jueves, 06 de marzo del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Ansiedad, querer lo que no podemos tener, el futuro incierto

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  • PEDRO G. CUARTANGO

Resultado de imagen de Miedo al futuro

El mal de nuestro tiempo es la ansiedad. La inquietud por el futuro no nos deja vivir el presente. Acaso también este padecimiento ha caracterizado el siglo XX, un periodo en el que han convivido la destrucción a gran escala y un progreso tecnológico y material impresionante.

Unos no duermen por la ansiedad de tener las cosas que no tienen y otros no duermen por el miedo a perder las que tienen, según acostumbraba a decir Eduardo Galeano, que escribió en este periódico hasta antes de su muerte.

La ansiedad es esencialmente una incapacidad para asumir lo que uno tiene y lo que uno es. Y por tanto el ansioso rechaza el presente a la espera de un futuro que nunca llega porque el porvenir siempre defrauda las expectativas que cada hombre se forja.

Resultado de imagen de La experiencia

La experiencia reside básicamente en descubrir los límites y en asumir que los deseos no pueden ser nunca satisfechos, como muy bien sabía Freud, que profundizó en la naturaleza inconsciente de lo que él llamaba ‘libido’. Esta palabra adquiere en el psicoanálisis un significado que va mucho más allá del impulso sexual, que corresponde a su etimología, y que podríamos entender como la energía que mueve al ser humano.

La libido es tan moldeable como insaciable. Puede ser orientada hacia el sexo, el poder, el dinero, la creación artística o la mística. Pero su rasgo esencial es su carácter de permanente insatisfacción, que nos empuja a ir más allá de lo que somos o tenemos.

Resultado de imagen de El dueño de facebook ante la Comisión

   El problema creado en Facebook ha llevado al responsable subsidiario ante la Comisión del Senado

He constatado a lo largo de mi vida que las personas más poderosas o más ricas sufren un nivel de insatisfacción más elevado que las pertenecientes a las clases más modestas, que valoran mejor lo poco que han conseguido. Esto puede sonar incorrecto políticamente, pero es cierto.

No es verdad que el dinero dé la felicidad porque la felicidad no existe. No hay nada que nos pueda hacer llevadera la existencia más que la aceptación del propio dolor de vivir, la constatación de que estamos condenados a la aniquilación. Todo acaba siempre mal, la muerte nos espera, pero mientras tanto podemos obtener el consuelo del amor, la amistad y las cosas que hacen que la vida merezca la pena.

Resultado de imagen de Escenas del amor y la amistad

La ansiedad es una pérdida de energía porque el futuro es siempre peor que el presente en la medida que el tiempo es indeterminado, es una incógnita que se abre ante nosotros, un espacio vacío que tenemos que colmar. El pasado no se puede cambiar y el futuro es incierto y aleatorio, por lo que no nos queda otro remedio que aferrarnos al presente.

Carpe diem, decían los latinos. Coge el día, estrújalo. No hay otra opción que disfrutar de los instantes como si fueran eternos. El pasado jueves, sentado en la escalera de este periódico y observando cómo el cielo adquiría un intenso color rojo que refulgía al atardecer en las ventanas de las casas vecinas, tuve una sensación de paz que me hizo olvidar los agobios cotidianos.

Resultado de imagen de Somos una kota de polvo en el Universo infinito

Sólo nuestra insignificancia nos puede proporcionar algún consuelo, la asunción de que somos una mota de polvo en un universo infinito y de que no podemos controlar nuestro destino. La ansiedad es un sentimiento inútil y el afán de acumular dinero o poder es una huida hacia delante que nos impide tomar conciencia de que hemos nacido de la ceniza y a ella volveremos.

Curiosidades

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

personajes históricos

La máquina del tiempo la inventó un español

En 1887, Enrique Gaspar publicó ‘El anacronópete’, la primera obra mundial en la que la ciencia permitía viajar al pasado. Ocho años después H.G. Wells se llevaba la gloria gracias a su popular novela.

Imagen para el resultado de noticias

 

Enrique Gaspar, el inventor de la máquina del tiempo.
Miguel A. Delgado @Rosenrod
 

 

 

 

 

En 1887, la editorial de Daniel Cortezo, de Barcelona, publicaba un libro realmente único, El anacronópete, que planteaba una historia realmente original, sin precedentes: la de un inventor de Zaragoza, Sindulfo García, que presentaba en la Exposición Universal de París una máquina de hierro capaz de viajar en el tiempo. Eso la convierte en la primera obra literaria en la que es la técnica la que permite ir al pasado: faltaban aún ocho años para que, en 1895, H.G. Wells publicara la que universal (y erróneamente) se ha considerado como la primera novela de viajes temporales “científicos”.

