jueves, 23 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




2.015 ha sido nombrado el Año Internacional de la Luz

Autor por Emilio Silvera    ~    Archivo Clasificado en ese misterio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sabemos que la luz es una forma de radiación electromagnética a la que el ojo humano es sensible y sobre la cual dependen nuestra consciencia visual del universo y sus contenidos.

La velocidad de la luz al propagarse a través de la materia es menor que a través del vacío y depende de las propiedades dieléctricas del medio y de la energía de la luz. La relación entre la velocidad de la luz en el vacío y en un medio se denomina índice de refracción del medio:  {\displaystyle n={\frac {c}{v}}}

 

 

La línea amarilla muestra el tiempo que tarda la luz en recorrer el espacio entre la Tierra y la Luna, alrededor de 1,26 segundos. (Wikipedia)
Dependiendo del medio en el que se mueve, desarrolla una velocidad u otra, aunque siempre nos viene a la mente su velocidad en el vacío de 299.792,458 metros por segundo que es el límite impuesto por nuestro universo para que algo se mueva, nada puede alcanzar más de esa velocidad, ya que, a medida que el objeto se acerca a ese límite, su masa aumenta, es decir, la energía de iniercia se convierte en masa como lo predice la Teoría de la Relatividad Especial.
Se denomina con el nombre de efecto fotoeléctrico a la emisión de electrones por un metal al ser irradiado con radiación electromagnética. Einstein construyó este trabajo inspirado por uno anterior de Max Planc, en el que decía que la radiación de cuerpo negro se hacia mediante paquetes discretos que él llamó cuantos y, más tarde Einstein llevando la idea un poco más lejos, demostró que no sólo los objetos calientes radian, sino que todos lo hace y a esos pequeños paquetes los llamó fotones.
El efecto fotoeléctricoconsiste en la emisión de electrones por un material al incidir sobre él una radiación electromagnética (luz visible o ultravioleta), en general). A veces se incluyen en el término otros tipos de interacción entre la luz y la materia
Resultado de imagen de 1905 el año de Einstein
En 1905, el mismo año que descubrió su teoría de la relatividad especial, Albert Einstein propuso una descripción matemática de este fenómeno que parecía funcionar correctamente y en la que la emisión de electrones era producida por la absorción de cuantos de luz que más tarde serían llamados fotones. En un artículo titulado “Un punto de vista heurístico sobre la producción y transformación de la luz” mostró como la idea de partículas discretas de luz podía explicar el efecto fotoeléctrico y la presencia de una frecuencia característica para cada material por debajo de la cual no se producía ningún efecto. Por esta explicación del efecto fotoeléctrico Einstein recibiría eñ Premio Nobel de Física en 1921.
Científicos consiguen congelar la luz y hacerla sólida. Al menos así ha sido publicado en distintos medios

Los fotones, las partículas de las que está hecha la luz, no se comportan como muchas otras partículas porque no tienen masa. Esto hace que no interaccionen entre ellas y por tanto no se unan unas a otras para formar elementos mayores y más complejos, como sí hacen otras partículas fundamentales.

Sin embargo, en los últimos años varios equipos científicos de todo el mundo han logrado jugar con esta característica y, de alguna forma, burlarla, deteniendo la luz y congelándola, convirtiéndola en un sólido. Se trata de un fenómeno que nos recuerda a las películas de ciencia ficción (piensen en los sables láser de La guerra de las galaxias), pero en cuyo conocimiento los investigadores avanzan cada día más. Los últimos, un equipo de la Universidad de Princeton que ha logrado convertir la luz en cristal, según sus conclusiones.

Nos interesa explorar, y eventualmente controlar y dirigir, los flujos de energía a nivel atómico. Lo han conseguido interconectando fotones, las partículas elementales de la luz, de forma que se quedasen fijos en un lugar como si estuviesen congelados. Los resultados de sus experimentos podrían servir para desarrollar nuevos y exóticos metamateriales, además de ayudar a avanzar en el conocimiento sobre el estudio fundamental de la materia.

“Es algo que nadie había visto antes, un nuevo comportamiento de la luz”, explica Andrew Houck, profesor asociado de ingeniería eléctrica y uno de los investigadores. “Nos interesa explorar, y eventualmente controlar y dirigir, los flujos de energía a niver atómico”, dice Hakan Türeci, uno de los miembros del equipo.

Para lograrlo, construyeron una estructura hecha de materiales superconductores con más de cien mil millones de átomos ensamblados para funcionar como uno solo y la situaron junto a un cable superconductor por el que transitaban fotones. Esos fotones, debido a mecanismos propios de la física cuántica, adoptaron algunas de las propiedades del átomo, como por ejemplo las interacciones entre ellos, algo que normalmente no ocurre con los fotones. Así, el equipo logró que fluyesen como si fuesen parte de un líquido o que se congelasen como si fuesen un cristal sólido.

Los científicos han estudiado el comportamiento de la luz durante años, que a veces corresponde al de una onda y otras al de una partícula. Con este experimento, han podido inventarle uno nuevo. “Hemos provocado una situación en la que la luz se comporta efectivamente como una partícula, en el sentido de que dos fotones pueden interaccionar con fuerza. En un momento oscila de delante hacia atrás como si fuera un líquido, y en otro directamente se congela”, explica Türeci.

Los ordenadores actuales no ‘entienden’ la física cuántica

Esta investigación es parte del esfuerzo que científicos de todo el mundo están poniendo para intentar responder algunas preguntas fundamentales del comportamiento de las partículas subatómicas, cuestiones que no es posible contestar ni siquiera utilizando los ordenadores más potentes de los que disponemos hoy en día.

Es como resolver preguntas sobre aerodinámica observando un modelo de aeroplano en un túnel de viento, es decir, a través de una simulación física en vez de con cálculos digitalesLos equipos de computación con los que trabajan los científicos no sirven porque funcionan siguiendo la mecánica tradicional, que describe cómo es el mundo de los objetos cotidianos en una escala muy amplia, desde los planetas hasta los átomos y moléculas. Pero el mundo de los fotones y otras partículas de tamaño inferior al átomo funciona siguiendo las reglas de la mecánica cuántica, que incluye propiedades en apariencia imposibles e incomprensibles, como por ejemplo que varias partículas estén relacionadas en cuanto a su comportamiento a pesar de estar distanciadas por cientos de kilómetros.

Cuando los ordenadores cuánticos lleguen, habremos dado otro inmenso salto hacia el futuro.

Esa diferencia en cuanto a sus características limita la capacidad de los ordenadores de trabajar con estos componentes subatómicos. Simplemente, no puede calcular qué harán ante unos u otros estímulos. De forma que la comunidad científica lleva tiempo intentando crear un nuevo tipo de ordenador basado en las normas de la física cuántica, con el convencimiento de que así podrán responder a muchas de las preguntas que les intrigan de esta rama del conocimiento. Para crear esa nueva computadora, sin embargo, hace falta tiempo y profundizar en la investigación de estos fenómenos, creándose así un círculo que retrasa las respuestas.

Otra corriente dentro del estudio de la física cuántica, dentro de la que se enmarca el trabajo de los científicos de Princeton, apuesta por dejar de lado los ordenadores y desarrollar nuevas herramientas que imiten el comportamiento de las subpartículas. El inconveniente es que estas herramientas tendrán una utilidad más limitada que la de un ordenador cuántico, pero la ventaja está en que en teoría podrán crearse sin necesidad de responder previamente a cuestiones más complejas y avanzadas.

“Es como resolver preguntas sobre aerodinámica observando un modelo de aeroplano en un túnel de viento, es decir, a través de una simulación física en vez de con cálculos digitales”, explica una entrada en el blog Scienceblog.

En este caso, la herramienta desarrollada es muy pequeña y sus posibilidades son limitadas, pero los investigadores confían en poder ampliarla, así como aumentar el número de interacciones entre fotones, aumentando su capacidad de simular situaciones complejas. En el futuro esperan poder observar la luz en estados aún más extraños, como por ejemplo un superfluido o un aislante.”

Cuando sepamos lo que es la luz… ¡Sabremos lo que es el Universo… y, también nosotros! Porque, al fin y al cabo, ¿No somos luz?

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting