sábado, 05 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Realidad? ¿Dónde estará?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

No una sino mil veces podemos haber podido hablar del “milagro griego”. La hipótesis es la siguiente: La Ciencia nació en la antigua Grecia alrededor del año 600 a. C. y floreció durante unos pocos cientos de años, aproximadamente  146 a. C., cuando los griegos cedieron su primacía a los romanos y la ciencia se frenó en seco, permaneció en letargo hasta que resucitó en Europa durante el Renacimiento alrededor de 1500. Y, no pocos creen a pie juntillas que eso fue así y que, las personas que habitaron la India, Egipto, Mesopotamia, el África Subsahariana, China, el Continente americano y algún otro lugar con anterioridad al año 600 a. C. no dirigieron el desarrollo de la Ciencia. Cuando descubrieron el fuego, se quedaron esperando tranquilamente a que Tales de Mileto, Pitágoras, Demócrito y Aristóteles inventaran la Ciencia en el Egeo.

Claro que, tal pensamiento es una auténtica barbaridad, pensar eso es un sin sentido. ¿Cómo durante más de mil quinientos años,  el final del período griego hasta la época de Copérnico, no se produjo avance alguna en la Ciencia? Esto quiere decir que ninguna persona, en ninguna parte, demostró la capacidad o el interés necesario para proseguir insistiendo en las obras de Arquímedes, Euclides o Apolonio.

     Lo cierto es que da mucha pena comprobar como el paso del tiempo hace desaparecer aquellas culturas

 

 

Las primeras observaciones sobre fenómenos eléctricos se realizaron ya en la antigua Grecia, cuando el filósofo Tales de Mileto (640-546 a.C.) comprobó que, al frotar barras de ambar contra pieles curtidas, se producía en ellas características de atracción que antes no poseían. Es el mismo experimento que se puede hacer frotando una barra de plástico con un paño; acercándola luego a pequeños pedazos de papel, los atrae hacia sí, como es característico en los cuerpos electrizados.

 

 

Resultado de imagen de fue el filósofo griego Theophrastus (374-287 a.C.)

 

 

 

Sin embargo, fue el filósofo griego Theophrastus (374-287 a.C.) el primero, que en un tratado escrito tres siglos después, estableció que otras sustancias tienen  mismo poder, dejando así constancia del primer estudio científico sobre la electricidad. Comprobando que no todos los materiales pueden adquirir tal propiedad o adquirirla en igual medida. Se atraen, por ejemplo, una barra de vidrio y otra de ebonita. Se repelen, sin embargo, dos barras de vidrio o dos de ebonita.

 

 

 

Gradas y restos del edificio de la escena del teatro de Mileto. Mileto (en carioAnactoria; en hititaMilawata o Millawanda; en griego antiguo Μίλητος Mílêtos; en turcoMilet) fue una antigua ciudad griega de la costa occidental de Anatolia (en la actual provincia de Aydın de Turquía), cerca de la desembocadura del río Meandro en la antigua Caria. El emplazamiento estuvo habitado desde la Edad del Bronce.

Aquellos  ”científicos” se reunieron en Mileto. Tales, Anaximandro y Anaxímenes hicieron observaciones astronómicas con el gnomon, diseñaron cartas naúticas, plantearon hipótesis más o menos relacionadas con los hechos observados referidas a la estructura de la Tierra, la naturaleza de los planetas y las estrellas, las leyes seguidas por los astros en sus movimientos. En Mileto, la ciencia, entendida interpretación racional de las observaciones, aparece que dio los primeros pasos

Claro que, las cosas nunca suelen ser tan sencillas. La hipótesis según la cual la ciencia surgió por generación espontánea en suelo griego y desaparecido después hasta el Renacimiento parece ridícula cuando se expresa de  sucinta, sin más explicaciones. Es una idea que se formuló por primera vez en Alemania hace unos 150 años y que, poco a poco, ha ido calando, sutilmente en nuestras consciencias a través de la educación que, la única concesión que se hace a las culturas no europeas es la que se refiere al Islam. Esta teoría dice que los árabes conservaron viva la cultura griega, incluida la ciencia, durante toda la Edad Media. Ejercieron de escribas, traductores y guardianes, sin pensar, aparentemente, en crear su propia ciencia.

Averroes

Al Sur de la puerta de Almodóvar de Córdoba, se levanta la estátua de Averroes. Jurista, médico, filósofo. El gran Averroes fue la máxima autoridad judicial de la época,(siglo XII). Fue acusado por los fundamentalistas de poner la razón humana por encima de la ley divina. La mirada del viejo filósofo se pierde  las callejas mientras escucha el murmullo del agua del estanque junto al que reposa.