 

 

Resultado de imagen de El anacronópete de Enrique Gaspar

 

 

En realidad, la novela era el plan ‘B’ de su autor, que llevaba desde 1881 intentando poner en pie su zarzuela Viaje hacia atrás verificado en el tiempo desde el último tercio del siglo XIX hasta el caos, cuyo manuscrito se conserva en la Biblioteca Nacional. Contra lo que se suele pensar, el llamado “género chico” ofrecía una gran variedad de temas que no se circunscribían a lo castizo o costumbrista, y de hecho era capaz de atreverse con cualquier trama. El propio Gaspar había conocido ya varios éxitos con obras dramáticas como El estómago (1874), que resaltaba la preponderancia de ese órgano en el cuerpo humano, e incluso llegaría a firmar otras de temática feminista como Huelga de hijos (1893).

 

 

 

Momento en el que desaparecen las prendas de lana y algodón.

Gaspar, nacido en Madrid en 1842, además de escritor, fue diplomático. Después de desarrollar su cargo en Europa, ocupó cargos de cónsul en Macao, Cantón y Hong Kong. Unos destinos que tuvieron una gran influencia en El anacronópete, por cuanto los viajeros del aparato (que recibe su nombre de la combinación de tres palabras griegas, ‘aná’, atrás; ‘cronos’, tiempo; y ‘petes’, el que vuela)o ‘anacronóbatas’, llegarán a visitar la China del siglo III, a la que encuentran tan avanzada técnica, social y culturalmente como el Occidente del XIX.

En su concepción, Gaspar tuvo dos claras influencias: por un lado, los libros de Julio Verne, que arrasaban en España tanto como en Europa y América; y por otro, la novela Lumen, del astrónomo francés Camille Flammarion, con quien el español mantuvo una relación de amistad, y que también abordaba un viaje en el tiempo, aunque en este caso a través de un sueño. Del primero tomó el sentido de la aventura y la necesidad de buscar un sustento lo más científico posible a la historia; del segundo, la posibilidad de trasladarse a épocas pretéritas.

Pero si algo distingue a la obra de Gaspar es su profundo sentido del humor: al ser ideada para una zarzuela no evita los enredos y los momentos pícaros (por ejemplo, los vestidos de lana de unas mujeres “de vida alegre” parisinas que se unen al viaje, van convirtiéndose en las ovejas originales al ir hacia atrás en el tiempo, lo que lleva a la desaparición progresiva de su ropa). Precisamente, para evitar que eso suceda y que los propios viajeros vayan rejuveneciendo hasta convertirse en bebés y desaparecer, el inventor utilizará una sustancia de su invención, a la que bautizará con el nombre de ‘fluido García’ (que ha dado nombre a un disco del grupo español Sidonie).

 

 

 

Página de la edición original de El anacronópete.

En la novela, el grupo formado en un principio por Sindulfo García, su ayudante Benjamín, su sobrina Clara, una sirvienta, un capitán enamorado de Clara, unos húsares y las mencionadas parisinas, viajan en el anacronópete, que se desplaza gracias a una especie de grandes cucharas mecánicas hasta la batalla de Tetuán de 1860, la Granada de 1492, la Rávena del 690, la China del siglo III, la Pompeya de la erupción del Vesubio del 79 y, finalmente, el siglo XXX a.C., donde llegan a ver a los descendientes de Caín transportando el cadáver de Abel.

No deja de ser curioso, y muy representativo de las distintas mentalidades de sus autores que, mientras que en la novela de Wells el protagonista sólo quiere viajar hacia el futuro para conocer hacia dónde se encamina la humanidad, en la obra de Gaspar su protagonista acaba llegando al mismo momento de la Creación, obsesionado por encontrar la fuente divina de todo lo conocido.

