jueves, 14 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nuestra vecindad y lo que puede contarnos

Autor por Emilio Silvera    ~    Archivo Clasificado en Conociendo el Sistema Solar    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como mencioné otras veces, la evolución de nuestro Sol, con el paso del tiempo, lo llevará de manera irremediable primero a expandirse como Gigante Roja hasta alcanzar los límites  de la Tierra y, segundo a contraerse más y más para ganar la densidad de una estrella enana blanca y, sólo podrá evitar su propio colapso por la presión de degeneración de los electrones. La densidad que alcanzará la enana blancaserás de 5×108 Kg/m3.

Desde la secuencia que el gráfico nos enseña, finalmente, el Sol puede quedar como la imagen de arriba, es decir, una Nebulosa planetaria qwue podría ser como esta o diferente -las versiones son muy variadas-, en la que, en el centro, reluce una caliente enana blanca que emite una fuerte radiación ultravioleta que ioniza todo el gas circundante.

En su fase anterior, la de gigante roja, crece varias veces su tamaño original, y en el caso de nuestro Sol su órbita sobrepasará al planeta Mercurio, al planeta Venus y probablemente al planeta Tierra, que para entonces, por lo elevado de las temperaturas reinantes, habrá visto evaporarse el agua de los ríos y océanos hasta dejarlo seco y yermo, sin posibilidad de vida.

Para cuando todo eso ocurra, ¿quién estará aquí?; faltan varios miles de años y, si la Humanidad no se ha destruido a sí misma, espero que para entonces tenga preparado todos los medios necesarios para instalarse en otros mundos, preferiblemente fuera de nuestro Sistema Solar, ya que los planetas vecinos, una vez desaparecido el Sol, no creo que reúnan las condiciones idóneas para acoger la vida, y las lunas de esos planetas tampoco parecer suficientemente acogedoras: Io, el tercer satélite más grande de Júpiter, sólo tiene un diámetro de 3.630 Km y es una caldera volcánica donde la radiante lava fluye de sus muchos volcanes. Toda la superficie de Io tiene un color amarillento debido a los depósitos de azufre u óxido de azufre. Existen extensas llanuras y regiones montañosas en Io, aunque no cráteres de impacto, indicando que su superficie es muy joven geológicamente.

La densidad de Io, 3’57 g/cm3, sugiere que tiene un núcleo de hierro-azufre de unos 1.500 Km de radio y un manto de silicatos. Las actividades volcánicas de Io son el resultado del calor liberado por las fuerzas de marea, que distorsionan el satélite a medida que se acerca o se aleja de Júpiter en su órbita.

Europa, el cuarto satélite más grande de Júpiter y el segundo de los cuatro satélites galileanos en distancia al planeta, conocido también como Júpiter II, tiene un diámetro de 3.138 Km, ligeramente menor que nuestra Luna. La densidad de Europa es de 2’97 g/cm3 indicando que está compuesta fundamentalmente por rocas de silicio, mezcladas con, al menos, un 5% de agua.

La superficie es brillante y helada con un albedo de 0’64, dominada por redes de fracturas oscuras y lineales, algunas de más de 1.000 Km de longitud. Se han identificado en Europa al menos una docena de cráteres de impacto.

                                         Ganímedes desde la sonda Galileo.

Ganímedes, el satélite más grande de Júpiter y el mayor del Sistema Solar, con un diámetro de 5.262 Km, conocido como Júpiter III y es el más brillante de los satélites galileanos. La densidad de este satélite es de 1’94 g/cm3 y posee una superficie helada llena de contrastes con regiones de alto y bajo albedo, cubiertos por complejos sistemas de surcos, indicando la existencia de varias fases de actividad en la corteza en el pasado. Algunos de los cráteres de impacto más grandes sobre la superficie se han convertido en palimpsestos debido al lento flujo del hielo, como en un glaciar.

http://impactobarahonero.com/home/wp-content/uploads/2011/12/titan.jpg

Titán, el satélite más grande de Saturno y el segundo más grande del Sistema Solar, con un diámetro de 5.150 Km; también conocido como Saturno VI. Fue descubierto en 1.655 por C. Huygens. La composición más probable de Titán es rocas e  hielo en partes iguales aproximadamente. Es el único satélite del Sistema Solar que tiene una atmósfera sustancial. La atmósfera está compuesta principalmente por nitrógeno, con un 2/10% de metano, un 0’2% de hidrógeno (porcentajes moleculares) y trazas de etano, propano, etino, cianuro de hidrógeno y monóxido de carbono. Su temperatura es de -180 ºC y pueden existir lloviznas de metano en la superficie y posiblemente nieve de metano. A unos 200 Km de altura abundan espesas nubes anaranjadas de hidrocarburos y existen además capas de neblina atmosférica hasta los 500 Km.

Las sondas Voyager revelaron un casquete polar norte en las nubes de Titán, con un collar ligeramente más oscuro a su alrededor. Además, el hemisferio norte era marcadamente más oscuro que el sur. Ambos son probablemente efectos estacionales.

Otras muchas lunas acompañan a nuestros planetas vecinos: Phobos y Deimos en Marte; CallistoAmaltheaLeda, etc. en Júpiter; PanAtlasPrometheusPandora, etc. en Saturno; CordeliaOpheliaBiancaAriel, etc. en Urano; GalateaLarissaTritónNereid, etc. en Neptuno; Charon en Plutón… hasta formar un conjunto aproximado de más de 60 lunas.

                                                                                                                 Mercurio y Venus

De los planetas vecinos, Mercurio y Venus están descartados para la vida, y Marte con su delgada atmósfera compuesta (en volumen) por alrededor  del 95% de dióxido de carbono, 2’7% de nitrógeno, 1’6% de argón, 0’1% de monóxido de carbono y pequeñas trazas variables de vapor de agua, con unas temperaturas superficiales de entre 0 y -125 ºC, siendo la media de -50 ºC.

Es relativamente frecuente la presencia de vapor de agua en nubes blancas o de dióxido de carbono en dichas nubes cerca de latitudes polares. Existen dos casquetes de hielo de agua permanentes en los polos, que nunca se funden y que en invierno aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado, hasta alcanzar los 60º de longitud.

Ocurren esporádicamente tormentas de polvo, pudiendo extenderse hasta cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares. La superficie de Marte es de basalto volcánico con un alto contenido en hierro, que le da al planeta el color característico por el que se le denomina “el planeta rojo”. Existen muchas áreas de dunas de arena rodeando los casquetes polares que constituyen los mayores campos de dunas del Sistema Solar.

                             Olimpus Mont en Marte

El volcán que da lugar al Monte Olimpo, en Marte, es la mayor cumbre conocida en el Sistema Solar: tiene unos 27 km de altura, tres veces la altura del Everest (8,85 km) Sus dimensiones son tales que una persona que estuviese en la superficie marciana no sería capaz de ver la silueta del volcán, ni siquiera desde una distancia a la cual la curvatura del planeta empezara a ocultarla. El efecto por tanto sería el de estar contemplando una “pared”, o bien confundir la misma con la línea del horizonte. La única forma de ver la montaña adecuadamente es desde el espacio. Igualmente, si alguien se encontrara en la cima del volcán y mirase hacia abajo no podría ver el final, ya que la pendiente llegaría hasta el horizonte…

La actividad volcánica fue intensa en el pasado. Tharsis Montes es la mayor región volcánica, estando Olympus Monts situado en el noroeste, y la vasta estructura colapsada Alba Patera, en el norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. No hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros.

Muchos de los cráteres de impacto más recientes, como cráteres de terraplén, tienen grandes pendientes en los bordes de sus mantas de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.

Aunque -según parece- no existe en la actualidad agua líquida en la superficie de Marte, hay indicios muy firmes de que en el suelo si como lo han podido compribar varias de las sonsas allí enviadas como, por ejemplo, La Mars Phoenix. Las huellas halladas en el terreno de Marte, nos habla de que allí antiguamente el planeta  tuvo ríos y lagos cuando existía una atmósfera más densa, caliente y húmeda. Uno de los canales secos es Ma’adim Vallis, de unos 200 Km de longitud y varios kilómetros de ancho.

Muchos son los lugares del planeta Marte en los que están presentes las huellas del agua corriente y cantarina que en otros tiempos, alegró el sonido del planeta. Internamente, Marte probablemente tiene una litosfera de cientos de kilómetros de espesor, una astenosfera rocosa y un núcleo metálico de aproximadamente la mitad del diámetro del planeta.

Marte no posee un campo magnético importante; su diámetro ecuatorial es de 6.794 Km, su velocidad de escape de 5,02 Km/s y su densidad media de 3’94 g/cm3. Dista del Sol 1’524 UA.

Tanto las lunas antes mencionadas como el planeta Marte son objetos de interesantes estudios que nos facilitarán importantes conocimientos de los objetos que pueblan el espacio exterior y de cómo serán muchos de los planetas y lunas que nos encontraremos más allá de nuestro Sistema Solar.

 Pero todo se queda ahí, en una interesante experiencia que tenemos que confirmar

Sin embargo, como lugares para vivir e instalarse no parecen, por sus condiciones físicas-ambientales, los más idóneos. Si acaso, en algunos de estos objetos celestes se podrán instalar bases intermedias para el despegue hacia otros mundos más lejanos, para aprovechar sus recursos de materiales minerales, hidrocarburos, etc. que poseen en abundancia pero, desgraciadamente, no son lugares aptos para instalar a la Humanidad que necesitaría crear, artificialmente, costosas instalaciones que simularan las condiciones terrestres, y tal empresa ni económica, ni tecnológicamente es tarea fácil.

Resultado de imagen de Inmensas naves< de futuro

Así las cosas, el único camino posible para el futuro de la Humanidad será avanzar en la exploración del espacio exterior, construir naves espaciales mejor dotadas en todos los sentidos, sobre todo: aislante de radiaciones nocivas y peligrosas para la salud de los tripulantes, dispositivo antiflotabilidad que imite la gravedad terrestre, espacios hidropónicos que produzcan cosechas continuas de verduras y tubérculos, plantas de reciclaje que depuren de manera continuada el agua de toda la nave, motones lumínicos de fotones, antimateria, etc. que de alguna manera imite la velocidad relativista, laboratorios con instalaciones tecnológicas de última generación con potentes y sofisticados ordenadores que avancen y mejoren continuamente sobre el conocimiento científico de la física, la química y la biología, y, en fin y sobre todo, una conciencia colectiva de todos los gobiernos del mundo para comprender que su principal cometido es mirar y tratar de conseguir el mayor bienestar y la seguridad de todos los ciudadanos y, de entre otras cuestiones, una importante es la de destinar una parte importante de los recursos para investigar, explorar y preparar el futuro de las generaciones futuras.

No podemos descansar.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting