sábado, 23 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Algunos desarrollos de la Física Teórica…Son notables

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (10)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

Hasta hace muy pocos años la Gravitación y la Mecánica Cuántica eran dos campos de la Física Teórica que utilizaban metodologías muy distintas y que estaban prácticamente desconectados entre sí. Por una parte, la interacción gravitatoria está descrita por la Teoría de la Relatividad General de Einstein, que es una teoría clásica (es decir, no cuántica) en la que la Gravedad se representa como una propiedad geométrica del espacio y del tiempo. Por otro lado, gobierna el mundo de las partículas atómicas y subatómicas. Su generalización relativista (la Teoría Cuántica de Campos) incorpora los principios de la Teoría Especial Relativista y, junto con el principio gauge, ha permitido construir con extraordinario éxito el llamado Modelo Estándar de la Física de las Partículas Elementales.

Resultado de imagen de El Modelo Estandar de la f´çisica de partículas

Con sus 20 parámetros aleatorios (parece que uno de ellos ha sido hallado -el bosón de Higgs-), el Modelo estándar de la física de partículas que incluye … sólo tres de las cuatro fuarzas fundamentales. La Gravedad se niega a juntarse con las otras fuerzas.

La interacción electromagnética, por ejemplo, es la responsable de las fuerzas que controlan la estructura atómica, reacciones químicas y todos los fenómenos electromagnéticos. Puede explicar las fuerzas entre las partículas cargadas, pero al contrario que las interacciones gravitacionales, pueden ser tanto atractivas como repulsivas. Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se puede interpretar tanto como un modelo clásico de fuerzas (ley de Coulomb) como por el intercambio de unos fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tiene una teoría clásica bien definida dadas por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas se describe con la electrodinámica cuántica, que es una forma sencilla de teoría gauge.

Imagen relacionada

            El electromagnetismo está presente por todo el Universo

La interacción fuerte es unas 102 veces mayor que la interacción electromagnética y, como ya se dijo antes, aparece sólo entre los hadrones y es la responsable de las fuerzas entre nucleones que confiere a los núcleos de los átomos su gran estabilidad. Actúa a muy corta distancia dentro del núcleo (10-15 metros) y se puede interpretar como una interacción mediada por el intercambio de mesones virtuales llamados Gluones. Está descrita por una teoría gauge llamada Cromodinámica cuántica.

Las teorías gauge explican satisfactoriamente la dinámica de las interacciones electromagnéticas, fuertes y débiles en un gran rango de distancias. Sin embargo, a pesar que la Teoría General de la Relatividad puede formularse como una teoría gauge, todos los intentos de introducir en ella de manera completamente satisfactoria los principios de la Mecánica Cuántica, han fracasado. No obstante, los desarrollos realizados en el marco de la Teoría de Cuerdas en los últimos años han dado lugar a una convergencia, al menos metodológica, entre estos dos campos de la Física Fundamental.

https://ponungeologentuvida.files.wordpress.com/2012/04/teoria-del-big-bang.jpg

                        Lo cierto es que buscamos incansables para saber de qué está hecho el “mundo”

La piedra angular de esta inesperada conexión es la llamada correspondencia gravedad/teoría gauge. En su forma más genérica dicha correspondencia afirma que la dinámica de ciertas teorías cuánticas de campos sin gravedad puede ser descrita por medio de una teoría gravitatoria en un espacio-tiempo que contiene al menos una dimensión adicional.

Para poder comprender con claridad los orígenes y las consecuencias de tan sorprendente relación entre teorías tan diferentes, es interesante recordar como fue descubierta en el contexto de la Teoría de Cuerdas. la Teoría de cuerdas tiene su origen en los años 60-70 como un intento de describir los hadrones(partículas elementales que experimentan interacción fuerte) como estados de una cuerda en movimiento.

                ¡Teoría de cuerdas! (¿)

La longitud de la cuerda se puede identificar con el tamaño del hadrón y sería del orden del fermi (10-15metros). Sin embargo, al analizar en detalle el espectro de modos de vibración de las cuerdas cerradas se descubrió que estas contienen una partícula de espín 2 y masa nula…(¿el gravitón?) que no se corresponde con ningún hadrón y que, en cambio, se identifica de manera natural con el gravitón (el cuanto fundamental de la interacción gravitatoria). De esta forma la Teoría de Cuerdas pasó de ser considerada una teoría de las interacciones fuertes a ser una posible teoría de unificación de las cuatro interacciones fundamentales de la Naturaleza a una escala mucho más pequeña: La longitud de Planck(10-35 metros).

La longitud de Planck se define como:


\ell_P =
\sqrt\frac{\hbar G}{c^3} \approx
1.616 199 (97) \times 10^{-35} \mbox{ metros}

donde c es la velocidad de la luz en el vacío, G es la constante de gravitación universal, y \hbar es la Constante de Planck racionalizada o reducida.

Una consecuencia sorprendente del estudio cuántico de la cuerda es que ésta debe propagarse en un espacio-tiempo de diez dimensiones. La métrica de dicho espacio-tiempo está también fuertemente constreñida. De hecho, la consistencia mecano-cuántica del movimiento de la cuerda en un espacio curvo impone que la métrica de este debe satisfacer unas ecuaciones que,  en el límite en el que la longitud de la cuerda se considera muy pequeña, se reducen a las ecuaciones de Einstein de la relatividad general. Así pues, las ecuaciones fundamentales de la gravedad clásica en diez dimensiones se puede obtener de la dinámica cuántica de la cuerda.