Nada de eso es cierto. De hecho, los eruditos islámicos admiraron y preservaron las matemáticas y la ciencia griega y actuaron como el hilo conductor de la ciencia de muchas culturas no occidentales, además de construir un edifcio propio impresionante en el campo de las ciencias. Lo cierto es que, la ciencia occidental es lo que es porque se construyó acertadamente sobre las mejores ideas de los distintos pueblos, los mejores  e incluso, los mejores aparatos procedentes de otras culturas. Por ejmplo, los babilonios desarrollaron el teorema de Pitágoras (la suma de los cuadrados de los dos lados perpendiculares de un triángulo rectángulo es igual al cuadrado de la hipotenusa) al menos mil quinientos años antes de que Pitágoras naciera.

En el año 200 d. C., el matemático chino Liu Hui calculó para el  π un valor (3,1416) que se mantuvo como la  estimación más precisa de dicho número durante unos mil años. Nuestras cifras del 0 al 9, se inventaron en la antigua India, siendo las cifras de Gwalior del año 500 d. C. casi indistinguibles de las cifras occidentales modernas. Álgebra es una palabra árabe que significa “obligación”, como cuando se obliga a que la incógnita x tome un valor numérico.

 Antigua Arabia

Arabia es una región de Oriente Medio del desierto comprendido entre el mar Rojo y el océano Índico.  el punto de vista histórico, esta región era conocida también como la cuna de una de las principales religiones del mundo, el Islam. Nacida en el siglo VII, esta religión había establecido importantes cambios en la configuración de mandato, los derechos económicos y principios culturales del mundo árabe. Sin embargo, pocos saben de su cultura y de la importante contribución que hicieron a la Ciencia (Astronomía, Medicina, Matemáticas…)

China, Babilonia y también el Islam. El Califa árabe al-Mamun hizo construir la ciudad de la Sabiduría y un Observatorio para que los astrónomos pudieron abservar las variantes de los parámetros astronómicos (obtenidos de los griegos) y las estrellas del cielo. Aportaron así la mayor contribución y uno de los valores más exactos de de la precesión de los equinoccios, la inclinación de la eclíptica y otros  de este tipo. En el año 829 sus cuadrantes y sextantes eran mayores que los que construyó Tycho Brahe en Europa más de siete siglos después.

Como antes decía, en el siglo IX, el gran mecenas de la ciencia el califa abasí al-Mamun, reunió a varios astrónomos en Bagdad  crear la casa de la Sabiduría (Bait al-Hikmah). Allí los astrónomos llevaron a cabo observaciones del Sol y de la Luna, con el fin de determina la latitud y la longitud locales para fijar la gibla. Recopilaron algunos de los mejores resultados de un zij titulado “Lo Comprobado” (al-Mumtahan).

Al-Biruni desarrolló técnicas para medir la Tierra y las distancias sobre ella utilizando la triangulación. Descubrió que el radio de la Tierra era 6.339,6 Kilómetros, un valor que no se obtuvo en Occidente hasta el siglo XVI. Uno de sus zijs contiene una tabla que da las coordenadas de seiscientos lugares, casi todos conocidos por él directamente.

En el año 499, Aryabhata escribió un pequeño volumen, Aryabhatuya, de 123 versos métricos, que se ocupaban de astronomía y (una tercera parte) de ganitapada o matemáticas.  En la segunda mitad de esta obra, en la que habla del tiempo y la trigonometría esférica, Aryabhata utiliza una frase, en la que se refiere a los números empleados en el cálculo, “ lugar es diez veces el lugar precedente”.  El  valor posicional había sido un componente esencial de la numeración babilónica, pero los babilonios no empleaban un sistema decimal.

http://apod.nasa.gov/apod/image/1108/NGC7331_crawford900c.jpg

La fuerza de gravedad mantiene unidas las estrellas, estas a las galaxias, las galaxias  sí, y, los mundos a las estrellas que orbitan, mientras nosotros, nos sentidos atraidos por la gravedad que genera el mundo que habitamos que mantiene nuestros pies unidos a la superficie impidiendo que flotemos sin control. (Tengo la suerte de que, Ken Crawford (Rancho Del Sol Obs.), me envíe imágenes la de arriba).

Veinticinco siglos antes de Isaac Newton, el Rog-Veda hindú afirmaba que la gravitación hace que el universo se mantenga unido, aunque  hipótesis era mucho menos rigurosa que la de Newton, en esencia, quería decir lo mismo que él dijo.

Los arios de lengua sánscrita suscribieron la idea de que la Tierra era redonda en una época en que los griegos creían que era plana. Los hindúes del siglo V d. C. calcularon de algún modo la edad de la Tierra, cifrándola en 4.300 millones de años; los científicos ingleses del siglo XIX estaban convencidos de que la Tierra tenía 100 millones de años. Algunos expertos chinos del siglo IV d. C. -como los árabes del s. XIII y los papúes de Nueva Guinea posteriormente- adoptaron la rutina de utilizr fósiles  estudiar la historia del planeta, sin embargo, en el siglo XVII algunos miembros de la Universidad de Oxford seguían enseñando que los fósiles eran “pistas falsas sembradas por el diablo” para engañar a los hombres.

¡Que cosas!

Con todo esto, os quiero decir amigos míos que, cuando oímos hablar de la primacía europea con respecto a las Ciencias…, debemos dejar el comentario en cuarentena y, dedicar un tiempo a profundizar más en cómo fueron las cosas en la realidad. No siempre las cosas son  parecen, o, como nos las quieren presentar.

Mucho antes de que llegaran los científicos modernos, en tiempos del pasado muy lejano, otras culturas de filósofos naturales ya hablaban del átomo y del vacío. Ellos supieron intuir que había una materia cósmica y que todo lo grande estaba hecho de pequeñas cosas. Los pensadores de aquellos lugares eran anacoretas encerrados en un misticismo que los unía a la Naturaleza y a ese otro mundo de los pensamientos que están situados más allá de lo material. Ellos ya se preguntaban por…:

¡Tántas cosas!

Claro que, si no fuera tan largo de contar, os diría que, en realidad, el Higgs se descubrió hace ya muchos siglos en la antigua India, con el nombre de maya, que sugiere la idea de un velo de ilusión para dar peso a los objetos del mundo material. Pocos conocen que, los hindúes fueron los que más se acercaron a las ideas modernas sobre el átomo, la física cuántica y otras teorías actuales. Ellos desarrollaron muy temprano sólidas teorías atomistas sobre la materia. Posiblemente, el pensamiento atomista griega recibió las influencias del pensamiento de los hindúes a través de las civilizaciones persas. El Rig-Veda, que data de alguna  situada entre el 2000 y el 1500 a. C., es el primer texto hindú en el que se exponen unas ideas que pueden considerarse leyes naturales universales. La ley cósmica está realcionada con la luz cósmica.

Resultado de imagen de Los vedas en la India

Anteriores a los primeros Upanishads tenemos en la India la creación de los Vedas, visiones poéticas y espirituales en las que la imaginación humana ve la Naturaleza y la expresa en creación poética, y después va avanzando unidades más intensamente reales que espirituales  llegar al Brahmán único de los Upanishads.

la época de Buda (500 a, C.), los Upanishad, escritos  un período de varios siglos, mencionaban el concepto  de svabhava, definido “la naturaleza inherente de los distintos materiales”; es decir, su eficacia causal única, , tal como la combustión en el caso del fuego, o el hecho de fluir  abajo en el caso dela agua. El pensador Jainí Bunaratna nos dijo: “Todo lo que existe ha llegado a existir por acción de la svabhava. Así… la tierra se transforma en una vasija y no en paño… A partir de los hilos se produce el paño y no la vasija”.

Tambiénm aquellos pensadores, manejaron el concepto de yadrccha, o azar tiempos muy remotos. Implicaba la falta de orden y la aleatoriedad de la causalidad. Ambos conceptos se sumaron a la afirmación del griego Demócrito medio siglo más tarde: “Todo lo que hay en el universo es fruto del azar y la necesidad”. El ejemplo que que dio Demócrito -similar al de los hilos del paño- fue que, toda la materia que existe, está formada por a-tomos o átomos.

Bueno, no lo puedo evitar, mi imaginación se desboca y corre rápida por los diversos pensamientos que por la mente pasan, de uno se traslada a otros y, al final, todo resulta un conglomerado de ideas que, en realidad, quieren explicar, dentro de esa diversidad, la misma cosa.

emilio silvera

PD. Los  provienen de fuentes variadas.

Más allá del Tiempo de Planck

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Noticia de Prensa:

Estudio sugiere que “tiempo de Planck” no sería la unidad mínima de tiempo

SICA, MUNDO CUÁNTICO Y FUTURO

De acuerdo a la física el menor intervalo de tiempo es el cronón o tiempo de Planck, que equivale a 10-43 segundos y se mide como el tiempo que tarda un fotón viajando a la velocidad de la luz en atravesar una distancia igual a la longitud de Planck.

 

Sin embargo un estudio publicado en The European Physical Journal, los investigadores Mir Faizal, de las Universidades de Waterloo y Lethbridge en Canadá, Mohammed M. Khali, de la Universidad de Alejandría en Egipto y Saurya Das, también de la Universidad de Lethbridge, proponen que el tiempo de Planck no sea la menor unidad de tiempo y existirían otros ordenes de magnitud.

La propuesta es revolucionaria porque de existir un nuevo tiempo mínimo, podría alterar las ecuaciones básicas de la Mecánica Cuántica. Y debido a que la Mecánica Cuántica describe los sistemas físicos a la escala subatómica, el resultado sería un cambio profundo en la descripción de la realidad tal y como la conocemos.

