lunes, 27 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Luna! Esa compañera inseparable

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

 http://farm6.static.flickr.com/5175/5542386876_582b4a9251.jpg

La Luna es nuestra compañera en el espacio, Viaja junto a nosotros alrededor del Sol y es el más próximo de todos los cuerpos astronómicos naturales. No es de extrañar que tendamos de manera instintiva a concederle importancia y a considerarla como algo nuestro. Desde tiempos inmomoriales, nuestros ancestros, le concedieron a la Luna unos poderes mágicos sobre cosechas, embarazos…y otras cuestiones como las mareas entre ellas.

Hsi y Ho, dos astrólogos de la antigua China, no tuvieron tanta suerte como Einstein (gracias a un eclipse de Sol, pudo ver confirmada su teoría de la relatividad General). Su ignorancia les costó la vida a ambos por no predecir el eclipse total de Sol que se produjo en el año 2137 a. C., lo que causó las iras del emperador Tshung-Kong, que ordenó ejecutarlos.

Está claro que la Luna, ese plateado espejo que refleja nuestro mundo por las noches, le ha brindado a la ciencia la oportunidad de descifrar numerosos enigmas cada vez que oculta al Sol durante un eclipse. Si se analiza en detalle la historia podría comprobarse que la Luna se ha convertido en una maravillosa herramienta para los Astrónomos, que han sacado tanto partido científico de ella como belleza han podido percibir sus afortunados observadores.

Resultado de imagen de Enamorados a la luz de la Luna

¿Quién no ha representado alguna vez esta bonita escena? Con un testigo tan especial, el momento se hace sublime. Siempre hemos tenido símbolos de la Naturaleza que nos han acompañado en nuestras diferentes actividades. Como por ejemplo, la estrella Polar para los antiguos marinos.

La Luna es el astro más observado. En la antigüedad y hasta mediados del siglo XX, los principales astrónomos y los principales Observatorios centraron en ella una gran parte de sus observaciones e investigaciones de primera línea. Bien es cierto que, al ser tan conocida, salvo algunos proyectos específicos, en la actualidad ha quedado un poco relegada y, la verdad es, que aún le quedan cosas por decir.

Resultado de imagen de El hombre en la luna

                Hace más de 40 años que el mundo, asombrado, contempló  esta imagen

Allá por al año 1969, el hombre puso sus pies sobre la superficie lunar y pareció culminar una etapa de las exploraciones y, así, practicamente todo el mundo (pasados aquellos primeros momentos de excitación colectiva) empezó a olvidarse de ella. ¿Alguien podría pensar que quedara algo por descubrir en ese polvoriento satélite de apariencia inerte?

La Estación Espacial en la Luna

La respuesta llegó en 1996 gracias a la sonda Clementine de la NASA, cuyas fotografías dieron un inusitado vuelco a nuestra concepción lunar. La nave aportó pruebas de que en el cráter Aitkin, que se halla en el polo sur de la Luna, existe hielo. Esto es, que en el lugar más árido que se conoce del Sistema Solar hay agua. Aquello lo cambió todo y comenzaron a salir carpetas archivadas y llenas de polvo para retomar algunos proyectos olvidados.

Es verdaderamente sorprendente que, en la Luna, pueda haber agua. Tal hallazgo supone una buena baza para los futuros proyectos de la Base Lunar. No es despreciable la idea de poder  en la Luna un Gran Complejo Espacial, con Base de lanzamientos de Naves hacia otros mundos con el enorme ahorro en el coste que eso supondría, o, Laboratorios que podrían investigar en el vacío del espacio, o, Telescopios libres de contaminación que, al igual que el Hubble pudiera llegar a todos los rincones del Universo pero, con menor mantenimiento y, el que necesitara sería más cómodo y menos costoso.

Resultado de imagen de transient lunar phenomenon

Hace unos días se publicó el hallazgo del agua en la Luna

Entre los muchos enigmas que aún rodean a nuestra compañera Luna. De hecho, la Astronomía tiene pendiente allí otro de sus grandes enigmas, como es la naturaleza de los fenómenos transitorios lunares, que se denominan habitualmente con la abreviatura TLP, correspondiente a la desripción inglesatransient lunar phenomenon. Consite en repentinos cambios de brillo en la superficie o en llamaradas, y se cree que están causados fundamentalmente por erupciones internas que se producen de forma esporádica, en especial en algunos cráteres. No todos están de acuerdo con este dictamen pero, la verdad es que se han producido suficientes testimonios de TPL como para dudar de ello, y, aunque exista la Incertidumbre de la verdadera causa…Ahí están.

Las extrañas luces móviles de la Luna

Luces misteriosas aparecen en algunos cráteres de la Luna de manera inexplicable y, han sido observados con cierta frecuencia pero nunca se ha podido dar una explicación científica a los mismos. Lo cierto es que, en la Luna como en otros cuerpos celestes que nos circundan, se producen extrañas transiciones que nos son desconocidas y de cuyos orígenes quisiéramos saber.

 image

En el verano de 1178, varios monjes observaron desde la Catedral de Canterbury un espectáculo increíble: La Luna, que estaba en fase creciente, comenzó a arder en su borde, que escupió varias llamaradas y chispar enormes. Con toda probabilidad vieron las nubes igneas de polvo y roca desprendidas por el impacto de un gigantesco meteorito en la cara oculta, desde la que asomó el resplandor producido por la colisión.

Se ha sugerido que el impacto de 1178 formó el cráter Giordano Bruno, pero de lo que no cabe duda es de que la aparentemente mortecina quietud lunar se rompe de forma ocasional por suscesos como éste. Y, aunque el caso más famoso se ha centrado en aquellos monjes de la Catedral de Canterbury, la verdad es que, también encontramos entre los testigos a famosos astrónomos como el mismísimo Herschel, descubridor de Urano, que en 1783 creyó ver un repentino destello rojizo en el hemisferio no iluminado de la Luna. Los resplandores rojizos constituyen el aspecto más llamativo de la mayoría de las observaciones de este tipo de fenómenos.

                                          Los sentidos nos pueden confundir pero, ¡cuándo el río suena!

Muchos son los  que se han recogido sobre este tipo de fenómenos en la Luna, y, su diversidad y abundancia, nos lleva a pensar que, fenómenos hay, lo que hace falta es que despejémos las incognitas y podamos dar con los diversos orígenes de los mismos. El fogonazo del Cráter Alphonsus observado por Kozyrev en 1958 es uno de esos extraños fenómenos.

El artífice del espectáculo de las Leónidas es el cometa Temple- Tuttle, descubierto en 1865. La corriente de corpúsculos que este objeto celeste va dejando en el espacio al describir su órbita es atravesada todos los años por la Tierra en torno al 16-17 de noviembre, pero cada treinta y tres años el cometa se adentra en la partem interior del Sistema Solar y alcanza su perihelio, lo que da lugar a extraordinarias tormentas de “estrellas fugaces”, como las que se observaron en 1966 y 1999.

Merced a los escasos 384 000 Kilómetros de distancia que separan la Tierra de la Luna, puede considerarse que ambas viajan juntas por el espacio y, por tanto, atraviesan al mismo tiempo las corrientes meteóricas que dejan el Tempel-Tuttle y otros cometas. Era evidente que el mes de noviembre de 1999 se presentaba como una magnifica ocasión para analizar la incidencia de las Leónidas en la Luna, de esta forma, se han conseguido detectar, por primera vez los destellos luminosos causados por los impactos y fragmentos del Cometa sobre la superficie lunar. El Estudio fue realizado por:  El Instituto de Astrofísica de Andalucía (IAA), Instituto de Astrofísica de Canarias (IAC) y el Centro Hispano-Alemán de Calar Alto (Almería), en colaboración con la Universidad de Monterrey (México).