En los años noventa se descubrió que el espectro de la Teoría de Cuerdas contiene, además de los modos de vibración asociados a las diferentes partículas, otros estados que están extendidos a lo largo de varias dimensiones espacio-temporales. Dichos espacios se denominan Branas y son paredes de dominio en el espacio-tiempo diez-dimensional que corresponden a estados no-perturbativos de la Teoría de Cuerdqas similares a los solitones de las teorías cuánticas de campo. En particular, las denominadas Dp-Branas son objetos que pueden estar extendidos a lo largo de p dimensiones espaciales y una temporal para 0 ≤ p ≤ 9. Uno puede imaginárselas como hiperplanos (p+1)-dimensionales. En particular la D3-Branas están extendidas a lo largo de cuatro dimensiones (tres espaciales y una temporal).

 

Claro, todo es pura conjetura (hasta que no sea verificado de forma experimental). Increíblemente el mundo de las branas es tan colosalmente extraño como lo es el infinitecimal mundo de las partículas cuánticas, con la salvedad de que, al tratar de objetos aún más pequeños, es decir aquellos que posiblemente existan más allá de los Quarks, la fascinación sube de tono al toparnos con un universo de cosas “imposibles”, bueno, mejor alejado de lo que nos dice el sentido común que (está visto),  no es el mejor de los sentidos.

Las D-branas aparecen en muchas discusiones modernas relacionadas con las cuerdas (por ejemplo, en la entropía de los agujeros negros). Suelen tratarse como si fueran objetos clásicos que yacen dentro del espacio-tiempo completo 1 + 9 (o 1 + 10) dimensiones. La “D” viene de “Dirichlet”, por analogía con el tipo de problema de valor de frontera conocido como un problema de Dirichlet, en el que hay una frontera de género tiempo sobre la que se especifican datos (según Peter G. Lejeune Dirichlet, un eminente matemático francés que vivió entre 1.805 y 1.859).

Imagen
Imagen

                     No resulta fácil para nosotros imaginar el Mundo Brana

Las D-Branas son objetos dinámicos que pueden moverse, deformarse y cambiar de estado interno. Una de sus características fundamentales es que este último está caracterizado por un campo gauge que viv3e en su interior. Así podremos decir que las D-Branas albergan teorías de gauge en su seno. Esta es una realización novedosa de la simwetría gauge que está en la base de la correspondencia gravedad/teoría gauge. Además, dado que la Teoría de Cuerdas es una teoría gravitatoria, cualquier objeto masivo (y en particular las D-Branas) tiene asociado una métrica que describe la distorsión gravitatoria del espacio-tiempo en torno a él. En el caso de las D-Branas estas métricas son fáciles de encontrar y son similares a la clásica solución de Schwazschild de la relatividad general. En 1997 el joven físico argentino Juan Maldacena sugirió  utilizar esta solución de gravedad para describir la teoría gauge que vive en las D-Branas.

¿Podría ser nuestro universo una membrana flotando en un espacio de más dimensiones, que se rompe muchas veces en un universo circundante? Según una rama de la teoría de las cuerdas llamada braneword, hay una gran cantidad de dimensiones extra de espacio, y aunque la gravedad puede llegar a salir, nosotros estamos confinados a nuestro propio universo “brana”, con sólo tres dimensiones. Neil Turok, de la Universidad de Cambridge en el Reino Unido, y Paul Steinhardt, de la Universidad de Princeton en Nueva Jersey, EE.UU., han trabajado en cómo el Big Bang se podría haber provocado cuando nuestro universo se enfrentó violentamente con otro. Se repite el enfrentamiento, produciendo un nuevo Big Bang de vez en cuando, por lo que si el modelo del universo cíclico es correcto, el cosmos puede ser inmortal. ¡Por imaginar que no quede!

Sólo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”. Más que una imagen de tipo “espacio cociente” que evoca la analogía de Kaluza-Kleinoriginal: El gráfico representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Klein, donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.

Resultado de imagen de En la propuesta de Maldacena de las dos descripciones (gauge y gravitatoria) son duales y complementarias entre sí.

En la propuesta de Maldacena de las dos descripciones (gauge y gravitatoria) son duales y complementarias entre sí. En principio nos puede parecer confusa la afirmación de que la gravedad juega un papel relevante en la física de la teoría gauge. En los cursos de física nosm enseñan que la gravedad es mucho más débil que las otras fuerzas, y que, por lo tanto, su efecto es despreciable salvo a distancias realmente pequeñas o masas realmente grandes. Para resolver esta paradoja hay que tener en cuenta que la gravedad de la que estamos hablando no es la de nuestro universo aproximadamente plano y (posiblemente) con una pequeña constante cosmológica positiva, sino que se trata de una teorìa auxiliar en más de cuatro dimensiones y con constante cosmológica negativa.

Para seguir explicando el tema, mucho tendríamos que escribir. Sin embargo, quede aquí esta entrada que, al menos, puede despertar alguna curiosidad en los lectores que, aconsejados por lo leido, busquen más sobre el tema que, sin duda alguna, llega a ser fascinante.

Fuente: Muchos de los párrafos aquí insertos, han sido transcritos de un trabajo de Alfon V Ramallo del Departamento de Física de Partículas de la Universidad de Santiago de Compostela.

PD.

Aclaración: Cuando mencionamos una teoría gauge, lo estamos haciendo de cualquiera de las teorías cuánticas de campos creadas para explicar las interacciones fundamentales. Una teoría gauge requiere un grupo de simetría para los campos y los potenciales (el grupo gauge). En el caso de la electrodinámica, el grupo es abeliano, mientras que las teorías gauge para las interacciones fuertes y débiles utilizan grupos no abelianos. Las teorías gauge no abelianas son conocidas como teorías de Yang-Mills. esta diferencia explñica por qué la electrodinámica cuántica es una teoría mucho más simple que la cromodinámica cuántica, que describe las interacciones fuertes, y la teoría electrodébil, que es la teoría unificada de las interacciones débiles y las electromagnéticas. En el caso de la Gravedad Cuántica, el Grupo Gauge es mucho más complicado que los grupos gauge tanto de las interacciones fuertes como de las débiles.

¡La Física! ¡Qué complejidad!

emilio silvera

Nosotros y nuestra ignorancia

Autor por Emilio Silvera    ~    Archivo Clasificado en Divagando    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un remanente estelar es lo que queda cuando explosiona como Supernova una estrella masiva y, sus filamentos de plasma, forman imágenes imprevisibles que están conformadas por todos los elementos de la Tabla Periódica.

Sí, hay cosas malas y buenas  pero, todas deben ser conocidas para poder, en el primer caso aprovecharlas y en el segundo prevenirlas.

Resultado de imagen de Grandes protuberancias en el Sol

Pero demos un salto en el tiempo y viajemos hasta los albores del siglo XX cuando se hacía cada vez más ervidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de enormes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más, sobre los átomos y las estrellas.

Resultado de imagen de Desde los átomos a las estrellas
Y seguimos avanzando e ideando la manera de poder conquistar el Espacio “infinito” y, para ello, ideamos sofisticados aparatos y máquinas que, por nosotros, hagan los trabajos que nos están prohíbidos por la fragilidad de nuestros cuerpos.
Resultado de imagen de Los robots del mañanaResultado de imagen de Los robots del mañanaResultado de imagen de Los robots del mañana
                                           Lo importante es saber que líneas no debemos sobrepasar

Lo cierto es que la curiosidad del Ser Humano fue siempre la impulsora de que pudiéramos ir avanzando en el saber del mundo, de la Naturaleza, del Universo mismo. Siempre hemos buscado el cómo el cuando y el por qué de las cosas que podíanmos observar a nuestro alrededor sin comprenderlas. Ya desde los tiempos primitivos, nuestros ancestros, de alguna manera rústica, hicieron y dieron los primeros pasos en Ciencia, cuando llegaron a manejar el fuego o construyeron la rueda.

Cuando nos ponemos a hablar de Ciencia en relación a su historia y los orígenes de la misma, la mayoría de las veces nos perdemos por vericuetos que nos llevan hasta callejones sin salida situados muy lejos en el tiempo y que no podemos ver con claridad. Así las cosas, nos vemos obligados a ser menos ambiciosos y mirar más cerca poder obtener algunos resultados más fiables de lo que pudo pasar en esos pueblos del mundo que, como Sumer, India, Egipto, China y más tarde Grecia, nos dejaron una buena colección de señales del saber que pudieron llegar hasta nuestros días. De todo eso hemos hablado aquí en diversos  trabajos presentados.

 

 

El mundo que nos rodea parece ser un lugar complicado. Aunque hay algunas verdades sencillas que parecen eternas (las manzanas caen siempre hacia el suelo y no hacia el cielo; el Sol se levanta por el este, nunca por el oeste), nuestras vidas, a pesar de las modernas tecnologías, están todavía, con demasiada frecuencia, a merced de los complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico tiene todavía más de arte adivinatorio que de ciencia; los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatorias; las fluctuaciones de la economía siguen ocasionando la bancarrota de muchos y la fortuna de unos pocos.

 
“Una inteligencia que conociese, en un momento determinado, todas las fuerzas que operan en la Naturaleza, así como las posiciones momentáneas de todas las cosas que constituyen el universo, sería capaz de condensar en una sola fórmula los movimientos de los cuerpos más grandes del mundo y los de los átomos más ligeros, siempre que su intelecto sea bastante  poderoso para someter a análisis todos los datos; para él nada sería incierto, el pasado y el futuro estarían presentes ante sus ojos.”

 

 

 

¿El destino final? Seguro no podemos estar de nada pero… ¡La muerte térmica, parece ser el final más probable! Lo cierto es que, ¡tampoco sabemos cuál será el final del Universo! Muchas son las versiones y, la muerte térmica… ¡Prevalece sobre todas las demás!

 

“Dentro de miles de millones de años a partir de la “muerte del Sol, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable.  Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

 Así se expresaba Carl Sagan al pensar en el futuro de nuestra Tierra cuando el Sol, agotado su combustible nuclear, llegara a su final.

 

 

 

 

 Lo que entonces pueda quedar…¿Qué importa ahora? ¿Será un comienzo?

Es bueno que el ser humano sepa el por qué de las cosas, que se interese por lo que ocurre a su alrededor, por su planeta que le acoge, por el lugar que ocupamos en el universo, por cómo empezó todo, cómo terminará y qué será del futuro de nuestra civilización y de la Humanidad en este universo que, como todo, algún día lejano del futuro el tiempo inexorable, llevará al final de sus días.

El fin del universo es irreversible, de ello hemos dejado amplio testimonio a lo largo de muchos trabajos, su final estará determinado por la Densidad Crítica, la cantidad de materia que contenga nuestro universo que será la que lo clasifique como universo plano, universo abierto, o universo cerrado. En uno de estos modelos de universos, el final será distinto…,  claro que para nosotros, la Humanidad, será indiferente el  modelo que pueda resultar; en ninguno de ellos podríamos sobrevivir cuando llegara ese momento límite del fin. La congelación y el frío del cero absoluto o la calcinación del fuego final a miles de millones de grados, acabarán con nosotros, si para entonces, estuviéramos aún por aqui (que no es probable).

 

Para evitar eso se está trabajando hace décadas. Se buscan formas de superar dificultades que nos hacen presas fáciles de los elementos. La naturaleza indomable, sus leyes y sus fuerzas, hoy por hoy son barreras insuperables, para poder hacerlo, necesitamos saber.

El saber nos dará soluciones para conseguir más energías, viajar más rápido y con menos riesgos, vivir mejor y más tiempo, superar barreras hoy impensables como las del límite de Planck, la barrera de la luz (para poder viajar a las estrellas) y el saber también posibilitará, algún día, que nuestras generaciones futuras puedan colonizar otros mundos en sistemas solares de estrellas lejanas, viajar a otras galaxias, viajar a otro tiempo y, finalmente, viajar para escapar de nuestro destino, a otros universos.

http://farm3.static.flickr.com/2442/4168315983_aca8e27301.jpg

                          ¿Cómo serían esos otros universos?

Sí, lo sé, algunos de los que esto puedan leer pensarán que estoy fantaseando, pero la verdad es que no he hablado con más seriedad en mi vida, ya que, si no fuera como estoy diciendo, entonces, ¿ qué tantas calamidades, desvelos y sufrimientos? Creo que la Humanidad tiene que cumplir su destino, primero en las estrellas lejanas, en otros mundos dentro y fuera de nuestra galaxia, y después…, ¿quién sabe? Claro que, a todo esto, debemos contar con eso que denominamos TIEMPO.

Nos referimos al tiempo en múltiples ocasiones y para distintas situaciones y motivos, como al referirnos a la duración de las cosas sujetas a cambios, época durante la cual ocurrieron unos hechos, edad de los objetos, estación del año, el período de vida de alguien desde que crece hasta que deja de existir, ocasión o coyuntura de hacer algo, cada uno de los actos sucesivos en que dividimos la ejecución de un , y otros mil temas que requieren la referencia temporal.

Dicen que va unido al espacio. Pero, también que es relativo. Pero, también que es una abstracción y que no existe en realidad. Pero, todos queremos disponer de él. Pero, vemos los efectos de su transcurrir. Pero, sin tiempo no podemos hacer nada ni tener esperanzas de futuro. ¿Qué será, en realidad el Tiempo?

En física, el tiempo es la cuarta coordenada espacial en el continuo espacio-tiempo. En gramática es la categoría que indica el momento relativo en que se realiza o sucede la acción del verbo: pretérito, lo que ha sucedido; presente, lo que sucede en ese momento y futuro, lo que aún no ha sucedido. Nos referimos al tiempo meteorológico para explicar el estado del clima (hace mal tiempo; qué tiempo más bueno hace hoy, etc). En mecánica, el tiempo puede estar referido a las fases de un motor. También están los tiempos referidos a cada una de las partes de igual duración en que se divide el compás musical. En astronomía nos referimos al tiempo de aberración en relación al recorrido de un planeta hasta llegar a un observador terrestre. El tiempo está también en la de cálculo horario que empleamos en nuestra vida cotidiana para controlar nuestros actos y evitar el caos (¿qué haríamos sin horario de trenes, de comercio, bancos, oficinas, etc?).

            En ese espacio temporal que se nos da, alguna huella habremos dejado por el camino andado

El tiempo es tan importante en nuestras vidas que está presente siempre, de mil formas diferentes, desde que nacemos (cuando comienza “nuestro tiempo”), hasta que morimos (cuando “nuestro tiempo ha terminado”). El tiempo siempre está. Es algo que, simplemente, está ahí.

Sin embargo, a pesar de lo importante que es el TIEMPO, no he podido leer nunca una explicación satisfactoria sobre el mismo; una explicación que lo defina con sencillez y claridad sin restarle la importancia que tiene para todos y lo que en realidad es dentro del contexto – no ya de nuestras vidas, simples e insignificantes puntos en la inmensidad del universo – de la naturaleza cósmica de la que formamos .

Santo Tomás, cuando hablaba del Tiempo, decía cosas como éstas:

¿Que explique que es el Tiempo?

“Si nadie me lo pregunta, lo sé.
Pero si quiero explicárselo al que me lo pregunta, no lo sé.
Lo que sí digo sin vacilación es que sé que si nada pasase no habría tiempo pasado,
y si nada sucediese no habría tiempo futuro,
y si nada existiese no habría tiempo presente.
Pero aquellos dos tiempos,pasado y futuro,
¿cómo pueden ser, si el pasado ya no es él y el futuro todavía no es?
Y en cuanto al presente,
si fuese siempre presente y no pasase a ser, pasado
ya no sería tiempo, sino eternidad.
Si, pues, el presente para ser tiempo es necesario que pase a ser pasado,
¿cómo decimos que existe este, cuya causa o razón de ser está en dejar de ser,
de tal modo que no podemos decir con verdad que existe el tiempo en cuanto tiende a no ser?”
Lo cierto es que se nos escurre de entre los dedos y, cuando venimos a darnos cuenta… ¡Se esfumó!

Como nos ocurre con tantas otras cosas y conceptos, debemos saber, de una vez por todas qué es, en realidad el Tiempo. Creo que cuando sepamos comprender lo que el Tiempo es, la Humanidad habrá dado un paso tan importante en su caminar por el Mundo que, a partir de ese momento, lo podremos “ver” todo de otra manera, con otra perspectiva más amplia y que nos permitirá “ver” más lejos en la comprensión del Universo Universo mismo.

¡Saber lo que es el Tiempo! ¡Un dolor de cabeza!

emilio silvera

¿Que dónde estamos? ¡En un Universo dinámico!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

Estamos inmersos en una inconmensurable grandeza de variedad y coloridos escenarios en los que están presentes las fuerzas fundamentales del universo y las constantes que hacen posible que, formas de vida de cualquier índole que podamos imaginar, estarán pululando en sus ecosistemas y habitats, sin que nada pueda evitarlo, si lo pensamos bien, amigos míos, parece como si el universo hubiera sabido que nosotros, teníamos que venir.

Dibujo20150317 Principle of the fuzzy time dispersion measurement - nphys3293-f1

John Wheeler propuso que el espaciotiempo en la escala de Planck es una espuma cuántica. Una teoría cuántica de la gravedad que describa esta espuma cuántica debería violar la simetría de Lorentz de la teoría de la relatividad. Para explorar esta espuma cuántica, Giovanni Amelino-Camelia y varios colegas propusieron en 1998 estudiar la relación energía-momento para un fotón que haya recorrido distancias muy grandes, es decir, estudiar si la velocidad de un fotón en el vacío depende de su energía (no es constante).

 

Todos los objetos del Universo son el resulta de fuerzas antagónicas que, al ser iguales, se equilibran y consiguen la estabilidad. Las estrellas son el mejor ejemplo: La Gravedad trata de comprimir a la estrella que, mediante la fusión tiende a expandirse y, la lucha de esas dos fuerzas iguales en potencia crea la estabilidad. Con los átomos ocurre lo mismo,la carga positiva de los protones es  igualada por la negativa de los electrones.

 

             Hemos sabido llegar a los dos extremos desde lo pequeño a lo grande

Hemos podido llegar a unas alturas en el mundo de la exploración científica que, nos posibilita reconocer los impactos de los cambios que se producen con el devenir del tiempo en la Naturaleza y, hemos llegado a comprender que, el Universo, es dinámico. Hacia finales del siglo XIX se había llegado a saber que hubo un tiempo en que la Tierra y nuestro Sistema solar no existían; que la especie humana debía haber cambiado en apariencia y en el promedio de su capacidad mental a lo largo de enormes períodos de tiempo; y que en cierto sentido, amplio y general, el Universo debería estar degradándose, haciéndose un lugar  hospitalario y ordenado. Durante el siglo XX hemos podido ampliar esa imagen de un Universo cambiante.

Delante de nuestros propios ojos podemos contemplar  cambia, por ejemplo, el clima y la topografía de nuestro propio planeta y de todas las especies que en él están presentes en sus distintas formas de vida que, como muestra cercana de lo que ocurre en cualquier otro lugar del Universo, nos sirve de Laboratorio para la observación de la dinámica universal.

Hemos descubierto que todo el Universo de estrellas y galaxias está en un continuo estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan  de otros hacia un futuro que será distinto del presente. Hemos empezado a darnos cuenta de que vivímos en un “Tiempo” prestado. Los sucesos astronómicos catastróficos son comunes; los mundos colisionan. El planeta Tierra ha sufrido en el pasado impactos de cometas y asteroides. Un día se acabará nuestra suerte; el escudo que tan fortuitamente nos proporciona el enorme planeta Júpiter (leer la noticia de más abajo), que guarda los confines exteriores de nuestro Sistema solar, no será capaz de salvarnos.

 

Todos sabemos de las inmensas consecuencias que el impacto de un gran objeto sobre la Tierra tendría. Los cráteres que jalonan la superficie terrestre por todo el planeta nos hablan de lo que pasó en el pasado y,  eso, amigos míos, no tenemos muchas soluciones. Claro que todo es cuestión de tiempo y, al final, hasta nuestro Sol morirá para convertirse, primero en una gigante roja que sobrepasará Mercurio y Venus y se quedará muy cerca de nuestro planeta, para entonces, las temperaturas subirán y los océanos se evaporarán, la vida, tal como la conocemos, ya no estará en este vergel que, durante miles de años, nos ha dado cobijo a nosotros y a otros muchos seres.

Sí, las consecuencias del Caos son impredecibles. Nosotros hemos reconocido los secretos simples del caos y la impredecibilidad que asedian a tantas partes que rodean a nuestro mundo. Sí, es cierto que entendemos que nuestro clima es cambiante pero, no podemos predecir esos cambios. Hemos apreciado las similitudes entre complejidades como ésta y las que emergen de los sistemas de interacción humana -sociedades, economías, ecosistemas…- y, , del interior de la propia mente humana.

Todas esas complejidades tratan de convencernos de que el mundo es como una montaña rusa desbocada, rodando y dando bandazos; que todo lo que una vez hemos tenido por cierto podría ser derrocado cualquier día, sin que nosotros, pobres mortales, podamos evitarlo y, algunos, incluso ven semejante perspectiva como una razón  sospechar de la ciencia, como si produjera un efecto corrosivo sobre los fundamentos de la Naturaleza humana y de la certeza, como si las construcciones del Universo físico y el vasto esquema de sus leyes debiera haberse establecido pensando en nuestra fragilidad psicológica.

 

La ilusión de realidad la hemos experimentado todos en los sueños. Sin embargo, también estando despiertos estamos “viendo” una “realidad” que no existe, sólo está en nuestras mentes.

Pero hay un sentido en el que todo  cambio e impredecibilidad es una ilusión. No constituye toda la historia sobre la Naturaleza del Universo. Hay tanto un lado conservador como un lado progresista en la estructura profunda de la realidad. A pesar del cambio incesante y la dinámica del mundo visible, existen aspectos de la fábrica del Universo que son misteriosos en su inquebrantable constancia. Son estas misteriosas cosas invariables las que hacen de nuestro Universo el que es y lo distinguen de otros mundos que pudiéramos imaginar.

Lo mismo que existen los hilos invisibles que mantiene unidas a las galaxias, de la misma manera, hay un hilo dorado que teje una continuidad a través de la Naturaleza. Nos llevan a esperar que ciertas cosas sean iguales en otros lugares del espacio además de la Tierra; que fueron y serán las mismas en otros tiempos además de hoy; que  algunos casos, ni la historia ni la geografía importan y, son como leyes inamovibles, no hechas por el hombre que, según hemos podido llegar a saber, están por encima de todas esas cuestiones terrenales en las que el hombre ha intervenido de una u otra manera. De hecho, quizá sin uns substrato semejante de realidades invariables no podría haber corrientes superficiales de cambio ni ninguna complejidad de materia y mente.

Los secretos más ocultos del Universo están codificados en unos valores numéricos, aparentemente eternos, a los que llamamos “constantes de la naturaleza”.  ellas se encuentran algunas tan famosas como la de la gravitación universal, G, la de la velocidad de la luz, c, o la de Planck, h. Pero, ¿son las “constantes de la naturaleza” realmente constantes? ¿Son las mismas en todas partes? ¿Están todas ellas ligadas? ¿Podría haber evolucionado y persistido la vida si fueran ligeramente distintas? Claro que, estos enigmas nos conducen hasta las fronteras más ignoradas de la ciencia, nos desvela las profundas implicaciones que estas constantes tienen para el destino del universo y el lugar de los hombres en él y, aunque conocemos sus valores, sus números, no podemos dar una explicación de por qué resultan ser esos.

Sí, confinados en un hermoso planeta desde el que, mediante el ingenio y la imaginación, tratamos de escapar para saber, lo que existe fuera de nuestro entorno, en regiones remotas del Universo a las que no podemos llegar. Sin embargo, no perdemos la esperanza de que, algún día…

Y, mientras tanto, nosotros los humanos, una especie que ha logrado la consciencia de SER, estamos aquí confinados en este hermoso planeta que llamamos Tierra y,  ella, tratamos de desvelar esos misterios y otros muchos llenos de secretos que en la Naturaleza subyacen para que los podamos desvelar. Parece mentira que en un planeta ígneo, incandescente, podemos ver ahora nuestro hermoso planeta que desde hace cuatro mil millones de años acoge la Vida. “Su clima y su topografía varían continuamente, como las especies que viven en él. Y lo que es más espectacular,  hemos descubierto que todo el universo de estrellas y galaxias está en un estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan de otros hacia un futuro que será muy diferente del presente. Ahora sabemos que, vivímos en un tiempo prestado.”

El mundo que nos rodea es así porque está conformado por esas constantes de la Naturaleza que hacen que las coaas sean como las podemos observar. Le dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la Naturaleza. ¿Recordáis el 137? Ese  puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son,  la razón de sus valores sigue siendo un secreto profundamente escondido.

Resultado de imagen de Un Joyero de estrellas en la Gran Nube de Magallanes

Las estrellas del cúmulo abierto NGC 290 centellean con un incomparable despliegue de brillos y colores, como piedras preciosas en un joyero. Los vientos estelares y la radiación inunda una gran región de años luz de diámetro

Y, a pesar de todo esto, el Universo, sigue siendo dinámico y cambiante de tal manera que no deja de evolucionar y, estrellas que hoy podemos ver brillando en el cielo, “mañana” habrán desaparecido siempre dando lugar a otros objetos y otras conformaciones pero, ni la masa ni la energía, habrán cambiado en el Universo.

Pero, y nosotros…¿habremos cambiado?, o, quizá como esas estrellas, tampoco estaremos aquí para  el Universo alcance esa fase final del frío absoluto en la que nada, ni el tiempo ni el espacio se podrá mover y, si eso llega… ¡dónde estarán los pensamientos de tántos?

emilio silvera

Hace 65 millones de años

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de El asteroide que acabó con los Dinosaurios

Hallan los fragmentos mejor conservados del mundo del asteroide que acabó con los dinosaurios

 

GEOLOGÍA

 

Los fragmentos desprendidos del impacto llegaron hasta el espacio exterior

 

 

 

 

Recreación de la colisión del meteorito de Chicxulub y la expulsión de las tectitas. P. VON KNORRING/V. VAJDA

 

El asteroide que acabó con los dinosaurios sumió a la Tierra en la oscuridad durante dos años

 

Hace aproximadamente 66 millones de años el impacto del asteroide Chicxulub en la península de Yucatán (México) produjo una reacción en cadena que acabó con el 70% de las especies del planeta. Famoso por extinguir a los dinosaurios que habían dominado la tierra durante millones de años, este evento catastrófico produjo una lluvia de rocas incandescentes a nivel global. Ahora un nuevo hallazgo de estas rocas (tectitas) en la isla colombiana de Gorgonilla arroja nuevos datos sobre su composición.

