miércoles, 25 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




No, tampoco los físicos entienden la Mecánica Cuántica

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Reportaje de ABC – Ciencia

 

Una encuesta realizada entre físicos demuestra que la mayoría no comprende qué tipo de realidad describen las teorías.

En la imagen, la conjetura de Birch y Swinnerton Dyer

                                                      En la imagen, la conjetura de Birch y Swinnerton Dyer

Uno de los mayores misterios de la Ciencia es el hecho de que los objetos macroscópicos (una mesa, una casa, una pelota, un planeta, una persona…) siguen una serie de leyes físicas que, literalmente, no funcionan en el mundo de las partículas subatómicas. En la escala de lo infinitamente pequeño, en efecto, cualquier objeto o ser vivo convencional se compone de un conjunto más o menos numeroso de partículas. Y esas partículas, por separado, son capaces de hacer cosas que los conjuntos de partículas, como nosotros, o las mesas y las casas, no pueden. Aparecer y desaparecer a voluntad, estar en varios lugares al mismo tiempo, comunicarse de forma instantánea o, incluso, viajar adelante y atrás en el tiempo, son solo algunas de las extraordinarias propiedades a las que los físicos han tenido que ir acostumbrándose a la hora de lidiar con los constituyentes íntimos de la materia.

Para guiarse en ese mundo extraño, fue necesario crear toda una nueva Física, la Mecánica Cuántica, que describe, o trata de describir, lo que podemos esperar encontrarnos en el extraño reino de los protones, los electrones, los quarks y el resto de las partículas subatómicas que forman parte del Modelo Estandar y que conforman la realidad física que nos rodea.

Resultado de imagen de La Mecánica cu´çanticaImagen relacionada

Ni que decir tiene que para un profano en la materia, la Mecánica Cuántica resulta abstracta y difícil de comprender. Pero una reciente encuesta publicada por la revista New Scientist demuestra que tampoco los físicos se ponen de acuerdo a la hora de definir cuál es exactamente la realidad que la Mecánica Cuántica describe. Y lo que es más, a un buen número de ellos ni siquiera les importa. En otras palabras: en esta cuestión, los propios físicos están igual de perdidos que el resto de los mortales.

En la encuesta participaron 149 físicos. El 39% de ellos mostró su apoyo a la interpretación de Copenhague, que es el retrato “clásico” de la mecánica cuántica, formulado por el físico danés Niels Bohr en 1927. Otro 25%, sin embargo, prefirió otras interpretaciones alternativas y un impresionante 36% declaró no tener preferencia alguna al respecto. Es más, muchos de los encuestados afirmaron no estar seguros de comprender lo que una u otra interpretación significan realmente.

Resultado de imagen de El Principio de IncertidumbreResultado de imagen de El Principio de Incertidumbre

La autora del artículo de New Scientist, Sophia Chen, sostiene que la interpretación convencional, la que obtuvo un mayor porcentaje en la encuesta, es también la primera (y a menudo la única) que los físicos aprenden, y eso no significa, en absoluto, que sea la más acertada. La interpretación de Copenhague utiliza la ecuación de Scrödinger para predecir los resultados de los experimentos en física cuántica, e incorpora el principio de incertidumbre, según el que no se puede conocer, al mismo tiempo, el momento y la velocidad de una partícula dada. De hecho, para observar una partícula, es necesario bombardearla con otras partículas, lo que cambia bruscamente su trayectoria y afecta a los resultados de la observación.

Los críticos, por su parte, subrayan la inconsistencia de lo que sabemos sobre el mundo cuántico con las leyes de la Naturaleza. Por eso, recurren a otras interpretaciones, como la de los multiversos, formulada por el australiano Howard Wiseman en 2014 y según la cual los fenómenos cuánticos surgen de la interacción de múltiples universos que, sin embargo, están regidos por el mismo conjunto de leyes. “Es muy extraño, lo admito -explica el propio Wiseman a New Scientist- pero un conjunto de universos paralelos que obedecen a las mismas leyes es algo bastante menos extraño que un único Universo con excepciones a sus reglas, como dice la interpretación de Copenhague”.

El 32% de los encuestados afirmó no entender lo suficiente ninguna de las interpretaciones como para hacerse una opinión, mientras que otro 23% aseguró que cualquier interpretción resulta irrelevante. Algunos llegaron a sostener que muchas interpretaciones del mundo cuántico nunca podrán ser verificadas experimentalmente, ya que pertenecen más al terreno de la filosofía que al de la física.

