sugerencia con mas frialdad y examen mas profundo, lo reconsideró y ayudo a Kaluza a que pudiera publicar su articulo.
Oskar Klein
Pocos años mas tarde, el fisico sueco Oskar Klein publico una version del de Kaluza que lo mejoraba dejando un diseño matematico mas fino, de mas calidad y que explicaba de manera mas contundente lo que la teoria queria significar al elevar la teoria a cinco dimensiones y lograr unificar la gravedad con el magnetismo. Desde entonces, la teoria es conocida como de Kaluza-Klein y, aunque parecia muy interesante, en realidad nadie sabia que con ella hasta los años setenta, cuando resulto beneficioso trabajar en la supersimetria.
Hipotéticas partículas supersimétricas
En la física de partículas, la supersimetría es una simetría hipotética que podría relacionar las propiedades de los bosones y los fermiones. La supersimetría también es conocida por el acrónimo inglés SUSY.
Aunque todavía no se ha verificado experimentalmente que la supersimetría sea una simetría de la naturaleza, reviste interés teórico porque la supersimetría puede resolver diversos problemas teóricos como el problema de la jerarquía, además de ofrecer candidatos adicionales para explicar la “materia oscura”.
La supersimetría es parte fundamental de muchos modelos teóricos, entre ellos la teoría de supercuerdas, que generaliza a la teoría de cuerdas. Recientes mediciones sobre las colisiones en el LHC no han dado pistas sobre la existencia de las partículas predichas por la supersimetría lo que resulta ser un gran golpe a la teoría.
Pronto Kaluza-Klein estuvo en los labios de todo el mundo (los fisicos mas destacados del hablaron de esa teoria). Aunque la teoria de cuerdas en particular y la supersimetria en general apelaban a mas dimensiones, las cuerdas tenian un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la teoria de cuerdas solo seria eficaz en, diez, once y veintiseis dimensiones, y solo invocaba dos posibles grupos de simetria: SO(32) o E8 x E8. Cuando una teoria apunta algo tan tajantemente, los cientificos prestan atencion, y a finales de los años ochenta habia muchos fisicos que trabajaban en “las cuerdas”.
El Modelo estándar se nos quedó pequeño, iremos más lejos
La cuerda es cuántica y gravitatoria, de sus entrañas surge, por arte de magia, la partícula mensajera de la fuerza de gravedad: el gravitón. Funde de natural las dos teorías físicas más poderosas de que disponemos, la mecánica cuántica y la relatividad general, y se convierte en supercuerda (con mayores grados de libertad) es capaz de describir bosones y fermiones, partículas de fuerza y de materia. La simple vibración de una cuerda infinitesimal podría unificar todas la fuerzas y partículas fundamentales.
“Como te puedes imaginar, estas dimensiones son muy muy pequeñas, de hecho tienen la longitud de planck. Por eso nunca vamos a poder medirlas en la vida real. Pero las cuerdas, que también son muy muy pequeñas (de hecho algunas hasta tienen la longitud de planck), tienen la opción de vibrar en nuestras 3 dimensiones espaciales, o pueden vibrar en estas 6 dimensiones arrolladas (prefiero usar el término arrolladas que circulares, ya que los espacios de Calabi-Yau no son circulares en lo absoluto).
El simple hecho de que las cuerdas puedan vibrar en 9 dimensiones (3 largas y 6 arrolladas) es lo que hizo que las ecuaciones de la teoría de cuerdas fueran capaces de explicar todas las 4 fuerzas fundamentales. La ventaja de tener una teoría unificada, es que en vez de usar montones de ecuaciones diferentes, los físicos ahora sólo pueden usar las ecuaciones de la teoría de cuerdas, y ya está.”
“El gif no muestra el espacio de Kalabi-Yau en todo su esplendor. Tan sólo muestra 3 dimensiones de este, y es imposible ilustrar más de 3 dimensiones. Pero recuerda que todos los espacios de Calabi-Yau tienen 6 dimensiones, las cuales pueden estar ubicadas de diferentes maneras. En otras palabras, no existe una forma específica de como es un espacio de Calabi-Yau, ya que podemos agrupar 6 dimensiones de infinitas maneras diferentes. “
Parece que todo está hecho de cuerdas, incluso el espacio y el tiempo podrían emerger de las relaciones, más o menos complejas, cuerdas vibrantes. La materia-materia, que tocamos y nos parece tan sólida y compacta, ya sabíamos que está conformada por grandes espacios vacíos, pero no imaginábamos que era tan sutil como una cuerda de energía vibrando. Los átomos, las galaxias, los agujeros negros, todo son marañas de cuerdas y supercuerdas vibrando en diez u once dimensiones espaciotemporales.
Lo cierto es que, andamos un poco perdidos y no pocos físicos (no sabemos si de forma interesada), insisten una y otra vez, en cuestiones que parecen no llevar a ninguna parte y que, según las imposibilidades que nos presentan esos caminos, ¿no sería conveniente elegir otros derroteros para indagar nuevas físicas mientras tanto?, para dejar que avanzacen las tecnologías, se adquieran más potentes y nuevas formas de energías que nos puedan permitir llegar a sondear las cuerdas y poder vislumbrar si es cierto, que puedan existir esas cuerdas vibrantes que, con sus resonancias crean las partículas y la materia.