“Podría ser que la escala mínima de tiempo posible en el Universo vaya mucho más allá del tiempo de Planck. Y esto, además, puede ser probado experimentalmente”. Ha dicho Faizal a Phys.org.

Esto es un poco problemático porque a pesar de que teóricamente hablando el tiempo Planck es la escala de tiempo más pequeña, no ha podido ser medida en la práctica. Y aún más, existe una gran cantidad de apoyo teórico para su existencia desde diversos enfoques de la gravedad cuántica, como la teoría de cuerdas, la gravedad cuántica de bucles, y la gravedad cuántica perturbativa. Casi todos estos enfoques sugieren que no es posible medir una longitud más corta que la longitud de Planck, y por extensión posible medir un tiempo más corto que el tiempo de Planck.

Motivados por una serie de estudios teóricos recientes, los investigadores decidieron profundizar más en la cuestión de la estructura del tiempo, en particular en la largamente debatida cuestión de si el tiempo es “discreto” o “continuo”. “En nuestro estudio proponemos que el tiempo es discreto, e incluso hemos sugerido varias formas de demostrarlo experimentalmente” ha dicho Faizal.

La diferencia entre un tiempo “discreto” y no “continuo” es que en el primero significaría que estamos ante una sucesión interminable de diminutos momentos fijos en inmóviles como si se tratase de una película. Mientras que con el tiempo “continuo”, significaría que el tiempo fluye continuamente y no habría un tiempo fijo.

Uno de los experimentos propuestos por el equipo de científicos consiste en medir las emisiones espontáneas de un átomo de hidrógeno. Las ecuaciones de la Mecánica Cuántica modificadas con las nuevas ideas de los científicos predicen, en efecto, una sutil diferencia en la tasa de emisiones espontáneas con respecto a las ecuaciones sin modificar. Y los efectos observados en esas mediciones pueden ser observados en las tasas de desintegración de esas partículas y de los núcleos inestables.

Basándose en sus análisis de las emisiones espontáneas del hidrógeno, los investigadores estiman que el mínimo intervalo de tiempo posible está varias órdenes de magnitud por encima del tiempo de Planck, pero no mayor a una cierta cantidad, la cual está fija por medio de experimentos anteriores. Experimentos futuros podrían reducir este límite en el tiempo mínimo o determinar su valor exacto.

Faizal y sus colegas sugieren, además, que los cambios que han propuesto en las ecuaciones básicas de la Mecánica Cuántica podrían modificar nuestro concepto mismo de tiempo, así como su definición. Y explican que la estructura temporal podría considerarse similar a una estructura cristalina, que consiste en segmentos discretos que se repiten de forma regular.

Desde un punto de vista filosófico, el argumento de que el tiempo es discreto sugiere que nuestra percepción del tiempo no es más que una ilusión. “El Universo físico es en realidad como una película de imágenes en movimiento, en la que una serie de fotogramas fijos proyectados sucesivamente en una pantalla crean la ilusión de estar ante imágenes que se mueven” ha dicho Faizal.

“Por lo tanto, si este punto de vista se toma en serio, entonces nuestra percepción consciente de la realidad física basada en el movimiento continuo se convierte en una ilusión producida por una estructura matemática discreta subyacente” finaliza.

 

Siempre especulando

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Podría ser el valor de G decreciente?

Cuando, en este contexto se menciona G, nos estamos refiriendo a la constante universal de la gravitación y, al menos para mí, es inconcebible que dicha constante pueda variar con el tiempo. La Gravedad es una fuerza de la Naturaleza que hace posible que nuestro universo sea tal como lo podemos observar. Las galaxias, los cúmulos y supercúmulos, pequeñas y grandes estructuras que están afectadas por la gravedad que, de alguna manera, es la responsable de la geometría del universo, es la que conforma el ser del espacio y, en algunos cqasos extremos, también del tiempo.

 

fisica
La fuerza gravitatoria que se produce en presencia de masas… ¡No parece variar! Siempre es proporcional a la masa que la genera, no será lo mismo la fuerza de Gravedad que se produce en un planeta como la Tierra que la generada por un agujero negro masivo.
Resultado de imagen de Las constantes de la naturaleza

Nadie ha sabido responder a la pregunta de si las constantes de la naturaleza son realmente constantes o llegará un momento en que comience su transformación. Hay que tener en cuenta que para nosotros, la escala del tiempo que podríamos considerar muy grande, en la escala de tiempo del universo podría ser ínfima.

El universo, por lo que sabemos, tiene 13.700 millones de años. Antes que nosotros, el reinado sobre el planeta correspondía a los dinosaurios, amos y señores durante 150 millones de años, hace ahora de ello 65 millones de años. Mucho después, hace apenas 2 millones de años, aparecieron nuestros antepasados directos que, después de una serie de cambios evolutivos desembocó en lo que somos hoy.

 

tiempo

Mucho tiempo ha pasado desde que esta imagen era el presente, y, sin embargo, para el Universo supone una ínfima fracción marcada por el Tic Tac cósmico de las estrellas y galaxias que conforman la materia de la que provenimos. Es un gran misterio para nosotros que sean las estrellas las que fabrican los materiales que, más tarde, llegan a conformar a seres vivos que, en algunos caso, tienen consciencia.

“La ciencia no puede resolver el misterio final de la Naturaleza. Y esto se debe a que, en el último análisis, nosotros somos parte del misterio que estamos tratando de resolver”.


Max Planck 

De acuerdo con su perspectiva universal, en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz cy la constante de acción h, que ahora lleva el nombre de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Se conocen como las Unidades de Planck.

Planck con sus unidades nos llevo al extremo de lo pequeño

 

Mp = (hc / G) ½ = 5’56 × 10 ^ – 5 gramos

Lp = (Gh / c3) ½ = 4’13 × 10 ^ – 33 centímetros

Tp = (Gh / c5) ½ = 1’38 × 10 ^ – 43 segundos

Temp.p = K -1 (hc 5/G) ½ = 3’5 × 10 ^ 32 º Kelvin

 


Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

 

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

 

astrofisica

gravitacional

Planck, en sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros, ya que, al ser números naturales que no inventaron los hombres, todos los seres inteligentes del Universo tendrían que hallar el mismo resultado.

No importa en qué planeta pudieran habitar, si son seres inteligentes, empleando los grafos más extraños que a nosotros nada nos pudiera decir, lo cierto es que hay un lenguaje universal: ¡Las matemáticas! que, independientemente de los guarismos empleados, al final de todo: 2 x 5 =10 y 2 + 2 + 2 + 2 + 2 = 10.

Empleen las ecuaciones o fórmulas que puedan con los números que puedan utilizar, no podrán variar los resultados de los números puros y adimensionales creados por la Naturaleza:

Esas constantes que persisten en el tiempo y nunca cambian y que hacen de nuestro universo el que podemos observar, además de hacer posible la vida. A esos extraterrestres, también, la constante de estructura fina le daría 1/137.

 

“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” Nos decía Planck. Su intuición le llevaba a comprender que, con el paso del tiempo, nosotros estaríamos adquiriendo por medio de pequeñas mutaciones, más amplitud en nuestros sentidos, de manera tal que, sin que nos diéramos cuenta nos estábamos acercando más y más al mundo real.
Cristal de niobato de litio LiNbO3 / electro óptico / láserCristal de titanil-fosfato de potasio KTiOPO4 KTP / electro óptico / láser

En 1970 los físicos D. Buraham y D. Weinberg se encontraron con un fenómeno curioso cuando proyectaban la luz de un láser sobre un cristal de borato de calcio o de bario. Observaron que al aumentar la intensidad del láser, además del potente haz que atravesaba el cristal que se veía al otro lado, aparecía un tenue halo de luz con los colores del arco iris alrededor del haz transmitido. Habían descubierto la “subconversión paramétrica”. 

 

decreciente

 

El cristal convierte, de vez en cuando, un fotón ultravioleta del láser en dos fotones de menor energía, uno polarizado verticalmente (sobre el cono rojo) y otro horizontalmente (sobre el cono azul). Si consideramos las intersecciones (puntos de color verde) no estarán polarizados ni verticalmente ni horizontalmente, sino que tendrán una “polarización indefinida” y habremos obtenido un estado nuevo que sólo tiene explicación en física cuántica. Se dice que dichos fotones están “entrelazados”.

Visto frontalmente sería así.

 

constante G
              Entrelazamiento cuántico

Una de las paradojas de nuestro estudio del universo circundante es que a medida que las descripciones de su funcionamiento se hacen más precisas y acertadas, también se alejan cada vez más de toda la experiencia humana.

Nuestros sentidos nos traicionan y nos hacen ver, a través de nuestras mentes, un mundo distinto al real, es decir, nosotros configuramos nuestra propia “realidad” de esa otra realidad verdadera que está presente en la Naturaleza y que no siempre podemos contemplar y, cuando llegamos a contemplarla, no llegamos a comprenderla… del todo.

Resultado de imagen de Nuestros sentidos distorsionan la realidad que la Naturaleza expone

Resultado de imagen de Nuestros sentidos distorsionan la realidad que la Naturaleza expone

Existe un “mundo” infinitesimal que se nos escapa, nuestros sentidos son muy limitados y alcanzan a percibir esa realidad del micro-mundo, sin el cual, el que percibimos no podría existir.

microscopio

                      Lo abren y lo cierran y jamas que lo imaginabas asi… Esto es velcro 

imagenes

Podría ser una piramide Maya, pero no, solo es sal 

detalle

                                                 Piel de Salamandra 


microscopio

                                                     Glóbulos rojos


imagenes

                  Esta es la punta de un pelo de tu cabeza.. 

microscopio

                                                   El primer selfie de una hormiga

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias.

Resultado de imagen de Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras

Las galaxias como pequeños universos que contienen todo lo que existe y, encuentra la estabilidad en el intercambio de fuerzas de todos ellos que, de alguna manera, quedan compensados y ocupan cada uno de ellos el lugar que les corresponde en función de las fuerzas que allí intervienen. El átomo se ve normalizado con las cargas positivas de los protones y las negativas de los electrones. Las estrellas de la secuencia principal, con la mecánica de la fusión tienden a expandirse y, son frenadas por la fuerza de Gravedad que su masa genera. Todo encuentra la estabilidad por las dos fuerzas contrapuestas que están presentes.

Gráfica que ilustra la estabilidad entre la presión interna y la fuerza gravitacional.

Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella.

En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.


Podría ser el valor de la cte. G decreciente?
                                                         Grandes cúmulos de galaxias

La identificación de constantes adimensionales de la naturaleza como α (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.

Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala. La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

 

universo

Todos los físicos del mundo, sin excepción, deberían tener en el lugar más prominente de sus casas, un letrero con un número:137. Así les recordaría lo que no sabemos.

Dentro de ese número puro adimensional están escondidos los secretos del electromagnetismo (e), del cuanto de acción de Planck (h), es decir, la mecánica cuántica, y, también, la misteriosa y fantástica relatividad (c), la velocidad de la luz.

Para los científicos de un mundo remoto, perdido en una galaxia en los confines del universo, sin importar qué signos pudieran emplear para hallar la respuesta, al final de sus estudios, también a ellos, les surgiría el número 137la constante de estructura fina que tantos secretos esconde.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck). Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.


fisica
                                           Extraños mundos que pudieran ser

Después llegó Dirac (el que predijo la existencia del positrón) y, por una serie de números y teorías propuestas Eddintong en aquellos tiempos, decidió abandonar la constancia de la constante de gravitación de Newton, G. Sugirió que estaba decreciendo en proporción directa a la edad del universo en escalas de tiempo cósmicas. Es decir, la Gravedad en el pasado era mucho más potente y se debilitaba con el paso del tiempo.

Así pues, en el pasado G era mayor y en el futuro será menor que lo que mide hoy. Ahora veremos que la enorme magnitud de los tres grandes números (10 ^40, 10 ^80 y 10 ^120) es una consecuencia de la gran edad del universo: todas aumentan con el paso del tiempo.

La propuesta de Dirac provocó un revuelo entre un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, pero escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.

 

tiempo

 

“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran Número 10120 y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.

Resultado de imagen de El planeta Tierra más caliente en el pasado

La propuesta de Dirac levantó controversias entre los físicos, y Edward Teller en 1.948, demostró que si en el pasado la gravedad hubiera sido como dice Dirac, la emisión de la energía del Sol habría cambiado y la Tierra habría estado mucho más caliente en el pasado de lo que se suponía normalmente, los océanos habrían estado hirviendo en la era precámbrica, hace doscientos o trescientos millones de años, y la vida tal como la conocemos no habría sobrevivido, pese a que la evidencia geológica entonces disponible demostraba que la vida había existido hace al menos quinientos millones de años.

 

Valor
                            George Gamow


astrofisica
                          Edward Teller

El eufórico George Gamow era buen amigo de Teller y respondió al problema del océano hirviente sugiriendo que podía paliarse si se suponía que las coincidencias propuestas por Dirac eran debidas a una variación temporal en e, la carga del electrón, con e2 aumentando con el tiempo como requiere la ecuación.

Por desgracia, la propuesta de Gamow de una e variable tenía todo tipo de consecuencias inaceptables para la vida sobre la Tierra. Pronto se advirtió que la sugerencia de Gamow hubiera dado como resultado que el Sol habría agotado hace tiempo todo su combustible nuclear, no estaría brillando hoy si e2 crece en proporción a la edad del universo.

Resultado de imagen de Si la Gravedad) fuese variable

                           Una Gravedad variable sería el caos

Su valor en el pasado demasiado pequeño habría impedido que se formaran estrellas como el Sol. Las consecuencias de haber comprimido antes su combustible nuclear, el hidrógeno, hubiera sido la de convertirse primero en gigante roja y después en enana blanca y, por el camino, en el proceso, los mares y océanos de la Tierra se habrían evaporado y la vida habría desaparecido de la faz del planeta. Gamow tuvo varias discusiones con Dirac sobre estas variantes de su hipótesis de G variable.