Resultado de imagen de La Mecánica cu´çantica

En resumen, concluye el artículo, el gran número de posibles soluciones podría ser un indicativo de que, quizás, ninguna de ellas está en el camino correcto. Llevamos ya un siglo discutiendo sobre el tema y todo apunta a que lo haremos durante por lo menos otro siglo más. Según dijo en su día el propio Niels Bohr, considerado como uno de los padres de la Mecánica Cuántica, “lo que nosotros llamamos realidad está hecha de cosas que no pueden ser consideradas reales. Si la mecánica cuántica no le ha impactado profundamente, es que no la ha entendido todavía”.

Todo lo que podamos imaginar… ¡Se puede hacer realidad!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Sinfonía de los Agujeros Negros binarios, ¿La oiremos alguna vez?

“Cuando se forma un par de agujeros negros binarios, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal), y, a medida que los agujeros orbítan el uno en torno al otro, los pozos en órbitas, producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Esas son, las ondas gravitacionales captadas por LIGO. También se producen cuando se fusionan los agujeros o cuando chocan dos estrellas de neutrones y, seguramente en otros eventos similares.”

 « 

 

 

 

Todas las células están formadas por elementos químicos que al combinarse forman una amplia variedad de moléculas que, a su vez, forman agregados moleculares y estos los diversos organelos celulares.Los elementos constitutivos de las biomoléculas más importantes son; el Carbo, el Hidrógeno, el Oxígeno y el Nitrógeno.

 

Los cuerpos de los seres vivos que conviven con nosotros en el planeta Tierra, todos, sin excepción están basados en el Carbono, el elemento más dúctil y que puede realizar funciones que para otros elementos están vedadas.

 

 Hace ya algún tiempo que se puso este trabajo en el Blog, su Título:

La Sinfonía de los Agujeros Negros binarios, ¿La oiremos alguna vez?

Me parece al caso traer aquí este trabajo que puse hace algún tiempo ya, toda vez que el reciente hallazgo de las Ondas gravitacionales lo ha renovado y su contenido puede resultar interesante al filo de la noticia. Decía por aquel entonces:

Kip Thorne at Caltech.jpg

         Kip Stephen Thorne

Lo que nos cuentan Kip S. Thorne y  otros especialistas en Agujeros negros nos posibilitan para entender algo mejor los mecanismos de estos extraños objetos que aún esconden misterios que no hemos sabido resolver. Está claro que muchas de las cosas que sobre agujeros negros podemos leer, son en realidad, especulaciones de cosas que se deducen por señales obervadas pero que, de ninguna manera, se pueden tomar como irrefutables verdades, más bien, las tomaremos como probables o muy probables de acuerdo a los resultados obtenidos de muchos experimentos y, ¿por qué no? de muchas horas de prácticas teóricas y pizarras llenas de ecuaciones que tratan de llegar al fondo de un saber que, desde luego, nos daría la clave de muchas cuestiones que en nuestro Universo son aún desconocidas.

Finalmente, Thorne y sus dos compañeros en LIGO, consiquieron captar las Ondas gravitatorias y, por ello, han recibido el Nobel de Física.

En el corazón de una galaxia lejana, a más de 1.000 millones de años-luz de la Tierra y hace 1.000 millones de años, se acumuló un denso aglomerado de gas y cientos de millones de estrellas. El aglomerado se contrajo gradualmente, a medida que algunas estrellas escapaban y los 100 millones de estrellas restantes se hundían más hacia el centro. Al cabo de 100 millones de años, el aglomerado se había contraído hasta un tamaño de varios años-luz, y pequeñas estrellas empezaron, ocasionalmente, a colisionar y fusionarse, formando estrellas mayores. Las estrellas mayores consumieron su combustible y luego implosionaron para formar agujeros negros; y, en ocasiones, cuando dos de estos agujeros pasaban uno cerca del otro, quedaban ligados formando pares en los que cada agujero giraba en órbita alrededor del otro.

Resultado de imagen de Agujeros negros binarios

Cuando se forma un par de agujeros negros binarios semejantes, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal) en la superficie insertada y, a medida que los agujeros giran uno en torno al otro, los pozos en órbita producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Las ondulaciones forman una espiral en el tejido del espacio-tiempo en torno al sistema binario, muy semejante a la estructura espiral del agua que procede de un aspersor de cesped que gira rápidamente. Los fragmentos de curvatura forman un conjunto de crestas y valles en espiral en el tejido espacio-temporal.

Resultado de imagen de Agujeros negros binarios

Puesto que la curvatura-espacio-temporal es lo mismo que la gravedad, estas ondulaciones de curvatura son realmente ondas de gravedad, u ondas gravitatorias. La Teoría de la Relatividad General de Einstein predice, de forma inequívoca, que tales ondas gravitatorias deben producirse siempre que dos agujeros negros orbíten uno en torno al otro.

Cuando parten hacia el espacio exterior, las ondas gravitacionales producen una reacción sobre los agujeros de la misma forma que una bala hace retroceder el fusil que la dispara. El retroceso producido por las ondas aproxima más los agujeros y les hace moverse a velocidades mayores; es decir, hacen que se muevan en una espiral que se cierra lentamente y hace que se vayan acercando el uno hacia el otro. Al cerrarse la espiral se genera poco a poco energía gravitatoria, una mitad de la cual va a las ondas y la otra mitad va a incrementar las velocidades orbitales de los agujeros.

 

El movimiento en espiral de los agujeros es lento al principio; luego, a medida que los agujeros se acercan, se mueven con mayor velocidad, radian sus ondulaciones de curvatura con más intensidad, y pierden ene´rgía y se cierran en espiral con más rapidez. Finalmente, cuando cada agujero se está moviendo a una velocidad cercana a la de la luz, sus horizontes se tocan y se fusionan. Donde una vez hubo dos agujeros, ahora sólo hay uno.

http://chandra.harvard.edu/photo/2005/j0806/j0806_2panel.jpg

El horizonte del agujero giratorio queda perfectamente liso y con su sección ecuatorial circular, con la forma descrita precisamente  por la solución de Kerr a la ecuación de campo de Einstein. Cuando se examina el agujero negro liso final, no hay ningún modo de descubrir su historia pasada. No es posible distinguir si fue creado por la coalescencia de dos agujeros más pequeños, o por la implosión directa de una estrella supermasiva construida por materia, o por la implosión directa de una estrella constituida por antimateria. El agujero negro no tiene “pelo” a partir del cual se pueda descifrar su historia.

Resultado de imagen de Colisión de dos estrellas de neutrones

También dos estrellas de neutrones pueden producir ondas

Sin embargo, la historia no se ha perdido por completo: ha quedado un registro codificado en las ondulaciones de la curvatura espacio-temporal que emitieron los agujeros coalescentes. Dichas ondulaciones de curvatura son muy parecidas a las ondas sonoras de una sinfonía. De la misma forma que la sinfonía está codificada en las modulaciones de las ondas sonaras (mayor amplitu aquí, menor allí), también la historia de la coalescencia está codificada en modulaciones de las ondulaciones de curvatura. Y de la misma forma que las ondas sonoras llevan su sinfonía codificada desde la oequesta que la produce hasta la audiencia, también las ondulaciones de curvatura llevan su historia codificada desde los agujeros fusionados hasta los rincones más lejanos del Universo lejano.

Imagen relacionada

Las ondulaciones de curvatura viajan hacia afuera por el tejido del espacio-tiempo a través del conglomerado de estrellas y gas del que nacieron los agujeros. El aglomerado no absorbe las ondulaciones ni las distorsiona en absoluto; la historia codificada de las ondulaciones permanece perfectamente invariable, se expanden hacia el exterior de la galaxia madre del aglomerado y el espacio intergaláctico, atraviesan el cúmulo de galaxias del que forma parte la galaxia progenitora, luego siguen atravesando un cúmulo de galaxias tras otro hasta llegar a nuestro propio cúmulo, dentro del cual está nuestra Vía Láctea con nuestro Sistema Solar, atraviesan la Tierra, y continúan hacia otras galaxias distantes.

http://4.bp.blogspot.com/_yd9OLN_xAiw/SeXI-2qdPXI/AAAAAAAAEIE/B4pD0a4_kAw/s400/16.jpg

Claro que, en toda esta historia hay un fallo, nosotros, los humanos, aún no somos lo suficientemente hábiles para haber podido construir aparatos capaces de detectar y oir las sinfonías  mencionadas con entusiamo por el Sr. Thorne y, que según el cree, son mensajes que nos traen esas ondas de gravedad de los agujeros negros binarios. Es como si no pudiéramos oir esa hermosa sinfonía que nos mostraría un nuevo Universo por nosotros desconocido. Ahora sabemos que por medio de potentes telescopios podemos conocer lo que es el Universo, podemos observar galaxias lejanas y estudiar cúmulos de galaxias o de estrellas y captar las imágenes de bonitas Nebulosas, todo eso es posible gracias a que al captar la luz que emitieron esos objetos cosmológicos hace decenas, cientos, miles o millones de años como señal electromagnética que viajando a la velocidad de c, hace posible que podamos ver lo observado como era entonces, en aquel pasado más o menos lejano. De la misma manera, se cree que, las ondas gravitatorias emitidas por estos objetos misteriosos, se podrán llegar a captar con tal claridad que nos permitirá saber de otra faseta (ahora) desconocida del Universo, y, sobre todo, podremos entender el pasado de esos densos objetos que, de momento, nos resultan exóticos y también extraños.

emilio silvera