Nos queda mucho porder oír las vibraciones de esas “cuerdas” que la física trata de encontrar, y, mientras tanto, oiremos vibrar esas otras que nos ofrece el violín en las manos expertos del músico con experiencia. Mientras tanto, esas otras cuerdas cuya existencia intuimos y soñamos, si es cierto que están ahí, seguirán silenciosas vibrando y creando materia a partir de esa ínfima sustancia que no hemos podido observar… ¡por el momento!
Quedaba mucho y duro trabajo por hacer, pero las perspectivas eran brillantes. y, de entre todos ellos, los mas destacados fueron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten. Ellos fueron los artífices de un gran periodo de aventura intelectual que desembocó en la más moderna version de la teoria de cuerdas que elaboro E. Witten con el de Teoria M. Esta teoria de más altas dimensiones nos ha llevado a una enorme profundidad matematica en el campo de la topologia y, desde luego, ha dejado un panorama muy optimista en el horizonte.
Tal optimismo, luego, podria ser equivocado, ya que, de momento, solo contamos con el aparato teorico de la teoria y su verificación experimental se nos escapa al requerir disponer de la energia de Planck de 1019 GeV para comprobarla y, de momento, dicha energia fuera del alcance humano.
nadie las ha podido ver, las imaginamos de mil maneras
Einstein, como todos sabeis, dedico buena de la segunda mitad de su vida a intentar hallar una teoria de campo unificada de la gravitacion y el electromagnetismo, con expectativas populares tan altas que las ecuaciones de su labor en marcha eran expuestas en escaparates a lo largo de la Quinta Avenida de Nueva York, donde eran escudriñadas por multitud de curiosos que no las entendian. En aquel tiempo, Einstein desconocia que las matematicas precisas desarrollar una teoria asi, aun no existian. De ahi su fracaso en el intento. Él paradógicamente, habia ignorado los principios cuanticos, a pesar de haber sido uno de los padres de la teoría.
, retomemos las cuerdas. Los críticos del concepto de supercuerda señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoria no habia siquiera repetido los logros del Modelo Estandar, ni habia hecho ni una sola prediccion que pudiera someterse a prueba mediante experimentos. Una teoría así, más que teoría era una gran conjetura a la que le quedaba mucho camino por andar.
Hemos podido ver otras muchas cosas …, ni fotinos ni selectrones han aparecido nunca
puedo admirar la imagen de un púlsar o un magnetar, me siento transportado a regiones lejanas del espacio en las que, ese magnetar o magnetoestrella (que es una estrella de neutrones alimentada con un campo magnético extremadamente fuerte y, simplemente se trata de una variedad de púlsar cuya característica principal es la expulsión, en un breve período -equivalente a la duración de un relámpago-, de enormes cantidades de alta energía en de rayos X y rayos gamma. ), ha surgido a partir de una estrella masiva y se ha conformado un extraño objeto exótico que nos produce sorpresa y admiración al ver como, a partir de una cosa totalmente diferente, por medio de transiciones de fase de diversa índole, se llega a formar otro objeto totalmente distinto del que fue.
¿Estamos perdidos y hablamos de fotinos, squarks, etc. Estas partículas que son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados y que nos son bien conocidas. Se nombran en analogía a sus compaleras : el squars es el compañero supersimétrico del quark, el fotino del fotón, etxc. Las más ligeras de estas partículas ¿podrían ser la materia oscuira?. Si es así, cada partícula probablemente pesaría al menos cuarenta veces más que un protón.
La supersimetria ordenaba que el Universo debia contener familias enteras dee nuevas particulas, entre ellas “selectrones” (equivalente supersimetrico del electron) y “fotinos” (equivalentes del foton), pero no especificaba las masas hipoteticas de tales particulas. La ausencia de pruebas aducidas en busquedas preliminares de particulas supersimetricas, como las realizadas en el acelerador PEP de Stanford y el PETRA de Hamburgo, por lo tanto no probaban nada; siempre se podia imaginar que las particulas eran demasiado masivas para ser producidas en esas maquinas y habria que esperar a otras mas adelantadas del futuro que, como el LHC, nos pueda sacar a la luz, algunas de esas particulas supersimetricas que confirmarian la teoria.
¡Fotinos y selectrones! ¿Dónde? El LHC con sus 14 TeV ha llegado (según nos cuentan) al Bosón de Higgs pero… ¡cuerdas! No aparecen esas partículas supersimétricas y, la teoría, se tambalea.
La Teoria M que antes mencionaba, es una version mas adelantada, en 11 dimensiones, nos ha dejado un cuadro que ilusiona y, luego, si finalmente se puede verificar lo que predice, estariamos ante una teoria cuantica de la gravedad y, desde luego, nos explicaria el Universo como nunca antes se pudo hacer. Claro que, nosotros, pobres mortales e igniorantes, nos seguimos haciendo las mismas preguntas:
¿Donde, pues, hemos de buscar ese universo hiperdimensional de la simetria perfecta? El mundo en el que vivimos esta lleno de simetrias rotas, y solo tiene cuatro dimensiones. La respuesta llega de la Cosmologia, la cual nos dice que el universo supersimetrico, si existio, pertenece al pasado. La implicacion de esto es que el universo empezo en un de perfeccion simetrica, del que evoluciono al universo menos simetrico en el que vivimos. Si es asi, la busqueda de la simetria perfecta es la busqueda del secreto del origen del universo, y la atencion de sus acolitos puede, volverse con buenas razones, como las caras de las flores al alba, hacia la blanca luz de la genesis cosmica.
¡Nos queda tanto por saber!
emilio silvera