La obra, que iba acompañada de unas soberbias ilustraciones del pintor Francesc Gómez Soler y en la que Gaspar tenía grandes esperanzas, fue un rotundo fracaso. ue el gran éxito editorial de aquel año fuera Fortunata y Jacinta, la obra realista de Benito Pérez Galdós, demuestra que los gustos del público del momento no parecían muy proclives, a pesar del éxito de Verne, a una propuesta de este tipo. El escaso interés de la crítica y los historiadores de la literatura española por la fantasía hizo que la obra cayera en el olvido, aunque se convirtió en una referencia de culto. No se volvió a publicar hasta el año 2000, en una edición de Círculo de Lectores que recuperaba la cubierta y las ilustraciones originales.

Entrevista de prensa

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de El Big Bang

 

 

Jorge Benitez entrevista a Marcus du Sautoy: “Nunca sabremos lo que pasó antes del Big Bang

 

 

                                Marcus du Sautoy, ayer, en Madrid. ANTONIO HEREDIA

El popular matemático inglés explora en su nuevo libro los enigmas científicos que todavía no tienen respuesta. ¿Qué es aquello que no podemos averiguar?

«Está lo conocido sabido; o sea, las cosas que sabemos que sabemos. También está lo desconocido sabido; es decir, las cosas que sabemos que no sabemos. Pero también está lo desconocido no sabido; es decir, las cosas que no sabemos que no sabemos». Donald Rumsfeld es el autor de este presunto galimatías pronunciado cuando ejercía de halcón del Gobierno de George W. Bush y defendía la existencia de armas químicas en Irak. Su reflexión fue objeto de burla de la prensa estadounidense. Sin embargo, para Marcus du Sautoy (Londres, 1965) en estas palabras se esconde una interesante reflexión sobre el conocimiento y sus barreras.

 

 

Resultado de imagen de En la frontera del conocimiento

 

 

En cierta manera, Du Sautoy tiene el trabajo con más presión del mundo. Este «sabelotodo» (definición irónica de sí mismo) se siente presa de su cargo en la Universidad de Oxford: profesor para la Comprensión Pública de la Ciencia. Es quien está al otro lado del teléfono cuando un periodista inglés necesita una opinión de cualquier cuestión científica. Quizás en un acto de pudor o para descargarse de título académico tan honorable, Du Sautoy ha escrito Lo que no podemos saber. Exploraciones en la frontera del conocimiento, que publica en España la editorial Acantilado.

Además de ser El señor de las respuestas, Du Sautoy tiene una notable carrera como matemático. Además, toca la trompeta, practica surf, anima al Arsenal y juega al fútbol en un equipo donde todos los dorsales son números primos: por algo es el autor del superventas La música de los números primos (2007).

 

Resultado de imagen de Galileo y Newton

 

 

Científicos como Newton y Galileo prácticamente lograron aglutinar todo el conocimiento científico de su tiempo. ¿Sería eso posible hoy?.
Ahora ningún genio podría abarcar tanto. Nuestro cerebro tiene unos límites, pero es cierto que podemos juntar cerebros y crear una comunidad científica. Además, tenemos a los ordenadores de apoyo. Hay cosas que no podremos conocer. Hablo, por ejemplo, del tema de la consciencia. No voy a saber lo que sientes exactamente tú, penetrar en tu dolor o en tu amor. Como con el Universo, no sabemos si existe otro que funciona con leyes físicas diferentes.
Si ya sabemos los límites del ser humano, ¿cuáles son los de la ciencia?
Resultado de imagen de Los límites de la ciencia
Siempre está la disyuntiva de si es más lo que sabemos que lo que no sabemos. Hay algunos científicos optimistas que creen que llegará un momento en el que, con el ritmo actual de progreso científico, podamos descubrir lo que se ha denominado como la Teoría del Todo [teoría hipotética de la física teórica que explica y conecta en una sola todos los fenómenos físicos conocidos]. Yo me pregunto si caminamos hacia una convergencia o va a haber un área cada vez más grande con todo lo que no sabemos.
Semejante progreso también ha disparado en estos tiempos teorías como las predicadas por algunos gurús de Silicon Valley o el antropólogo Yuval Noah Harari. Éstas apuntan que las tecnorreligiones venderán la idea de inmortalidad gracias al desarrollo de la inteligencia artificial y la biotecnología. Prometen el paraíso en la tierra.
Resultado de imagen de El poder de la inteligencia artificial
Ahora mismo estoy preparando un trabajo sobre el poder de la inteligencia artificial que he titulado The Human Code. Para eso hay que viajar a los límites de la consciencia. Pongamos el caso de este teléfono [coge su iPhone], que es una herramienta cada vez más sofisticada. La pregunta es si llegará un momento en el que este iPhone manifieste que es un iPhone y que sea capaz de actuar. ¿Eso será una simulación de conciencia o será real? Esto es muy complicado. La red tecnológica nos lleva a la cuestión de la singularidad, quizás tenga tanto poder la tecnología que habrá que darle derechos. Las teorías de Harari pueden parecer ciencia-ficción pero quién sabe, la ciencia-ficción a veces es el germen de un hecho científico. Nadie sabe si en un futuro seremos capaces de descargar un cerebro en un disco duro y mantenerlo para siempre. Resultaría algo tan apasionante como aterrador. En el fondo el cerebro es un conjunto de átomos.
¿Y lo que conocemos como alma podría tener base científica?
Resultado de imagen de El Alma
Para mí el alma es la expresión de estos átomos. Tal vez en un futuro se podrá replicar, por ejemplo, en silicio. Habrá que ver si tendría consciencia o finge.

Este especialista en teoría de números enamorado de Borges nos atiende en la Fundación Telefónica. Du Sautoy es una figura divulgativa de primer nivel en Reino Unido gracias a sus documentales y programas en la BBC y sus colaboraciones en prensa.

Imagine saber lo que sucedió antes del Big Bang.
Resultado de imagen de El big ban surgió de una fluctuación de vacío
Por su propia naturaleza no se podrá saber porque se llega a la singularidad, que en matemáticas, es el punto en el que no se puede extrapolar un patrón. Por ejemplo, la teoría de Penrose intenta comprender el universo como una compilación del Big Bang más una expansión constante con un ciclo continúo de rebotes, en los que antes hubo unos Big Bang y habrá otros. Es una regresión de pasado y futuro parecido al que contempla la cosmología budista. Si el Universo es infinito en espacio y tiempo no lo podremos saber porque nosotros somos finitos. La pregunta es si es infinito o tiene un límite.

¿Cuál es el Camino? No hay ningún camino.

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La escalera hacia las estrellas

Cuando emprendemos un camino nuevo, nunca sabemos lo que nos encontraremos

El Camino lo tenemos que hacer nosotros al andar. Lo mismo que se forma la vereda en la Montaña cuando los seres vivos pasan por el mismo sitio una y otra vez, dando lugar a que se forme una línea en la tierra mil veces pisada que nos habla del paso por aquel lugar que los viandantes han creído el más idóneo para transitar hacia algún otro sitio. Lo tuvieron que elegir de manera racional al ser el más indicado y, por ese “camino” se creó el sendero por el que caminar. Antes allí, no había camino.

No pocas veces, el camino se crea a partir de una idea, una intuición, una ganas de saber lo que hay más allá de nuestros dominios, de explorar lo desconocido, de comprobar si la fascinación que presentimos por lo que pensamos que “allí” pueda existir, se debe a una certera intuición, o, por el contrario, es sólo un espejismo. No siempre el explorador encontró aquella civilización perdida que gritaba insistente en su mente llamándolo sin cesar, ni el científico encuentra la anhelada explicación a un secreto de la Naturaleza que, tan claramente veía en sus sueños.

Está claro que el mismo acto de la exploración, modifica la perspectiva del explorador; ni Ulises, Marco Polo o Colón podían ser los mismos cuando, después de sus respectivas aventuras regresaron a sus hogares. Lo mismo ha sucedido con la investigación científica en los extremos de las escalas, desde la grandiosa extensión del espacio cosmológico…

                           … hasta el mundo minúsculo y enloquecido de las partículas subatómicas.

Estos viajes nos cambiaron y cambiaron muchos de los conceptos ancestrales que, en nuestras mentes, estaban apaciblemente aposentados y, desafiaron muchas de las concepciones científicas y también filosóficas que más valorábamos. Algunas, ante aquella realidad nueva, tuvieron que ser desechadas, como el bagaje que se deja atrás en una larga y pesada travesía un desierto. Otras tuvieron que ser modificadas y reconstituidas hasta quedar casi irreconocibles.

La exploración en el ámbito de las galaxias y cúmulos de galaxias esxtendió el alcanza de la visión humana en un factor de 1026 veces mayor que la propia escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un parroquialismo dentro de un universo más vasto donde el esapcio es curvo y el tiempo se hace flexible.

La exploración en el dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución. Esta fue la física cuántica que transformó todo lo que abordó a partir de su nacimiento en 1900, cuando Max Planck, escribió aquel artículo de ocho páginas que fueron las semillas de las que más tarde, germiron “las flores” de la M.C.. Planck, comprendiò que sólo podía explicar lo que se llamaba la Curva del Cuerpo Negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de enertgía es continua, y lo reemplazó por la hipótesis sin presecentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades y quedaron simbolizadas por la letra h.

Resultado de imagen de Planck y el cuanto

Planck no era ningún revolucionario -a la edad de 42 años era un viejo, juzgado por los patrones de las ciencias matemáticas y, además, un pilar de la elevada cultura germana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena parte de la física clásica a la que habñía dedicado buena parte de su vida y de su carrera.

“Cuanto mayores sean sus dificultades -escribió-… tanto más importante será finalmente para la ampliación y profundización del conocimiento de la Física.” Aquellas palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una burbuja de jabón, la física cuántuica pronto se expandió prácticamente a todo el ámbito de la física, y el cuanto de acción de Planck, h, llegó a ser considerado una constante de la naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.

http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif

En una batalla entre los principios estrellas de la historia cuántica, sólo puede haber un ganador. O no puede? . En el invierno de 1926-1927, Werner Heisenberg el brillante joven alemán estaba trabajando como jefe asistente de Niels Bohr , alojado en un desván en la parte superior del instituto del gran danés de Copenhague. Después de un día de trabajo, Bohr se acercaba al encuentro con Heisenberg para hablar de física cuántica. A menudo se sentaban hasta altas horas de la noche, en un intenso debate sobre el significado de la teoría cuántica revolucionaria, entonces en su infancia.

Resultado de imagen de Un electrón en la cámara de niebla

Un rompecabezas que se ponderó eran los rastros de las gotitas que dejan los electrones al pasar a través de las cámara de niebla un aparato utilizado para rastrear los movimientos de partículas cargadas. Cuando Heisenberg trató de cálcular estas aparentemente precisas trayectorias usando las ecuaciones de la mecánica cuántica, no lo consiguió.

Una noche de mediados de febrero, Bohr había dejado la ciudad en un viaje de esquí, y Heisenberg se había deslizado a tomar un poco de aire de la noche en las amplias avenidas de Fælled Parque, detrás del instituto. Mientras caminaba, se le ocurrió. El rastro de los electrones no era preciso en lo absoluto: si uno lo mira de cerca, consiste en una serie de puntos difusos. Eso reveló algo fundamental sobre la teoría cuántica. De vuelta en su ático, Heisenberg escribió con entusiasmo su idea en una carta a su colega el físico Wolfgang Pauli. Lo esencial de esto apareció en un documento unas pocas semanas más tarde: “Mientras más precisa la posición es determinada, menor precisión, en el momento se conoce en este instante, y viceversa.”

\Delta x \cdot \Delta p \ge \frac{\hbar}{2}

Fórmula y gráfico que escenifican el Principio de Incertidumbre o Indeterminación

Así el notorio principio de incertidumbre de Heisenberg había nacido. Una declaración de la incognoscibilidad fundamental del mundo cuántico, que se ha mantenido firme durante la mayor parte del siglo. Pero ¿por cuánto tiempo? Corren rumores de que un segundo principio cuántico – el entrelazamiento- puede sonar el tañido de muerte para la incertidumbre.

Sólo podemos obtener respuestas parciales, cuya narturaleza está determinada en cierta medida por las cuestiones que optamos por infagar. Cuando Hesinberg calculó la cantidad mínima ineludible de incertidumbre que limita nuestra comprensión de los sucesos de pequeña escala, halló que está definida que nada menos que por h, el cuanto de acción de Planck.

Resultado de imagen de La Indeterminación cuántica

La indeterminación cuántica no depende del aparato experimental que podamos emplear para la investigación del mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada conpartirían con los más humildes físicos de la Tierra. En la física atómioca clásica se suponía que se podía, en proncipio, medir las situaciones y trayectorias precisas de miles de millones de partículas -digamos, protones– y a partir de los datos resultantes hacer predicciones exactas de donde estarían los protones en determinado tiempo futuro.