Dirac dio una interesante respuesta a Gamow con respecto a su idea de la carga del electrón, y con ello la constante de estructura fina, pudiera estar variando.Recordando sin duda la creencia inicial de Eddington en que la constante de estructura fina era un número racional, escribe a Gamow en 1.961 hablándole de las consecuencias cosmológicas de su variación con el logaritmo de la edad del universo.

 

 

 

gravitacional
En mecánica cuántica, el comportamiento de un electrón en un átomo se describe por un orbital, que es una distribución de probabilidad más que una órbita. En la figura, el sombreado indica la probabilidad relativa de «encontrar» el electrón en este punto cuando se tiene la energía correspondiente a los números cuánticos dados. Pensemos que si la carga del electrón variara, aunque sólo fuese una diezmillonésima parte, los átomos no se podrían constituir, las moléculas consecuentemente tampoco y, por ende, ni la materia…
¡Tampoco nosotros estaríamos aquí! ¡Es tan importante el electrón!

Resultado de imagen de El electrón de Dirac

Dirac no iba a suscribir una e variable fácilmente, como solución al problema de los grandes números. Precisamente, su trabajo científico más importante había hecho comprensible la estructura de los átomos y el comportamiento del electrón, y dijo que existía el positrón. Todo ello basado en la hipótesis, compartida por casi todos, de que e era una verdadera constante, la misma en todo tiempo y todo lugar en el universo, un electrón y su carga negativa eran exactas en la Tierra y en el más alejado planeta de la más alejada estrella de la galaxia Andrómeda. Así que Gamow pronto abandonó la teoría de la e variable y concluyo que:

 

“El valor de e se mantiene en pie como el Peñón de Gibraltar durante los últimos 6×109 años.”

 

decreciente
                       El Peñón de Gibraltar, tan familiar e inamovible como decía Dirac.

Pero lo que está claro es que, como ocurre siempre en ciencia, la propuesta de Dirac levantó una gran controversia que llevó a cientos de físicos a realizar pruebas y buscar más a fondo en el problema, lo que dio lugar a nuevos detalles importantes sobre el tema.Alain Turing, pionero de la criptografía, estaba fascinado por la idea de la gravedad variable de Dirac, y especuló sobre la posibilidad de probar la idea a partir de la evidencia fósil, preguntando si “un paleontólogo podría decir, a partir de la huella de un animal extinto, si su peso era el que se suponía”.

El gran biólogo J.B.S. Haldane se sintió también atraído por las posibles consecuencias biológicas de las teorías cosmológicas en que las “constantes” tradicionales cambian con el paso del tiempo o donde los procesos gravitatorios se despliegan de acuerdo con un reloj cósmico diferente del de los procesos atómicos (¿será precisamente por eso que la relatividad general – el cosmos –, no se lleva bien con la mecánica cuántica – el átomo –?).

Tales universos de dos tiempos habían sido propuestos por Milne y fueron las primeras sugerencias de que G podría no ser constante. Unos procesos, como la desintegración radiactiva o los ritmos de interacción molecular, podrían ser constantes sobre una escala de tiempo pero significativamente variables con respecto a la otra. Esto daba lugar a un escenario en el que la bioquímica que sustentaba la vida sólo se hacía posible después de una particular época cósmica, Haldane sugiere que:


constante G

“Hubo, de hecho, un momento en el que se hizo posible por primera vez vida de cualquier tipo, y las formas superiores de vida sólo pueden haberse hecho posibles en una fecha posterior. Análogamente, un cambio en las propiedades de la materia puede explicar algunas de las peculiaridades de la geología precámbrica.”

Este imaginativo escenario no es diferente del que ahora se conoce como “equilibrio interrumpido”, en el que la evolución ocurre en una sucesión discontinua de brotes acelerados entre los que se intercalan largos periodos de cambio lento. Sin embargo, Haldane ofrece una explicación para los cambios.


Podría ser el valor de la cte. G decreciente?

Lo que tienen en común todas estas respuestas a las ideas de Eddington y Dirac es una apreciación creciente de que lasconstantes de la naturaleza desempeñan un papel cosmológico vital: Existe un lazo entre la estructura del universo en conjunto y las condiciones locales internas que se necesitan para que la vida se desarrolle y persista.

Si las constantes tradicionales varían, entonces las teorías astronómicas tienen grandes consecuencias para la biología, la geología y la propia vida. No podemos descartar la idea ni abandonar la posibilidad de que algunas “constantes” tradicionales de la naturaleza pudieran estar variando muy lentamente durante el transcurso de los miles de millones de años de la historia del universo.