Resultado de imagen de El asteroide que acabó con los Dinosaurios

Un grupo de micropaleontólogos de la Universidad de Zaragoza ha participado en el descubrimiento que recoge la revista Geology. Los investigadores Ignacio Arenillas, José Antonio Arz y Vicente Gilabert han colaborado en esta investigación internacional que ha permitido precisar la edad de estas esférulas de roca, demostrando que se formaron exactamente en el límite Cretácico/Terciario (o límite K/T) como resultado del impacto del asteroide que causó la gran extinción que acabó con los dinosaurios.

“El método de datación argón-argón nos permitió conocer cuántos millones de años tienen estas rocas”, afirma a EL MUNDO el paleontólogo José Antonio Arz, coautor de la investigación. Mediante este sistema se liberan los gases del interior de las muestras para su análisis.

 

Lugar del hallazgo en la Isla de Gorgonilla. HERMANN BERMÚDEZ

La Isla de Gorgonilla, situada a 35 Km de la costa pacífica del norte de Colombia, es un islote deshabitado de unos dos kilómetros cuadrados cubierto por un bosque húmedo tropical. En sus bordes litorales se escondían este tesoro de nuestro pasado geológico, una capa de 2 centímetros de grosor de tectitas aún vítreas.

Resultado de imagen de La Isla de Gorgonilla

Estas rocas, al ser fragmentos vidriosos sin ordenamiento cristalino, en la naturaleza tienden a convertirse en materiales más estables como la arcilla. Por lo que la mayor parte de las tectitas formadas por un evento catastrófico como el impacto de un asteroide no conservan su composición original. No es el caso de las encontradas en Gorgonilla, catalogadas por los científicos como las muestras más puras del mundo de este material.

Transparentes y verdeoliva, estas pequeñas perlas son capaces de contar un desastre de dimensiones globales. Fueron formadas a partir del impacto del Chicxulub (de 10 km de diámetro) contra la plataforma continental. La roca fundida (cuya composición es mezcla tanto del asteroide como del fondo marino), producto de la violenta fricción, ascendió hasta el espacio exterior donde se solidificó. Las tectitas reentraron en la atmósfera incandescentes ‘lloviendo’ alrededor del planeta, pero sólo en esta zona se conservaron intactas.

El hallazgo es relevante por muchos otros aspectos. Las esférulas de impacto viajaron 2.000 kilómetros hasta depositarse en el fondo de un océano a más de 2 kilómetros de profundidad, lejos de cualquier continente. Estas profundidades se sitúan por debajo del denominado nivel de compensación de la calcita, una barrera geoquímica que marca el límite donde el agua tiene la suficiente acidez como para disolver las conchas de los foraminíferos planctónicos (organismos que utilizados como indicadores paleoecológicos).

 

Detalle de la capa de tectitas de Gorgonilla. HERMANN BERMÚDEZ

Por este motivo no hay presencia de estos microfósiles en la mayor parte de los 40 metros de rocas estudiados, excepto en el primer metro de roca situado sobre la capa de tectitas. Lo que sugiere, según los investigadores, que debido al impacto del asteroide la superficie marina se elevó, provocando también la aparición de islotes. Hipótesis confirmada por un análisis sedimentológico llevado a cabo por los investigadores, en donde la existencia de rastros de comunidades pioneras de helechos que debieron colonizar las islas surgidas alrededor de Gorgonilla demuestra la magnitud de los terremotos que asolaron la zona.

Extinción en cadena

 

 

 

Resultado de imagen de Extinción en cadena causada por el meteorito que mató a los dinosaurtios

 

Aunque parezca contradictorio, aquella catástrofe natural abrió la puerta para que, 65 millones de años más tarde, pequeños mamíferos pudieran evolucionar hasta llegar a la especie que hoy representamos.

 

El hallazgo ha arrojado nuevos datos sobre la extinción masiva que sufrió la Tierra. La palinóloga Vivi Vajda (coautora también del estudio) del Museo de Historia Natural de Suecia ha demostrado por vez primera que la vegetación sufrió una mortandad masiva en el límite K/T incluso en los trópicos. Anteriormente sólo se había encontrado sobreabundancia de esporas de helechos en altas latitudes como Japón o Nueva Zelanda. Siendo un buen indicativo debido a su resistencia y tendencia a colonizar ambientes catastróficos, es la primera vez que se hallan en latitudes templadas y tropicales.

“El impacto produjo una serie de perturbaciones medioambientales en cadena“, relata José Antonio Arz. Se produjo un pulso de calor de hasta 80 grados centígrados de media por lo que muchos bosques ardieron espontáneamente. A esto hay que sumarle la lluvia de rocas incandescentes (tectitas) mencionada anteriormente. “Los terremotos provocados por el impacto (que dejó un cráter de 200 kilómetros de diámetro enterrado bajo cientos de metros de sedimentos) llegaron a ser de intensidad 13 en la escala de Richter, algo casi inimaginable hoy en día”, añade el paleontólogo.

Resultado de imagen de El asteroide que acabó con los Dinosaurios

Hace dos años en un estudio publicado en Science, un equipo internacional de geólogos halló nuevas pruebas de que el impacto del asteroide aceleró las erupciones volcánicas en todo el globo, especialmente en la meseta del Decán en India, donde en la actualidad se registran las mayores formaciones volcánicas del planeta.

Otro estudio publicado el año pasado en Proceedings of the National Academy of Sciences (PNAS), describió el panorama desolador del planeta tras el impacto, una noche invernal perpetua resultado de la brutal transformación tanto en el clima como en la superficie terrestre. El cataclismo que tristemente acabó con los dinosaurios dejó vía libre a pequeños animales, como los mamíferos, que se resguardaron de tan terribles consecuencias.

Incendios espontáneos, tsunamis, erupciones volcánicas y bloqueo de la luz solar; la Tierra se convirtió en un infierno para la mayoría de los animales y la fauna, pero nosotros mismos somos el testigo de que “la vida se abre camino” y que muchos animales lograron sobrevivir ‘al fin del mundo’.

 

Ilustración del Chicxulub impactando sobre los mares tropicales y poco profundos de la península de Yucatán. DONALD E. DAVID / NASA

Reportaje de Prensa

 

Todos y todo quiere recuperar lo que les perteneció

Autor por Emilio Silvera    ~    Archivo Clasificado en Naturaleza    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia-ABC

Un aligátor fotografiado en una playa. En algunos lugares han adoptado una dieta casi exclusivamente marina

Un aligátor fotografiado en una playa. En algunos lugares han adoptado una dieta casi exclusivamente marina – Brian Silliman, Universidad de Duke

¿Qué esta haciendo que aparezcan aligátores en las playas y orcas en los ríos?

Resultado de imagen de Orcas en los ríos

 

 

Una investigación sugiere que la recuperacón de varios grandes depredadores les está permitiendo volver a lugares donde vivían antes de que el hombre los expulsase a hábitats más remotos

 

 

 

 

Un estudio publicado recientemente en la revista «Current Biology» sugiere que varios grandes depredadores están recolonizando los ecosistemas donde vivían antes de que la presión del hombre les apartara de ellos. La publicación concluye que la recuperación de poblaciones de animales como aligátors, orcas o pumas, les está permitiendo volver a lugares donde normalmente no se les avistaba.

«Ya no podemos sorprendernos al ver un gran aligátor en la playa o en un arrecife de coral como si fuera algo extraño», ha propuesto en un comunicado de la Universidad de Duke (EE.UU.)Brian Silliman, investigador de esta institución. «No es una anomalía o un cambio a corto plazo. Es la antigua norma, la forma como solía ser antes de que empujáramos a eseas especies hasta sus refugios remotos. Ahora, están volviendo».

En los últimos años se ha incrementado el avistamiento de grandes depredadores en lugares inusuales. Muchos han sugerido que esto ocurre porque estos animales están expandiendo sus hábitats para buscar comida, pero Silliman ha concluido que no es el caso.

Los pumas, entre otros, están recuperando hábitats donde no habían aparecido en años

 

Los pumas, entre otros, están recuperando hábitats donde no habían aparecido en años-Brian Silliman, Universidad de Duke

Después de recoger datos de recientes investigaciones y datos del gobierno, esta investigación ha concluido que los aligátores, las nutrias marinas, las nutrias de río, las ballenas grises, los lobos grises, los pumas, los orangutanes y las águilas calvas, entre otros muchos, son ahora animales tan abundantes en los «nuevos» hábitats como en los tradicionales. Esto, según el investigador, supone unas oportunidades muy interesantes para la conservación.

Aligátores en las playas

 

Imagen relacionada

 

 

En opinión del científico, lo que está ocurriendo es que estos animales están mostrando ahora lo versátiles que en realidad son. Según Silliman siempre se ha pensado que estos grandes depredadores eran especialistas que vivían en hábitats muy concretos, y normalmente remotos. Pero ahora que se han recuperado algunas de sus poblaciones, estos animales han podido volver a lugares donde vivían antes.

Por tanto, no es que los aligátors adoren las marismas, que las nutrias lo hagan mejor en los bosques de kelp, que los orangutanes necesiten bosques vírgenes o que los mamíferos marinos prefieran aguas polares. «Lo que ocurre es que esta percepción está basada en estudios y observaciones hechas cuando estos animales estaban en una drástica caída», dice Silliman.

Resultado de imagen de Aligátores en las playas

Por ejemplo, ahora se ha detectado que el 90 por ciento de la dieta de algunos aligátors está satisfecha con rayas, tiburones, gambas, cangrejos y manatíes, lo que muestra que se desempeñan muy bien en el hábitat marino.

«Esto nos dice que estas especies pueden medrar en una variedad de hábitats mucho mayor. Las nutrias, por ejemplo, pueden adaptarse y vivir si las introducimos en estuarios que no tienen bosques de kelp. Así que incluso si los bosques de kelp desaparecen a causa del cambio climático, las nutrias no lo harán», dice Silliman. «Quizás incluso pueden vivir en ríos. Lo descubriremos pronto».