Heisenberg demostró que tal supuesto era falso, que nunca podremos saberlo todo sobre la conducta de siquiera una sóla partícula, mucho menos de una gran cantidad de ellas, y, por lo tanto, nunca podremos hacer predicciones sobre el futuro que sean completamente exactas en todos los detalles. Esto marcó un cambio fundamental en la visión del mundo de la física. Revelaba que no sólo la materia y la energía sino también el conocimiento están cuántizados.

El principio de incertidumbre es aplicado a modelos del espacio 3D ordinario, donde el espacio tiempo es continuo. En los sistema cuantizados con retículos diminutos que conforman a los superejes, la información de las partículas pasa de un retículo a otro o a una zona cuántica distinta del mismo retículo. Dado que en el modelo de los eventos, los objetos no pertenecen a los eventos, simplemente evolucionan generando más información de nuevos eventos, la incertidumbre asociada a estos puede estar relacionada con radio del bucle de los retículos diminutos, y para el traslado de la información de un retículo a otro debe existir un nivel incertidumbre en cuanto a cual retículo pertenece el evento durante la transferencia de dicha información, o ¿a qué conjunto de valores cuánticos del mismo pertenece?

La mecánica cuántica (el salto cuantico del electrón) nos desvelará el secreto de cómo el electrón puede, al recibir un fotón, desaparecer del nivel nuclear que ocupa para de manera instantánea, y sin necesidad de recorrer la distancia que los separa, aparecer como por arte de magia en un nivel superior. Copiaremos el salto cuántico para viajar. Nos introduciremos en un cabina, marcaremos las coordenadas, pulsaremos un botón y desapareceremos en Madrid y de manera instantánea, apareceremos de la nada en otra cabina igual situada en Nueva York a 6.000 Km de distancia.

Resultado de imagen de El salto cuánticoResultado de imagen de El salto cuántico

No puede quitarme de la cabeza que, el Salto Cuántico, nos dará la idea para viajar de manera que podamos burlar, la velocidad de la luz. Sin embargo, ese “futuro” no podré verlo. Resulta que un electrón situado alrededor del núcleo de un átomo, es impacto por un fotón energético y, de inmediato, el electrón desaparece del lugar que ocupa en la órbita atómica y, de manera instantánea, aparece en otro lugar más cercano al núcleo. Lo asombroso del caso es que, no se sabe qué camino pudo coger para desplazarse de un lugar a otro. Simplemente desapareció de uno y apareció en el otro. Ese es, amigos míos, el Salto cuántico. Si somos capaces de copiarlo, viajaremos a las estrellas sin que nos importe cuántos años-luz nos puedan separar de ellas.

¿Quién sabe lo que podemos extraer del salto cuántico? El efecto túnel nos podría dar la fórmula para viajar a lugares lejanos. Creo que todos nuestros sueños se podrían realizar si, en el momento adecuado, observando la Naturaleza, sabemos elegirt el camino que tenemos que andar para llegar a ese destino soñado,o, imaginado.

Nuestras Mentes buscarán las formas de solucionar todos esos problemas complejos que ahora inquietan a la Humanidad.

La Física cuántica nos obliga a tomarnos en serio lo que antes eran puramentes consideraciones filosóficas: que no vemos las cosas en sí mismas, sino sólo aspectos de las cosas. Lo que vemos en la trayectoria de un electrón en la cámara de niebla no es un electrón, y lo que vemos en el cielo no son estrellas, como una grabación de la voz de Pavoroti no es Pavoroti. Al revelar que el observador desempeña un papel en la observación, la física cuántica hizo por la física lo que Darwin ha hecho por las ciencias de la vida: Echó abajo las paredes, reunificando la Mente con el Universo más vasto.

emilio silvera

De como llegamos hasta los Quarks

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ahora todos hablamos del LHC. Sin embargo, la historia de los aceleradores no comenzó con éste moderno y complejo conglomerado de sofisticadas estructuras que hacen posible que visitemos lugares muy lejanos en el corazón de la materia. Tendríamos que recordar al acelerador lineal también llamado LINAC (linear accelerator) es un tipo de acelerador que le proporciona a la partícula subatómica cargada pequeños incrementos de energía cuando pasa a través de una secuencia de campos eléctricos alternos.

               Generador de Van de Graaff.                          El rodillo y peine superior.

