lunes, 06 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Colonizar Marte a partir de 2.024? ¿Cómo será posible?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Elon Musk desvela su plan para crear una civilización en Marte. Veámos el reportaje en el Pais.

El Jefe de Space X anuncia un primer viaje al planeta rojo para 100 personas en 2.024.

 

 

Elon Musk durante su conferencia

 

 

                                        Elon Musk durante su conferencia STRINGER REUTERS

De niño, en su Suráfrica natal, Elon Musk devoraba novelas de Isaac Asimov en las que un héroe solitario salva el mundo. Ahora quiere convertirse en ese héroe dándole a la humanidad su única forma, según él, de seguir existiendo: colonizar Marte.

“Podemos permanecer en la Tierra esperando una extinción final”, ha dicho hoy Musk, “o convertirnos en una especie multiplanetaria”. El director ejecutivo de Space X y Tesla, de 45 años, ha presentado hoy sus planes para conseguir ese objetivo durante una esperadísima conferencia en el Congreso Internacional de Astronáutica, que se celebra en Guadalajara (México) hasta el viernes.

Horas antes de su intervención ya había colas para entrar en el salón principal de este congreso que reúne a 4.000 empresarios, científicos, estudiantes, y los responsables de las principales agencias espaciales del mundo, incluida la NASA. Ninguno de ellos ha podido eclipsar a Musk, que ha sido recibido con vítores por un público que, al abrirse las puertas, ha corrido desesperado para ocupar las primeras filas del auditorio como quien ansía la mejor vista de su estrella de rock favorita.

Resultado de imagen de tesla y spacex

Este empresario con doble nacionalidad en EE UU y Canadá se ha convertido en uno de los mayores gurús del momento por la enormidad de sus objetivos, como crear el mejor coche eléctrico del mundo, generar un sistema de baterías para que la gente almacene y use su propia electricidad y sobre todo fundar una nueva industria espacial privada que ya se encarga de llevar material al espacio para la NASA y que en un futuro pretende ser la primera en cumplir el sueño de enviar humanos a Marte.

Resultado de imagen de tesla y spacex

 

 

“Podemos permanecer en la Tierra esperando una extinción final”, ha dicho Musk, “o convertirnos en una especie multiplanetaria”

 

 

Musk ha comenzado a hablar delante de una gran esfera del planeta que, a medida que hablaba, iba cubriéndose de agua y nubes. Su objetivo, ha explicado, es crear “una civilización autosuficiente en Marte”, algo que, según sus planes, llevará “entre 40 y 100” años. “Una civilización autosuficiente en Marte probablemente necesita en torno a un millón de personas”, ha dicho Musk, y espera que todas viajen con SpaceX.

 A Marte por lo que cuesta una casa

 

 

 

 

 

Resultado de imagen de Resultado de imagen de tesla y spacex

 

El proyecto se basa en cohetes reutilizables, repostaje en órbita, combustible producido en Marte y usar el tipo de combustible apropiado

 

El empresario ha presentado el diseño del vehículo con el que espera cumplir ese objetivo, un mastodonte de 122 metros de largo en cuya parte superior viajará una nave espacial para unas 100 personas, aunque ese número puede elevarse en función del combustible y la carga. Según la presentación, este cohete será más potente y eficiente que el Saturn V, usado por la NASA para llevar humanos a la Luna y que, por ahora, ha sido el más potente que se ha lanzado al espacio con éxito.

Musk espera tener todos los componentes de este nuevo “sistema” listos en 2024, cuando comenzarían los primeros viajes a Marte. “El objetivo fundamental es hacer que toda persona que quiera ir, pueda ir”, ha dicho, por lo que espera que el precio de un billete esté en torno a los 200.000 dólares [unos 160.000 euros], “lo que cuesta una casa”. La duración del viaje “puede variar”, podría ser de “unos 80 días”, e incluso reducirse a “30”, ha asegurado.

 

Resultado de imagen de tesla y spacex

 

Muchos expertos de la industria espacial y astronautas cuestionan que sea posible enviar humanos a Marte tan pronto sin arriesgar sus vidas, debido a que no existen sistemas óptimos para evitar la intensa radiación del viaje y la estancia.

Esto no parece preocupar a quien pretende ser el primer touroperador marciano. “La radiación no es un problema muy importante”, ha asegurado Musk a preguntas de la audiencia. “Claro que hay algún riesgo de radiación, pero no es mortal y el riesgo de cáncer es relativamente menor” durante el viaje. Una vez en la superficie del planeta “se creará un campo electromagnético artificial” para desviar partículas peligrosas, con lo que la radiación tampoco sería importante, ha añadido.

 

Sin apenas financiación

 

Resultado de imagen de tesla y spacex

 

 

El proyecto se basa en cuatro puntos claves: cohetes reutilizables, repostaje en órbita, combustible producido en Marte y usar el tipo de combustible apropiado. Los planes de SpaceX son usar un nuevo tipo de material propulsor hecho a base de metano y oxígeno, dos elementos disponibles en Marte. Las futuras naves hacia Marte repostarían en la órbita terrestre antes de partir. Los recién llegados comenzarían enseguida el proceso para comenzar a fabricar el nuevo combustible. Esta, ha dicho Musk, es una colonización de ida y vuelta, todo aquel que decida ir, podrá volver.

El nuevo cohete iría equipado con los Raptor, un nuevo tipo de motor en desarrollo que tendría tres veces más potencia que los Merlin que actualmente usan los cohetes Falcon 9 de SpaceX. El módulo principal de propulsión, reutilizable, llevaría 42 de estos cohetes que ayudarán a alcanzar una velocidad de 8.500 kilómetros por hora. Esta técnica para reciclar cohetes es la única de las cuatro mencionadas que Musk ha demostrado con éxito, por el momento.

 

 

Viaje al Marte ya no es un mito

 

 

En el 2022 nn Falcon Heavy de SpaceX será lanzado con el primer grupo de 4 colonizadores. Y en el 2023 los primeros colonizadores llegarán a Marte.

 

Después de los aspectos técnicos este visionario ha señalado con qué financiación cuenta: solo el dinero que él mismo invierte en el proyecto, los beneficios de sus empresas y, posiblemente, alguna plataforma de crowdfunding como Kickstarter, ha dicho solo medio en broma. “Eventualmente esto debe convertirse en un enorme proyecto público-privado”, ha resaltado Musk.

 

 

 

Resultado de imagen de Resultado de imagen de Viajando a Marte

 

En la ronda de preguntas ha comentado que este sería de momento un proyecto en el que solo participará EE UU debido a las restricciones legales del sector espacial: “tengo las manos atadas”, ha dicho.

La primera fase del proyecto serán dos misiones no tripuladas que aterrizarán en Marte en 2018 y 2020 para buscar zonas donde pueda abundar el agua, estudiar en qué lugares será mejor aterrizar con tripulación en el futuro y “aprender” a llevar gran cantidad de material al planeta rojo. Una vez conquistado Marte, Musk pretende llevar su vehículo espacial pueda viajar “a cualquier otro lugar del Sistema Solar”, incluidas lunas como Europa o Encélado e incluso planetas como Júpiter.

¡Los materiales para la vida! Y, de los mundos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

plasma vivo? ¿De dónde venimos?

                                 ¿Será así la espuma cuántica?

 

Los elementos se crean en las estrellas y en las explosiones supernovas

 

¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (big bang, teoría del estado estacionario, etc.

 

 

 

 

Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferenters de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida.

Una de las cosas que siempre me han llamado poderosamente la atención, han sido las estrellas y las transformaciones que, dentro de ellas y los procesos que en su interior se procesan, dan lugar a las transiciones de materiales sencillos hacia materiales más complejos y, finalmente, cuando al final de sus vidas expulsan las capas exteriores al espacio interestelar dejando una extensa región del espacio interestelar sembrada de diversas sustancias que, siguiendo los procesos naturales e interacciones con todo lo que en el lugar está presente, da lugar a procesos químicos que transforman esas sustancias primeras en otras más complejas, sustancias orgánicas simples como, hidrocarburos y derivados que, finalmente, llegan a ser los materiales necesarios para que, mediante la química-biológica del espacio, den lugar a moléculas y sustancias que son las propicias para hacer posible el surgir de la vida.

 

 

 

 

La Química de los Carbohidratos es una parte de la Química Orgánica que ha tenido cierta entidad propia desde los comienzos del siglo XX, probablemente debido a la importancia química, biológica (inicialmente como sustancias de reserva energética) e industrial (industrias alimentaria y del papel) de estas sustancias. Ya muy avanzada la segunda mitad del siglo XX han ocurrido dos hechos que han potenciado a la Química de Carbohidratos como una de las áreas con más desarrollo dentro de la Química Orgánica actual.

 

Resultado de imagen de Todos los animales, plantas y microbios están compuestos fundamentalmente, por las denominadas sustancias orgánicas

 

DESCOMPONEDORES.- son organismos que aprovechan la materia y la energía que aún contienen los restos de seres vivos (cuerpos muertos, deyecciones, etc), descomponiendo la materia orgánica en materia inorgánica. A este grupo pertenecen los hongos, bacterias y otros microorganismos, quienes segregan enzimas digestivas sobre el material muerto o de desecho y luego absorben los productos de la digestión.

 

 

Resultado de imagen de Sustancias orgánicas

 

 

Todos los animales, plantas y microbios están compuestos fundamentalmente, por las denominadas sustancias orgánicas. Sin ellas, la vida no tiene explicación (al menos que sepamos). De esta manera, en el primer período del origen de la vida tuvieron que formarse dichas sustancias, o sea, surgimiento de la materia prima que más tarde serviría para la formación de los seres vivos.

La característica principal que diferencia a las sustancias orgánicas de las inorgánicas, es que en el contenido de las primeras se encuentra como elemento fundamental el Carbono.

En las sustancias orgánicas, el carbono se combina con otros elementos: hidrógeno y oxígeno (ambos elementos juntos forman agua), nitrógeno (este se encuentra en grandes cantidades en el aire, azufre, fósforo, etc. Las distintas sustancias orgánicas no son más que las diferentes combinaciones de los elementos mencionados, pero en todas ellas, como elemento básico, siempre está el Carbono.

 

 

EDUCACIÓN AMBIENTAL PARA EL TRÓPICO DE COCHABAMBA

 

 

En el primer nivel (abajo) están los productores, o sea las plantas como maíz, frijol, papaya, cupesí, mora, yuca, árboles, hierbas, lianas, etc., que producen hojas, frutas, raíces, semillas, que comen varios animales y la gente.

 

 

 

 

En el segundo nivel están los primeros consumidores, que comen hierbas, hojas (herbívoros) y frutas (frugívoros). Estos primeros consumidores incluyen a insectos como hormigas, aves como loros y mamíferos como ratones, urina, chanchos, chivas, vacas.

 

 

 

En el tercer nivel están los segundos consumidores (carnívoros), es decir los que se comen a los animales del segundo nivel: por ejemplo el oso bandera come hormigas, el jausi come insectos y la culebra come ratones.

 

 

 

Nosotros, los humanos, somos omnívoros, es decir comemos de todo: plantas y animales. Algunos de los carnívoros comen, a veces, plantas también, como los perros. Otros, como el chancho, comen muchas plantas y a veces también carne.

Las sustancias orgánicas más sencillas y elementales son los llamados hidrocarburos o composiciones donde se combinan el Oxígeno y el Hidrógeno. El petróleo natural y otros derivados suyos, como la gasolina, el keroseno, etc., son mezcolanzas de varios hidrocarburos. Con todas estas sustancias como base, los químicos obtienen sin problemas, por síntesis, gran cantidad de combinados orgánicos, en ocasiones muy complejos y otras veces iguales a los que tomamos directamente los seres vivos, como azúcares, grasas, aceites esenciales y otros. Debemos preguntarnos como llegaron a formarse en nuestro planeta las sustancias orgánicas.

 

 

 

 

Está claro que, para los iniciados en estos temas, la cosa puede parecer de una complejidad inalcanzable, nada menos que llegar a comprender ¡el origen primario de las sustancias orgánicas!

Es nuestro planeta y el único habitado (hasta donde podemos saber). Está en la ecosfera, un espacio que rodea al Sol y que tiene las condiciones necesarias para que exista vida. Claro que, ¡son tantos los mundos! Cómo vamos a ser nosotros nos únicos que poblemos el Universo? ¡Que despercidicio de espacio!

 

 

 

 

La observación directa de la Naturaleza que nos rodea nos puede facilitar las respuestas que necesitamos. En realidad, si ahora comprobamos todas las sustancias orgánicas propias de nuestro mundo en relación a los seres vivos podemos ver que, todas, son producidas hoy día en la Tierra por efecto de la función activa y vital de los organismos.

 

 

 

 

Las plantas verdes absorben el carbono inorgánico del aire, en calidad de anhídrido carbónico, y con la energía de la luz crean, a partir de éste, sustancias orgánicas necesarias para ellas. Los animales, los hongos, también las bacterias y el resto de organismos, menos los de color verde, se alimentan de animales o vegetales vivos o descomponiendo estos mismos, una vez muertos, pueden proveerse de las sustancias orgánicas que necesitan. Con esto, podemos ver como todo el mundo actual de los seres vivos depende de los dos hechos análogos de fotosíntesis y quimiosíntesis, aplicados en las líneas anteriores.

 

 

 

 

Incluso las sustancias orgánicas que se encuentran bajo tierra como la turba, la hulla o el petróleo, han surgido, básicamente, por efecto de la acción de diferentes organismos que en un tiempo remoto se encontraban en el planeta Tierra y que con el transcurrir de los siglos quedaron ocultos bajo la maciza corteza terrestre.

Todo esto fue causa de que muchos científicos de finales del siglo XIX y principios del XX, afirmaran que era imposible que las sustancias orgánicas produjeran en la Tierra, de forma natural, solamente mediante un proceso biogenético, o sea, con la única intervención de los organismos. Esta opinión predominante entre los científicos de hace algunas décadas, constituyó un obstáculo considerable para hallar una respuesta a la cuestión del origen de la vida.

Para tratar esta cuestión era indispensable saber cómo llegaron a constituirse las sustancias orgánicas; pero ocurría que éstas sólo podían ser sintetizadas por organismos vivos. Sin embargo, únicamente podemos llegar a esta síntesis si nuestras observaciones no van más allá de los límites del planeta Tierra. Si traspasamos esa frontera nos encontraremos con que en diferentes cuerpos celestes de nuestra Galaxia se están creando sustancias orgánicas de manera abiogenética, es decir, en un ambiente que excluye cualquier posibilidad de que existan seres orgánicos en aquel lugar.

 

 

 

 

    Estrella de carbono (estrella gigante roja) Esta ha sido observada por el Hubble al final de su vida

Con un espectroscopio podemos estudiar la fórmula química de las atmósferas estelares, y en ocasiones casi con la misma exactitud que si tuviéramos alguna muestra de éstas en el Laboratorio. El Carbono, por ejemplo, se manifiesta ya en las atmósferas de las estrellas tipo O, que son las que están a mayor temperatura, y su increíble brillo es lo que las diferencia de los demás astros (Ya os hablé aquí de R. Lepori, la estrella carmesí, o, también conocida como la Gota de Sangre, una estrella de Carbono de increíble belleza).

Resultado de imagen de estrella de carbono

Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el de la “Estrella Carmesí”, o, la “Gota de Sangre”. A una distancia aproximada de 1100 años luz. R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso.

En la superficie de las estrellas de Carbono existe una temperatura que oscila los 20.000 y los 28.000 grados. Es comprensible, entonces, que en esa situación no pueda prevalecer aún alguna combinación química. La materia está aquí en forma relativamente simple, como átomos libres disgregados, sueltos como partículas minúsculas que conforman la atmósfera incandescente de estos cuerpos estelares.

Resultado de imagen de Atmósfera de las estrellas tipo B

La atmósfera de las estrellas tipo B, característica por su luz brillante blanco-azulada y cuya corteza tiene una temperatura que va de 1o.000 a 30.000 K, también tienen vapores incandescentes de carbono. Pero aquí este elemento tampoco puede formar cuerpos químicos compuestos, únicamente existe en forma atómica, o sea, en forma de pequeñísimas partículas sueltas de materia que se mueven a una velocidad de vértigo.

Sólo la visión espectral de las estrellas Blancas tipo A, en cuya superficie hay una temperatura de unos 12.000º, muestras unas franjas tenues, que indican, por primera vez, la presencia de hidrocarburos –las más primitiva combinaciones químicas de la atmósfera de estas estrellas. Aquí, sin que existan antecedentes, los átomos de dos elementos (el carbono y el hidrógeno) se combinan resultando un cuerpo más perfecto y complejo, una molécula química.

Observando las estrellas más frías, las franjas características de los hidrocarburos son más limpias cuando más baja es la temperatura y adquieren su máxima claridad en las estrellas rojas, en cuya superficie la temperatura nunca es superior a los 4.000º.

Es curioso el resultado obtenido de la medición de Carbono en algunos cuerpos estelares por su temperatura:

Resultado de imagen de La estrella Procion

               Proción en el cielo nocturno

Resultado de imagen de Betelgeuse

                                                             Betelgeuse rodeada de su atmósfera

Resultado de imagen de La estrella Sirio

Sirio es la estrella más brillante del cielo, con una luminosidad de -1,47 m. Es una estrella relativamente cercana al Sol (se encuentra a 8,7 años luz), aproximadamente una vez y media más grande que él y de color blanco.

Resultado de imagen de La estrella Rigel

                 Rigel o Beta Orionis, es la séptima estrella más brillante, una súpergigante estrella azul

  • Proción: 8.000º
  • Betelgeuse: 2.600º
  • Sirio: 11.000º
  • Rigel: 20.000º

Como es lógico pensar, las distintas estrellas se encuentran en diferentes períodos de desarrollo. El Carbono se encuentra presente en todas ellas, pero en distintos estados del mismo.

Las estrellas más jóvenes, de un color blanco-azulado son a la vez las más calientes. Éstas poseen una temperatura muy elevada, pues sólo en la superficie se alcanzan los 20.000 grados.

Los científicos descubrieron una enorme cantidad de silicatos cristalinos e hidrocarburos policíclicos aromáticos, dos sustancias que indican la presencia de oxígeno y de carbono, respectivamente. Así todos los elementos que las componen, incluido el Carbono, están en forma de átomos, de diminutas partículas sueltas. Existen estrellas de color amarillo y la temperatura en su superficie oscila entre los 6.000 y los 8.000º. En estas también encontramos Carbono en diferentes combinaciones.

El Sol, pertenece al grupo de las estrellas amarillas y en la superficie la temperatura es de 6.000º. El Carbono en la atmósfera incandescente del Sol, lo encontramos en forma de átomo, y además desarrollando diferentes combinaciones: Átomos de Carbono, Hidrógeno y Nitrógeno, Metino, Cianógeno, Dicaerbono, es decir:

  1. Átomos sueltos de Carbono, Hidrógeno y Nitrógeno.
  2. Miscibilidad combinada de carbono e hidrógeno (metano)
  3. Miscibilidad combinada de carbono y nitrógeno (cianógeno); y
  4. Dos átomos de Carbono en combinación (dicarbono).

En las atmósferas de las estrellas más calientes, el carbono únicamente se manifiesta mediante átomos libres y sueltos. Sin embargo, en el Sol, como sabemos, en parte, se presenta ya, formando combinaciones químicas en forma de moléculas de hidrocarburo de cianógeno y de dicarbono.

Para hallar las respuestas que estamos buscando en el conocimiento de las sustancias y materiales presentes en los astros y planetas, ya se está realizando un estudio en profundidad de la atmósfera de los grandes planetas del Sistema solar. Y, de momento, dichos estudios han descubierto, por ejemplo, que la atmósfera de Júpiter está formada mayoritariamente por amoníaco y metano. Lo cual hace pensar en la existencia de otros hidrocarburos. Sin embargo, la masa que forma la base de esos hidrocarburos, en Júpiter permanece en estado líquido o sólido a causa de la abaja temperatura que hay en la superficie del planeta (135 grados bajo cero). En la atmósfera del resto de grandes planetas se manifiestan estas mismas combinaciones.

Resultado de imagen de los meteoritos

Ha sido especialmente importante el estudio de los meteoritos, esas “piedras celestes” que caen sobre la Tierra de vez en cuando, y que provienen del espacio interplanetario. Estos han representado para los estudiosos los únicos cuerpos extraterrestres que han podido someter a profundos análisis químico y mineralúrgico, de forma directa. Sin olvidar, en algunos casos, los posibles fósiles.

Estos meteoritos están compuestos del mismo material que encontramos en la parte más profunda de la corteza del planeta Tierra y en su núcleo central, tanto por el carácter de los elementos que los componen como por la base de su estructura. Es fácil entender la importancia capital que tiene el estudio de los materiales de estas piedras celestes para resolver la cuestión del origen de las primitivas composiciones durante el período de formación de nuestro planeta que, al fin y al cabo, es la misma que estará presente en la conformación de otros planetas rocosos similares al nuestro, ya que, no lo olvidemos, en todo el universo rigen las mismas leyes y, la mecánica de los mundos y de las estrellas se repiten una y otra vez aquí y allí, a miles de millones de años-luz de nosotros.

Resultado de imagen de Formación de hidrocarburos

Así que, se forman hidrocarburos al contactar los carburos con el agua. Las moléculas de agua contienen oxígeno que, combinado con el metal, forman los hidróxidos metálicos, mientras que el hidrógeno del agua mezclado con el carbono forman los hidrocarburos.

Los hidrocarburos originados en la atmósfera terrestre se mezclaron con las partículas de agua y amoníaco que en ella existían, creando sustancias más complejas. Así, llegaron a hacerse presentes la formación de cuerpos químicos. Moléculas compuestas por partículas de oxígeno, hidrógeno y carbono.

Resultado de imagen de Todos los elementos naturales y artificiales

Una manera simplista de escenificar lo natural y lo artificial

Todo esto desembocó en el saber sobre los Elementos que hoy podemos conocer y, a partir de Mendeléiev (un eminente químico ruso) y otros muchos…se hizo posible que el estudio llegara muy lejos y, al día de hoy, podríamos decir que se conocen todos los elementos naturales y algunos artificiales que, nos llevan a tener unos valiosos datos de la materia que en el universo está presente y, en parte, de cómo funciona cuando, esas sustancias o átomos, llegan a ligarse los unos con los otros para formar, materiales más complejos que, aparte de los naturales, están los artificiales o transuránicos.

Aquí en la Tierra, las reacciones de hidrocarburos y sus derivados oxigenados más simples con el amoníaco generaron otros cuerpos con distintas combinaciones de átomos de carbono, hidrógeno, oxígeno y nitrógeno (CHON) en su moléculas llamadas paras la vida una vez que, más tarde, por distintos fenómenos de diversos tipos, llegaron las primeras sustancias proteínicas y grasas que, dieron lugar a los aminoácidos, las Proteínas y el ADN y RDN que, finalmente desembocó en eso que llamamos vida y que, evolucionado, ha resultado ser tan complejo y, a veces, en ciertas circunstancias, peligroso: ¡Nosotros!

emilio silvera

Hoy ¡Día de la Tierra!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen relacionada

 

 

No son islas simplemente bonitas, o atractivas. Son además, islas que cuesta creer que existen aunque las veamos en fotos (seguramente sea más fácil convencernos in situ). Una isla que emerge con rocas karst que parecen esculturas; otra, la única isla con formaciones de granito en un océano, con sus particulares formas. Una isla rodeada de un mar de siete colores; otro paraíso escondido en un rincón al noreste de Brasil. Un particular trío de islas de ensueño, una isla poblada por cerdos nadadores, otra por dragones, una isla con forma de medialuna…en Indonesia, en Hawaii, en Bahamas…

Resultado de imagen de Las mejores imágenes de lugares del planeta

 

La rica diversidad de paisajes del planeta es asombrosa

 

 

Resultado de imagen de Las mejores imágenes de lugares del planetaImagen relacionadaResultado de imagen de Las mejores imágenes de lugares del planetaagujero azul en beliceacantilados de etretat en franciamoeraki boulders en nueva zelandalago moraine y valle de los diez picos en canadáResultado de imagen de Increibles configuraciones naturales en nuestro planetaResultado de imagen de Increibles configuraciones naturales en nuestro planetaResultado de imagen de Volcanes en erupcióncañón bryce en utah estados unidos

 

Mirémos por nuestro Planeta, la Tierra que, si tenemos que ser sinceros, nunca fuimos buenos administradores de las riquezas que nos ofrecía para nuestro sustento, los tesoros enterrados para que pudiéramos desarrollar la tecnología, los bosques que nos surtieron de madera, los mares y océanos que nos dieron el sustento, las praderas y los bosques, la tierra de labor… Todo esquilmado sin el menor miramiento, buscando unos beneficios al mismo tiempo que, poco a poco, matamos la fuente de la vida, emponzoñando su atmósfera y sin escrúpulo ni remordimientos, destrozando la diversidad de  habitats… que la Tierra nos ofrece… ¿Qué nos pasa?

emilio silvera

¿Cerebro y Mente? ¿Inteligencia y Sabiduría?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

http://alexpantarei.files.wordpress.com/2008/03/tiempo3.jpg

                               El mito del eterno retorno: la Regeneración del Tiempo

Tomado literalmente, el tiempo cíclico hasta sugiere una especie de inmortalidad. Eudemo de Rodas, discípulo de Aristóteles, decía a sus propios discípulos: “Si creéis a los pitagóricos, todo retornorá con el tiempo en el mismo orden numérico, y yo conversaré con vosotros con el bastón en la mano y vosotros os sentaréis como estáis sentados ahora, y lo mismo sucederá con toda otra cosa”. Por estas o por otras razones, el tiempo cíclico aún es popular hoy, y muchos cosmólogos defienden modelos del “universo oscilante” en los que se supone que la expansión del universo en algún momento se detendrá y será seguida por un colapso cósmico en los fuegos purificadores del siguiente big bang.

 »

La estrella Wolf 1061 y sus tres planetas. El «c» es el potencialmente habitable

            La estrella Wolf 1061 y sus tres planetas. El «c» es el potencialmente habitable – UNSW

Un equipo de astrónomos australianos ha descubierto el planeta potencialmente habitable más cercano a la Tierra fuera del Sistema Solar, a «solo» 14 años luz, una distancia que puede parecer muy larga, pero que es mucho más corta que la que nos separa de la mayoría de candidatos a albergar vida y una nadería en la inmensidad del Universo. Este nuevo mundo, que tiene más de cuatro veces la masa del nuestro, es uno de los tres que el equipo detectó alrededor de una estrella enana roja llamada Wolf 1061.

 

 

 

En el Universo existen muchas clases de resonancias…inesperadas

 

Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.

Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:

∆⁺⁺→р + π⁺;  ∆⁰→р + πˉ; o п+π⁰

En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.

 

 

 

Visión tridimensional del gas expulsado de NGC 253. El eje vertical muestra la velocidad y el horizontal la posición. Los colores representan la intensidad de la emisión; rosa es la emisión más fuerte y rojo la más débil. : ALMA (ESO/NAOJ/NRAO)/Erik Rosolowsky.

 

 

Pero, comencemos con el trabajo: ¿Cerebro y Mente? ¿Inteligencia y Sabiduría?
Resultado de imagen de el cerebro humano

Cerebro y Mente, son dos entes separados que depende el uno del otro… ¡Siempre nos dio mucho en que pensar!

No acabamos de ponernos de acuerdo en el hecho de si, la sabiduría, o la competencia profesional o la pericia, también la Inteligencia, pueden ser catalogadas como categorías biológicas, pero lo son. La mayoría de la gente comprende, de forma general y vaga, que la mente es producto del cerebro, pero no siempre resulta fácil comprender lo íntima que es esta relación. Aunque acepte la conexión entre Mente y Cerebro en tanto que proposición abstracta, la mayoría de las personas no llegan a entender ni asimilar de forma inmediata estas cuestiones del cerebro-mente-inteligencia-sabiduría, como sí lo hacen con las cuestiones más cotidianas.

En realidad, cuando hablamos de Mente y cerebro lo hacemos como parte de un vestigio pertinaz y recalcitrante que nos viene de lejos, cuando algunos estudiosos de la Filosofía como René  Descartes, proponían que mente y cerebro estaban separados y que la Mente existe de manera independiente del cuerpo. Muchos son los libros que sobre el tema han sido escritos, algunos excelentes como: El error de Descartes, La Table rasa y otros muchos. La secular incapacidad para entender que la mente es producto del cuerpo inspiró la pintoresca imagen de la mente como el ente superior, inmaterial, que viviendo en el cerebro, en realidad era sensorialmente inmaterial y podía, estar fuera o dentro de nosotros para general ideas y pensamientos.

 Resultado de imagen de ¿Cerebro y Mente?

Las reglas de causa y efecto, tal como las aceptas, te han metido en el volumen de un cuerpo, y la duración de la vida humana. En realidad, el campo de la vida humana es abierto e ilimitado en su más profundo plano.

Tu cuerpo carece de edad y tu mente de tiempo. Una vez que te identifiques con esa realidad, que es congruente con la visión cuántica del universo, entraras en el nuevo paradigma, y tu conciencia, sé expandirá, cósmica y cuánticamente en fractales radiales exponenciales y dimensionales.

Resultado de imagen de Al mirar el Microscopio electrónico, (Microcosmos) vemos como las partículas cuánticas se mueven, (virtualmente) a la velocidad de la luz, y si miramos al cielo y observamos las Estrellas, veremos la inmutabilidad del Macrocosmos

Al mirar el Microscopio electrónico, (Microcosmos) vemos como las partículas cuánticas se mueven, (virtualmente) a la velocidad de la luz, y si miramos al cielo y observamos las Estrellas, veremos la inmutabilidad del Macrocosmos. Cada uno habita en una realidad que se encuentra mas allá de todo cambio. En lo más profundo de nosotros, sin que lo sepan nuestros sentidos externos tridimensionales o físicos, existe un intimo núcleo del ser, un campo de inmortalidad, que crea la personalidad, él yo y el cuerpo. Este ser es nuestro estado esencial, es nuestra esencia (Alma), es quien realmente somos. Somos Almas en este inmutable escenario eterno.

Resultado de imagen de El Tiempo Eterno

Nadie ha sabido nunca explicar lo que el Tiempo es. Lo único que hemos podido sacar en claro es que, su transcurrir lo cambia todo. Su hermana inseparable, la Entropía, se encarga de ello. Y, de su hipotética prima, la Etermidad, no podemos decir que la tengamos localizada, ya que, todo tiene un principio y un final y, siendo así (que lo es), la Eternidad no tiene cabidad aquí.

Resultado de imagen de swift-m31

                 Ni una Galaxia, cuya vida se remonta a miles de millones de años… ¡Es Eterna!

Otros dicen que el Tiempo existe solo como eternidad, el tiempo es Eternidad Cuantificada, es la temporalidad cortada por nosotros, en trozos o fragmentos, de tiempo que llamamos días, horas, minutos, y segundos. Lo que llamamos tiempo lineal es solo un reflejo de nuestro modo de percibir los sucesos o los cambios en que nos vemos envuelto en nuestro limitado sistema perceptual .

Si se pudiera percibir lo inmutable, el tiempo dejaría de existir tal como lo conocemos. Podemos empezar por aprender, a concebir y metabolizar lo Inmutable, la Eternidad, lo Absoluto, al hacerlo, estaremos listos para crear la fisiología de la Inmortalidad. Claro que es difícil, si se tiene una comprensión aceptable del universo, asimilar esos conceptos de eternidad, infinito o inmortalidad que… ¡En nuestro universo no están presentes! Aquí todo se transforma, todo comienza y termina, todo nace y muere.

 Somos propensos los Humanos, cuando hablamos y queremos contar cosas, hacer referencias que, en realidad, sólo son metáforas de “Vacío”, de “Infinito”, o, de “Eternidad” esos tres conceptos que utilizamos para decir que hay poco, que nunca muere, y que dura siempre. Claro que, ninguno de los tres conceptos son ciertos en nuestro Universo: Ni existe el Vacío (siempre hay), Ni tampoco nada es infinito (todo muere), y, de la Eternidad que podemos decir: Sólo es una abstracción de la Mente.

Si somos capaces de entrar en ese campo transcendente de superior nivel filofósifoco y hasta metafísico se podría decir, ya no creeremos en ese dualismo cartesiano entre cuerpo y mente…nos podremos deposajr de vestigios del pasado y llegar a comprender, con claridad meridiana que, la Mente es algo evolucionado dentro de nuestro cuerpo que ha sido puesta ahí por mecanismos del universo que no hemos podido llegar a entender pero que, de todas formas intuimos que, la conexión entre ambos, Mente y Universo, es tan real como la vida misma.

Los mecanismos del Universo hizo posible el surgir de la Vida y, en alguna de sus modalidades (seguro que exioten muchas más) se plasmó esa simbiosis primera de Cuerpo y Mente que haría posible la evolución de la segunda para que, después de algunos miles o millones de años, pudiera alcanzar el zenit en individuos que eran poseedores de rasgos e ingredientes predeterminados de personalidad e inteligencia, empuje y energía, la capacidad para entender lo que otros no entienden, el poder fijarse objetivos a largo plazo que requerían de un talento innato y especial que no era posible adquirir sino que se nace con él. Es el destino biológico de unos pocos que, a pesar de su talento, sí necesitaron del empuje y la ambición y, finalmente, los triunfosd, llegaban como frutos del esfuerzo individual.

114433-83863_p

Al fin y al cabo todo el mundo acepta que el esfuerzo solo no basta para convertirse en un Mozart, un Shakesperare o un Ramanujan. Para subir esa escalera que te llevará a la cumbre, principalmente, el ingrediente necesario será el Talento, la Sabiduría y, de vez en cuando, se agreaga un poquito de suerte o azar.

Claro que la Sabiduría es una buena noticia para todos nosotros. Si alguien la posee, siempre tenderá a exponerla a los demás para que, de una u otra forma podamos disfrutar de ella aunque sólo sea a través de la admiración hacia el Sabio que no la muestra pero, en realidad, en el último momento, lo que deseamos es apropiarnos de algo de esa sabiduría para nosotros. ¡Necesitamos saber!

Es el saber popular de todas las Sociedades a lo alrgo de la Historia, la sabiduría siempre ha sido asociada con los ancianos. La sabiduría ha sido el más preciado bien y, en torno a ella, todos nos hemos puesto en coro a escuchar esas palabras sabias que nos indicaban el camino a seguir.

No siempre hemos sabido determinar lo que es la realidad y lo que son sólo sueños. Escenarios que nuestros ojos ven y que nuestros oídos oyen, son los mensajes que el cerebro recibe y se los cree. Así que, teniendo unos sentidos limitados, es posible, que los mensajes no sean todo lo fiables que debería y, el “mundo” que el cerebro conforma… ¡Puede que no se ajuste a la realidad del “mundo”!

Resultado de imagen de Qué es la realidadResultado de imagen de Señora de edad que se mira al espejo y se ve joven

           A veces la Mente nos juega malas pasadas y, nos hace creer que somos lo que fuimos

¿Qué es la realidad?, ¿Como la definimos?, ¿Cuántas realidades hay?, ¿Cada uno de nosotros tiene su propia realidad?¿Qué realidad nos transmite el Universo en nuestro Mundo, será distinta a realidades de otros Mundos? ¿Es una realidad la cuántica? ¿Existen realidades que no podemos percibir? La realidad va en función de la percepción que se tenga de ella, y esta forma parte de la Conciencia. Nuestra conciencia actual es un condicionamiento de nuestra visión del mundo actual y colectivo, es la que nos enseñaron nuestros padres, maestros, la sociedad, gobierno y religiones. A esta manera de ver y entender el mundo, pertenece el antiguo paradigma. Y, como nos diría Tom Wood, necesitamos nuevos paradigmas para poder entender la “realidad” de la Naturaleza.

Es cierto que, algunas veces, cuando profundamente pensamos en todos estos conceptos, llegamos a la conclusión de que la realidad no existe, y, si entramos en el mundo de la filosófía podríamos argumentar que nunca nadie ha podido “ver” un pensamiento y, sin embargo, ¿cuántos generamos durante nuestras vidas?

    A partir del mundo físico de Faraday Maxwell nos pudo señalar su mundo mental de la electricidad y el magnetismo

El mundo físico, incluido nuestro cuerpo, es una reacción del observador. Creamos el cuerpo según creamos la experiencia de nuestro mundo.En su estado esencial (micro-cósmico), el cuerpo está formado de energía e información, y no de materia sólida. Esta energía e información, surge de los infinitos campos de energía e información que abarcan todos los universos. La mente y sus cuerpos, desde el físico hasta el espiritual y sus múltiples manifestaciones multidimensionales, son inseparablemente uno, o sea la unidad YO SOY.

Esta unidad Yo Soy, la separaremos en dos corrientes de experiencia. La experimentamos primero como corriente subjetiva, como pensamientos, ideas, sentimientos, deseos y emociones. La corriente objetiva la experimentamos como el cuerpo físico, mas sin embargo en un plano mas profundo, las dos corrientes se encuentran en una sola fuente creativa, y es a partir de esta , desde donde realmente nos manifestamos y tenemos nuestro ser.

La bioquímica del cuerpo es un producto de la conciencia, las creencias, los sentimientos, las emociones, los pensamientos e ideas, crean reacciones que sostienen la vida en cada célula. La percepción parece como algo automático, pero esto es un fenómeno aprendido, si cambias tu percepción, cambias la experiencia de tu yo , y por ende de tu mundo.

Por supuesto, todos sabemos el dilema del observador en la cuántica. Se trata del enigmático principio de incertidumbre que nos impide medir una partícula sin afectar el resultado. Es posible conocer una cosa, más no la otra. Por mucho tiempo, Copenhague fue el modelo que rigió ese conocimiento específico de la cuántica pero ya existe otro. Tenemos el experimento del físico John Cramer que basó su modelo en la teoría de radiación electromagnética de Wheeler-Feynman y predice los resultados de los experimentos cuánticos tan bien como el “viejo” modelo lo hace. Lo más atractivo: el observador no tiene ningún papel especial en el resultado.

Resultado de imagen de Los Humanos no somos el Centro de nada

En realidad, solo somos una parte infinitesimal de lo mucho que podemos vislumbrar.

Los humanos seguimos afianzandonos a todo lo que nos ponga en el centro de las cosas. Los fenómenos que no pueden ser explicados nos excitan y hemos estado usándolos para justificar a nuestros dioses desde que descubrimos que podemos producir ilusiones para tapar nuestra ignorancia. Cada vez que algo es explicado, movemos nuestras pertenencias hacia el próximo misterio; y cuando ese enigma revela sus mecanismos nos pasamos a otro. No es la ausencia de evidencia lo que mortifica al creyente que propone afirmaciones extraordinarias como verdaderas, son las evidencias del otro, del científico en el laboratorio; él lo obliga a buscar otra casa y mudarse donde no haya iluminación.

Lo cierto es que, creamos nuestra propia realidad dentro de otra realidad más grande que resulta ser el UNIVERSO.

Claro que, esa sabiduría a la que antes me refería nos debería llevar hasta propósitos superiores, incluso de una célula podríamos aprender: Cada Célula del cuerpo acuerda trabajar por el bien del Todo; el Bienestar individual es secundario. Si es preciso, morirá para proteger al cuerpo (Lo que ocurre con frecuencia). La vida de cualquier célula es muchísimo más breve que la nuestra. Las celulas de la piel mueren por cientos cada hora, al igual que las inmunológicas que combaten los microbios invasores. El egoísmo resulta inconcebible, incluso cuando la supervivencia de las células está en juego.

Resultado de imagen de Egoismo del Ser viviente por seguir vivo

Los paisajes cambian como todo en nuestro Universo

¿Por qué no hacemos nosotros lo mismo? ¿Acaso no hemos finalizado nuestro proceso de Humanización, o, por el contrario, simplemente se trata de que somos así. Seres egoistas en los que prima lo individual y el YO, contra el NOSOTROS, como Ente principal. Hay una cuestión que me da algo de esperanza: Cuando hablamos de nuestros hijos, de nuestro ser Amado…El Yo se queda detrás y prevalecen esos valores que, en realidad, son los que nos distinguen y nos hacen grandes.

Bueno, pero ¿no estaba hablando de la Mente, la Sabiduría y la Inteligencia? Sí, es posible. Sin embargo, todo siempre viene a desembocar en lo mismo: Nosotros y el Universo.

emilio silvera

Velocidades inimaginables

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas subnucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividadespecial de Einstein.

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas. En este teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético. Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en cuenta una gran cantidad de energía en reposo de una partícula cualquiera, como se denota a continuación:

E = mc2

Como la velocidad de la luz es muy grande, esta ecuación sugiere que cada partícula debe almacenar una cantidad enorme de energía, y en parte esta predicción fue la que hizo que la teoría de la relatividadtuviese tanta importancia para la física (¡y para todo el mundo!). Para que la teoría de la relatividadtambién sea autoconsistente tiene que ser holista, esto es, que todas las cosas y todo el mundo obedezcan a las leyes de la relatividad. No son sólo los relojes los que se atrasan a grandes velocidades, sino que todos los procesos animados se comportan de la forma tan inusual que describe esta teoría cuando nos acercamos a la velocidad de la luz. El corazón humano es simplemente un reloj biológico y latirá a una velocidad menor cuando viaje en un vehículo espacial a velocidades cercanas a la de la luz. Este extraño fenómeno conduce a lo que se conoce como la “paradoja de los gemelos”, sugerida por Einstein, en la que dos gemelos idénticos tienen diferente edad cuando se reencuentran después de que uno haya permanecido en la Tierra mientras que el otro ha viajado a velocidades relativistas.

Einstein comprendió rápidamente que las leyes de la gravedad también tendrían que ser modificadas para que cumplieran el principio relativista.

La formulación de newton es bien conocida, en la segunda imagen que se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

Para poder aplicar el principio de la relatividad a la fuerza gravitatoria, el principio tuvo que ser extendido de la siguiente manera: no sólo debe ser imposible determinar la velocidad absoluta del laboratorio, sino que también es imposible distinguir los cambios de velocidad de los efectos de una fuerza gravitatoria.

Einstein comprendió que la consecuencia de esto era que la gravedad hace al espacio-tiempo lo que la humedad a una hoja de papel: deformar la superficie con desigualdades que no se pueden eliminar. Hoy en día se conocen muy bien las matemáticas de los espacios curvos, pero en el época de Einstein el uso de estas nociones matemáticas tan abstractas para formular leyes físicas era algo completamente nuevo, y le llevó varios años encontrar la herramienta matemática adecuada para formular su teoría general de la relatividad que describe cómo se curva el espacio en presencia de grandes masas como planetas y estrellas.

Einstein tenía la idea en su mente desde 1907 (la relatividad especial la formuló en 1905), y se pasó 8 años buscando las matemáticas adecuadas para su formulación.

Leyendo el material enviado por un amigo al que pidió ayuda, Einstein quedó paralizado. Ante él, en la primera página de una conferencia dada ante el Sindicato de Carpinteros, 60 años antes por un tal Riemann, tenía la solución a sus desvelos: el tensor métrico de Riemann, que le permitiría utilizar una geometría espacial de los espacios curvos que explicaba su relatividad general.

Desde que se puso en órbita el telescopio espacial de rayos gamma Fermi, el 11 de junio de 2008, ha detectado poblaciones enteras de objetos nunca antes vistos. El último hallazgo de Fermi afecta al púlsar J1823-3021A, avistado en 1994 con el radiotelescopio Lovell, en Inglaterra. Un equipo internacional de expertos se ha dado cuenta de que esta estrella pulsante emite rayos gamma y gracias a Fermi ha podido caracterizar sus inusuales propiedades. Los resultados de su investigación se publican en el último número de Science. Lo cierto es que han descubierto el púlsar de milisegundos más joven y con la fuerza magnética más potente

Resultado de imagen de Dirección de la fuerza magnetica de las partículas

No está mal que en este punto recordemos la fuerza magnética y gravitatoria que nos puede ayudar a comprender mejor el comportamiento de las partículas subatómicas.

El electromagnetismo, decíamos al principio, es la fuerza con la cual dos partículas cargadas eléctricamente se repelen (si sus cargas son iguales) o se atraen (si tienen cargas de signo opuesto).

La interacción magnética es la fuerza que experimenta una partícula eléctricamente cargada que se mueve a través de un campo magnético. Las partículas cargadas en movimiento generan un campo magnético como, por ejemplo, los electrones que fluyen a través de las espiras de una bobina.

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

Resultado de imagen de La constante de estructura fina

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

También antes hemos comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el nombre de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

Los gravitones son el bosón hipotético de la fuerza fundamental gravedad. Con esta partícula se podria unificar la mecánica cuántica y la teoría de la relatividad especial. Un dato interesante es que se según la teoría de cuerdas los gravitones están...

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadronespara mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10-15 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

Resultado de imagen de Las trazas de los rayos cósmicos

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida entre la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el nombre de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

Antes de seguir veamos las partículas elementales de vida superior a 10-20 segundos que eran conocidas en el año 1970.

Nombre Símbolo Masa (MeV) Carga Espín Vida media (s)
Fotón γ 0 0 1
Leptones (L = 1, B = 0)
Electrón e 0’5109990 ½
Muón μ 105’6584 ½ 2’1970 × 10-6
Tau τ
Neutrino electrónico νe ~ 0 0 ½ ~ ∞
Neutrino muónico νμ ~ 0 0 ½ ~ ∞
Neutrino tauónico ντ ~ 0 0 ½ ~ ∞
Mesones (L = 0, B = 0)
Pión + π+ 139’570 2’603 × 10-8
Pión – π 139’570 2’603 × 10-8
Pión 0 π0 134’976 0’84 × 10-16
Kaón + k+ 493’68 1’237 × 10-8
Kaón – k 493’68 1’237 × 10-8
Kaón largo kL 497’7 5’17 × 10-8
Kaón corto kS 497’7 0’893 × 10-10
Eta η 547’5 0 0 5’5 × 10-19
Bariones (L = 0, B = 1)
Protón p 938’2723 + ½
Neutrón n 939’5656 0 ½ 887
Lambda Λ 1.115’68 0 ½ 2’63 × 10-10
Sigma + Σ+ 1.189’4 + ½ 0’80 × 10-10
Sigma – Σ 1.1974 ½ 7’4× 10-20
Sigma 0 Σ0 0 ½ 1’48 × 10-10
Ksi 0 Ξ0 1.314’9 0 ½ 2’9 × 10-10
Ksi – Ξ 1.321’3 ½ 1’64 × 10-10
Omega – Ω 1.672’4 0’82 × 10-10

Para cada leptón y cada barión existe la correspondiente antipartícula, con exactamente las mismas propiedades a excepción de la carga que es la contraria. Por ejemplo, el antiprotón se simboliza con  y el electrón con e+. Los mesones neutros son su propia antipartícula, y el π+ es la antipartícula del π, al igual que ocurre con k+ y k. El símbolo de la partícula es el mismo que el de su antipartícula con una barra encima. Las masas y las vidas medias aquí reflejadas pueden estar corregidas en este momento, pero de todas formas son muy aproximadas.

Los símbolos que se pueden ver algunas veces, como s (extrañeza) e i (isoespín) están referidos a datos cuánticos que afectan a las partículas elementales en sus comportamientos.

Debo admitir que todo esto tiene que sonar algo misterioso. Es difícil explicar estos temas por medio de la simple palabra escrita sin emplear la claridad que transmiten las matemáticas, lo que, por otra parte, es un mundo secreto para el común de los mortales, y ese lenguaje es sólo conocido por algunos privilegiados que, mediante un sistema de ecuaciones pueden ver y entender de forma clara, sencilla y limpia, todas estas complejas cuestiones.

Si hablamos del espín (o, con más precisión, el momento angular, que es aproximadamente la masa por el radio por la velocidad de rotación) se puede medir como un múltiplo de la constante de Planckh, dividido por . Medido en esta unidad y de acuerdo con la mecánica cuántica, el espín de cualquier objeto tiene que ser o un entero o un entero más un medio. El espín total de cada tipo de partícula – aunque no la dirección del mismo – es fijo.

El electrón, por ejemplo, tiene espín ½. Esto lo descubrieron dos estudiantes holandeses, Samuel Gondsmit (1902 – 1978) y George Uhlenbeck (1900 – 1988), que escribieron sus tesis conjuntamente sobre este problema en 1972. Fue una idea audaz que partículas tan pequeñas como los electronespudieran tener espín, y de hecho, bastante grande. Al principio, la idea fue recibida con escepticismo porque la “superficie del electrón” se tendría que mover con una velocidad 137 veces mayor que la de la luz, lo cual va en contra de la teoría de la relatividad general en la que está sentado que nada en el universo va más rápido que la luz, y por otra parte, contradice E=mc2, y el electrón pasada la velocidad de la luz tendría una masa infinita.

Hoy día, sencillamente, tal observación es ignorada, toda vez que el electrón carece de superficie.

Las partículas con espín entero se llaman bosones, y las que tienen espín entero más un medio se llaman fermiones. Consultado los valores del espín en la tabla anterior podemos ver que los leptones y los bariones son fermiones, y que los mesones y los fotones son bosones. En muchos aspectos, los fermionesse comportan de manera diferente de los bosones. Los fermiones tienen la propiedad de que cada uno de ellos requiere su propio espacio: dos fermiones del mismo tipo no pueden ocupar o estar en el mismo punto, y su movimiento está regido por ecuaciones tales que se evitan unos a otros. Curiosamente, no se necesita ninguna fuerza para conseguir esto. De hecho, las fuerzas entre los fermiones pueden ser atractivas o repulsivas, según las cargas. El fenómeno por el cual cada fermión tiene que estar en un estado diferente se conoce como el principio de exclusión de Pauli. Cada átomo está rodeado de una nube de electrones, que son fermiones (espín ½). Si dos átomos se aproximan entre sí, los electrones se mueven de tal manera que las dos nubes se evitan una a otra, dando como resultado una fuerza repulsiva. Cuando aplaudimos, nuestras manos no se atraviesan pasando la uno a través de la otra. Esto es debido al principio de exclusión de Pauli para los electrones de nuestras manos que, de hecho, los de la izquierda rechazan a los de la derecha.

Resultado de imagen de Fermiones de espín semi-entero

En contraste con el característico individualismo de los fermiones, los bosones se comportan colectivamente y les gusta colocarse todos en el mismo lugar. Un láser, por ejemplo, produce un haz de luz en el cual muchísimos fotones llevan la misma longitud de onda y dirección de movimiento. Esto es posible porque los fotones son bosones.

Cuando hemos hablado de las fuerzas fundamentales que, de una u otra forma, interaccionan con la materia, también hemos explicado que la interacción débil es la responsable de que muchas partículas y también muchos núcleos atómicos exóticos sean inestables. La interacción débil puede provocar que una partícula se transforme en otra relacionada, por emisión de un electrón y un neutrino. Enrico Fermi, en 1934, estableció una fórmula general de la interacción débil, que fue mejorada posteriormente por George Sudarshan, Robert Marschak, Murray Gell-Mann, Richard Feynman y otros. La fórmula mejorada funciona muy bien, pero se hizo evidente que no era adecuada en todas las circunstancias.

Uno de los protones se transmuta en un neutrón por medio de la interacción débil, transformando un quark “up”, en “down”. Este proceso consume energía (el neutrón tiene ligeramente más masa que..

En 1970, de las siguientes características de la interacción débil sólo se conocían las tres primeras:

  • La interacción actúa de forma universal sobre muchos tipos diferentes de partículas y su intensidad es aproximadamente igual para todas (aunque sus efectos pueden ser muy diferentes en cada caso). A los neutrinos les afecta exclusivamente la interacción débil.
  • Comparada con las demás interacciones, ésta tiene un alcance muy corto.
  • La interacción es muy débil. Consecuentemente, los choques de partículas en los cuales hay neutrinos involucrados son tan poco frecuentes que se necesitan chorros muy intensos de neutrinos para poder estudiar tales sucesos.
  • Los mediadores de la interacción débil, llamados W+, W y Z0, no se detectaron hasta la década de 1980. al igual que el fotón, tienen espín 1, pero están eléctricamente cargados y son muy pesados (esta es la causa por la que el alcance de la interacción es tan corto). El tercer mediador, Z0, que es responsable de un tercer tipo de interacción débil que no tiene nada que ver con la desintegración de las partículas llamada “corriente neutra”, permite que los neutrinos puedan colisionar con otras partículas sin cambiar su identidad.

A partir de 1970, quedó clara la relación de la interacción débil y la electromagnética (electrodébil de Weinberg-Salam).

Resultado de imagen de La interacción fuerte

La interacción fuerte (como hemos dicho antes) sólo actúa entre las partículas que clasificamos en la familia llamada de los hadrones, a los que proporciona una estructura interna complicada. Hasta 1972 sólo se conocían las reglas de simetría de la interacción fuerte y no fuimos capaces de formular las leyes de la interacción con precisión.

Como apuntamos, el alcance de esta interacción no va más allá del radio de un núcleo atómico ligero (10-13 cm aproximadamente).

La interacción es fuerte. En realidad, la más fuerte de todas.

Lo dejaré aquí, en verdad, eso que el Modelo Estándar de la Física, es feo, complejo e incompleto y, aunque hasta el momento ha sido una buena herramienta con la que trabajar, la verdad es que, se necesita un nuevo modelo más avanzado y que incluya la Gravedad.

Existen esperanzas de que el LHC empleando energías más elevadas, nos pueda dar alguna sorpresa y encuentre objetos largamente perseguidos.

emilio silvera

Fuente:

Gerardus ‘t Hooft
Gerard 't Hooft.jpg
.