Es comprensible por tanto el interés por los grandes números que incluyen las constantes de la naturaleza. Recordemos que Newton nos trajo su teoría de la Gravedad Universal, que más tarde mejora Einstein y que, no sería extraño, en el futuro mejorará algún otro con una nueva teoría más completa y ambiciosa que explique lo grande (el cosmos) y lo pequeño (el átomo), las partículas (la materia) y la energía por interacción de las cuatro fuerzas fundamentales.

¿Será la teoría de Supercuerdas ese futuro?

por Emilio silvera

El viejo Einstein ¡Qué grande fue!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

teoria

Esta ecuación engañosamente corta es uno de los mayores triunfos de la mente humana (me he referido a ella en otras muchas ocasiones). De ella emergen los principios que hay tras los movimientos de las estrellas y las galaxias, los agujeros negros, el big bang, y seguramente el propio destino del Universo.

emilio silvera

El paso del Tiempo lo cambia todo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Resultado de imagen de La princesa IRULAM

Hay en todas las cosas un ritmo que es de nuestro Universo.

“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede encontrar ese ritmo en la sucesión de las estaciones, en la en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”

De “Frases escogidas de Muad´Dib”, por la Princesa Irulan.

Entradas anteriores

http://www.saberia.com/wp-content/uploads/2010/01/ciencia_atomo.jpg

                                                       Laboratorio estelar, la cuna de los mundos.

me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese “éter” que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y de los que sólo podemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.

Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro cósmico se tratara, y, objetos de enormes masas y densidades “infinitas” que no dejan escapar ni la luz que es atrapada por la fuerza de gravedad que generan.

A String of 'Cosmic Pearls' Surrounds an Exploding Star

     Ya nos gustaría saber qué es todo lo que observamos en nuestro Universo, y, dónde tiene su origen

Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, pero ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetro. En los sólidos y líquidos ordinarios los átomos están muy juntos. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

Isaac Asimov en uno de sus libros nos explicó que,  los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

The Cat's Eye Nebula: Dying Star Creates Fantasy-like Sculpture of Gas and Dust

Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.

los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos al desnud0, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos  obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero los núcleos atómicos se mueven de un lado a otro sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho que todos los protonestienen carga eléctrica positiva y se repelen, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en adecuadas pueden estar juntos y empaquetados un número enorme de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

Estas estrellas se forman las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera tan increíble que se degeneran (como consecuencia de que son fermiones y están afectados por el principio de exclusión de Pauli) y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

Resultado de imagen de eL gRAN tELESCOPIO DE cANARIAS

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del magnetar, de las que se conocen pocos ejemplares. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!

Imagen captada por el telescopio Hubble de la galaxia NGC 3393. El núcleo de la galaxia, donde se encuentra la pareja de agujeros negros se ver encuadrado (NASA). Está claro que lo que se dice ver a los agujeros negros… Nadie los ha podido ver y, sólo hemos podido captar su presencia por los fenómenos que a su alrededor ocurren en la emisión inusual de radiación y el comportamiento de la materia circundante.

Poemos decir que objetos tan fascinantes éstos (estrellas enanas blancas, de neutrones y agujeros negros), son los que nos muestran estados de la materia más densos que hemos podido llegar a conocer y que se forjan en la propia Naturaleza mediante transiciones de fase que se producen mediante los mecanismos de las fuerzas que todo lo rigen. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿ cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos. Cuando agote su combustible nuclear de fusión, su vida se apagará y se convertirá en gigante roja primero y enana blanca después.

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de energía que incide sobre la Tierra basta mantener toda la vida en nuestro planeta).

Los rayos del Sol que envían al planeta Tierra su luz y su calor para hacer posible la vida en un planeta maravilloso que es el habitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar en el escenario de este gran teatro que llamaos mundo.

Nadie diría que con consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

                 Este podría ser nuestro Sol en el pasado sólo era una protoestrella que se estaba formando

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra , el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra unicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.

  Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá.

Las estrellas, todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa,  las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a , estos dos bultos – de los cuales uno mira la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, periodos de rotación iguales, mucho menor.

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara el planeta Tierra.

Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.

En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo ser convertida en trabajo cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformidad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua realizar un trabajo porque crea energía . El agua sobre una superficie horizontal no puede realizar , aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.

Resultado de imagen de <a href=

                                                                   Entropía termodinamica

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es vez menor. Todo se deteriora con el paso del tiempo.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

      Considerado Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre.

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y recibió el de “termodinámica”, que en griego significa “movimiento de calor”.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía quedar congelada e inservisble. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no básica, y que denomina “segundo principio de la termodinámica.”

Según segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.

¿Está degradándose el universo?

Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación:   S = k log W que, aunque pequeña y sencilla, es la mayor aportación de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación el logaritmo es el siguiente: S es la entropía de un Sistema; W el de micro-estados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión del micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física comocida como Mecánica Estadística.

Pero esa, es otra historia.

emilio silvera