Mientras que el generador de Van de Graaff proporciona energía a la partícula en una sola etapa, el acelerador lineal y el ciclotrón proporcionan energía a la partícula en pequeñas cantidades que se van sumando. El acelerador lineal, fue propuesto en 1924 por el físico sueco Gustaf Ising. El ingeniero noruego Rolf Wideröe construyó la primera máquina de esta clase, que aceleraba iones de potasio hasta una energía de 50.000 eV.

Durante la Segunda Guerra Mundial se construyeron potentes osciladores de radio frecuencia, necesarios para los radares de la época. Después se usaron para crear aceleradores lineales para protones que trabajaban a una frecuencia de 200 MHz, mientras que los aceleradores de electrones trabajan a una frecuencia de 3000 MHz.

El acelerador lineal de protones diseñado por el físico Luis Alvarez en 1946, tenía 875 m de largo y aceleraba protones hasta alcanzar una energía de 800 MeV (800 millones). El acelerador lineal de la universidad de Stanford es el más largo entre los aceleradores de electrones, mide 3.2 km de longitud y proporciona una energía de 50 GeV. En la industria y en la medicina se usan pequeños aceleradores lineales, bien sea de protones o de electrones.

El SLAC, ubicado al sur de San Francisco, acelera electrones y positrones a lo largo de algo más de tres kilómetros hacia varios blancos, anillos y detectores ubicados en su finalización. Este acelerador hace colisionar electrones y positrones, estudiando las partículas resultantes de estas colisiones. Construido originalmente en 1962, se ha ido ampliando y mejorando para seguir siendo uno de los centros de investigación de física de partículas mas avanzados del mundo. El centro ha ganado el premio nobel en tres ocasiones. Y, una vez recordada de manera breve la historia, pasaremos directamente al tema que en realidad nos ha tríado aquí: ¡El descubrimiento de los Quarks!

Ahora los medios con los que cuentan los físicos del LHC son inmensamente más eficaces y están más adelantados que aquellos viejos aceleradores que, sin embargo, fueron los pioneros y los que hicieron posible adquirir conocimientos que nos han traído hasta el moderno LHC.

En 1967 se emprendió una serie de experimentos de dispersión mediante los nuevos haces de electrones del SLAC. El objetivo era estudiar más incisivamente la estructura del protón. Entra el electrón de gran energía, golpea un protón en un blanco de hidrógeno y sale un electrón de energía mucho menor, pero en una dirección que forma un ángulo grande con respecto a su camino original. La estructura puntual dentro del protón actúa, en cierto sentido, como el núcleo con las partículas alfa de Rutherford. Pero el problema era aquí más sutíl.

Richard Edward Taylor

               Richard Edward Taylor

Richard Edward Taylor fue uno de los veintidós científicos que trabajó intensamente en el acelerador lineal de Stanford (SLAC), en una serie de pruebas experimentales que vinieron a demostrar que los protones y los neutrones son poseedores de una estructura interna, lo que a su vez confirma las predicciones teóricas del neoyorquino Murray Gell-Mann (1929- ), acerca de la existencia de los denominados quarks.

Junto con sus colegas de Stanford junto con Jerome I. Friedman y Henry W. Kendall -con los que luego habría de compartir el Nobel-, Taylor investigó sobre la estructura interna de la materia, en su mínima expresión, para lo que partió del modelo teórico de los quarks, postulado por Gell-Mann y -de forma independiente- G. Zweig. Tras sus descubrimientos experimentales en el acelerado lineal de Stanford, Taylor perfeccionó dicho modelo añadiéndole la existencia de unas subpartículas desconocidas hasta entonces, que luego fueron denominadas leptones; además, introdujo en el modelo teórico de Gell-Mann otras partículas no estructurales, sino de intercambio de fuerza, a las que en Stanford comenzaron a llamar bosones.

James Bjorken.jpg

                James Bjorken.

Resultado de imagen de Richard Feynman

                            Richard Feynman

Los dos últimos párrafos los he tomado prestados de www.mcnbiografias.com., que es lo que se explica de este tema en casi todas partes. Sin embargo, pocos cuentan que, el equipo de Stanford, dirigido por el físico del SLAC por Richard Taylor y los otros dos físicos del MIT, Jerome Friedman y Henry Kendall, tuvieron la gran suerte de que, Richard Feynman y James Bjorken, metieran sus narices en el proyecto llevados por la curiosidad y como habían prestado  su energía y su imaginación a las interacciones fuertes  y se preguntaban: ¿que habrá dentro del protón?

Amnos, Feynman y Bjorken visitaban con frecuencia Stanford desde su base en el  Cal Tech, en Pasadena. Bjorken, teórico de Stanford, estaba muy interesado en el proyecto experimental y en las reglas que regían unos datos aparentemente incompletos. Estas reglas, razonaba Bjorken, serían indicadoras de las leyes básicas (dentro de la “caja negra”) que controlaba la estructura de los hadrones.

        Los cuatro experimentos del LHC: ATLAS, CMS, LHCb y ALICE
Créditos: CERN.

No estaría mal echar una mirada hacia atrás en el tiempo y recordar, en este momento, a Demócrito que, con sus postulados, de alguna manera venía a echar un poco de luz sobre el asunto, dado que él decía que  para determinar  si algo era un á-tomo habría que ver si era indivisible. En el modelo de los quarks, el protón, en realidad, un conglomerado pegajoso de tres quarks que se mueven rápidamente. Pero como esos quarks están siempre ineludiblemente encadenados los unos a los otros, experimentalmente el protón aparece indivisible.

Acordémonos aquí de que Boscovich decía que, una partícula elemental, o un “á-tomo”, tiene que ser puntual. Y, desde luego, esa prueba, no la pasaba el protón. El equipo del MIT y el SLAC, con la asesoría de Feynman y Bjorken, cayó en la cuenta de que en este caso el criterio operativo era el de los “puntos” y no el de la indivisibilidad. La traducción de sus datos a un modelo de constituyentes puntuales requería una sutileza mucho mayor que el experimento de Rutherford.

Precisamente por eso era tan conveniente fue tan conveniente para Richard Edward Taylor y su equipo, tener a dos de los mejores teóricos del mundo en el equipo aportando su ingenio, agudeza e intuición en todas las fases del proceso experimental. El resultado fue que los datos indicaron, efectivamente, la presencia de objetos puntuales en movimiento dentro del protón.

En 1990 Taylor, Friedman y Kendall recogieron su premio Nobel por haber establecido la realidad de los quarks. Sin embargo, a mí lo que siempre me ha llamado más la atención es el hecho cierto de que, este descubrimiento como otros muchos (el caso del positrón de Dirac, por ejemplo), han sido posible gracias al ingenio de los teóricos que han sabido vislumbrar cómo era en realidad la Naturaleza.

A todo esto, una buena pregunta sería: ¿cómo pudieron ver este tipo de partículas de tamaño infinitesimal, si los quarks no están libres y están confinados -en este caso- dentro del protón?  Hoy, la respuesta tiene poco misterio sabiendo lo que sabemos y hasta donde hemos llegado con el LHC que, con sus inmensas energías “desmenuza” un protón hasta dejar desnudos sus más íntimos secretos.

   Este es, el resultado ahora de la colisión de protones en el LHC

Lo cierto es que, en su momento, la teoría de los Quarks hizo muchos conversos, especialmente a medida que los teóricos que escrutaban los datos fueron imbuyendo a los quarks una realidad creciente, conociendo mejor sus propiedades y convirtiendo la incapacidad de ver quarks libres en una virtud. La palabra de moda en aquellos momentos era “confinamiento”. Los Quarks están confinados permanentemente porque la energía requerida para separarlos aumenta a medida que la distancia entre ellos crece. Esa es, la fuerza nuclear fuerte que está presente dentro del átomo y que se encarga de transmitir los ocho Gluones que mantienen confinados a los Quarks.

Así, cuando el intento de separar a los Quarks es demasiado intenso, la energía se vuelve lo bastante grande para crear un par de quark-anti-quark, y ya tenemos cuatro quarks, o dos mesones. Es como intentar conseguir un cabo de cuerda. Se corta y… ¡ya tenemos dos!

¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y  momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar.

¿Cuántas veces no habré pensado, en la posibilidad de tomar el elixir de la sabiduría para poder comprenderlo todo? Sin embargo, esa pósima mágica no existe y, si queremos saber, el único camino que tenemos a nuestro alcance es la observación, el estudio, el experimento… ¡La Ciencia!, que en definitiva, es la única que nos dirá como es, y como se comporta la Naturaleza y, si de camino podemos llegar a saber, por qué lo hace así…¡mucho mejor!

emilio silvera