Muchos son los instrumentos con los que podemos contar para realizar toda clase de observaciones del cielo profundo, y, la Luna, al estar más cerca y casi a nuestro lado (384 000 Km de distancia en el espacio…es bien poca cosa), nos abre la posibilidad de conocerla mejor.

El papel desempeñado por las colisiones meteóricas en la evolución de la Tierra y la Luna no ha dejado de sorprender a los científicos desde hace tres décadas, pero la teória más fascinante es la que ha obtenido una mayoritaria aceptación relativamente reciente tras décadas de discusión: El origen de la Luna es la consecuencia de una de las mayores catátrofes cósmicas ocurridas en el Sistema Solar, al chocar contra la Tierra un planetoide de varios miles de kilómetros de diámetro. Esa colisión, se cree que se produjo hace unos 4.500 millones de años, poco después de la formación de nuestro planeta, y el planetoide intruso, mezclado con la enorme masa de materiales que arranco del manto terrestre a causa del impacto, acabó transformándose en la Luna con el paso del Tiempo. La coincidencia de la composición lunar con los materiales pesentes en las capas exteriores de la Tierra concuerda con esa teoría, que es la mejor asentada en la actualidad acerca del nacimiento de la Luna.

Con certeza no podemos saber si en realidad ocurrió así. Sin embargo, es lo cierto que de haber sucedido de esa manera, aquél drámatico Caos en la joven Tierra, nos proporcionó una bonita compañera de viaje que nos acompañó y fue testigo callado de todas esas Civilizaciones perdidas de la Antigüedad.

Es bien conocida la interacción gravitatoria que la Luna intercambia con la Tierra y los fenómenos mareales que esa fuerza produce, y, de la misma manera, se cree que otros fenómenos también son producto de la proximidad del satélite de la Tierra que, los Humanos, desde tiempo inmemoriales, ha utilizado para muchas de sus de su actividades de todo tipo, atribuyéndo a sus rayos de plata unos  poderes que no siempre serían beneficiosos.

  Escapar del planeta Tierra, es difícil, costoso y peligroso. Sin embargo, de la Luna sería barato y fácil

El diámetro de la Luna es de 3 476 Km y su masa de 7,348 x 1022 Kg, su volumen es un 0,12% del de la Tierra, y, su velocidad de escape es de 0,02 Km/s, mientras que conseguir que una nave escape de la fuerza de Gravedad terrestre, nos hace tener que vencerla mediante una velocidad de 11 Km/s, con lo cual, las ventajas de una Base lunar serían enormes.

Mucho más podríamos estar hablando sobre la Luna y sus enigmas. Muchos de los datos que aquí han sido reseñados se tomaron del libro de Vicente Aupi: Los Enigmas del Cosmos. Otros, han sido rescatados de la Biblioteca, sección del espacio, y, algunos…de mi archivo mental.

Un saludo amigos.

emilio silvera

Partículas, antipartículas, fuerzas…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Bajo la “definición basada en quarks y leptones”, las partículas elementales y compuestas formadas de quarks (en púrpura) y leptones (en verde) serían la “materia”; mientras los bosones “izquierda” (en rojo) no serían materia. Sin embargo, la energía de interacción inherente a partículas compuestas (por ejemplo, gluones, que implica a los neutrones y los protones) contribuye a la masa de la materia ordinaria.

 

 

File:Annihilation.png

 

Esquema de una aniquilación electrón-positrón.

 

Ya hemos descrito en trabajos anteriores las dos familias de partículas elementales: Quarks y Leptones. Pero hasta ahí, no se limita la sociedad del “universo” infinitesimal. Existen además las antifamilias. A quarks y electrones se asocian, por ejemplo, antiquarks y antielectrones. A cada partícula, una antipartícula.

Uno de los primeros éxitos de la teoría relativista del campo cuántico fue la predicción de las antipartículas: nuevos cuantos que eran la imagen especular de las partículas ordinarias. Las antipartículas tienen la misma masa y el mismo spin que sus compañeras las partículas ordinarias, pero cargas inversas. La antipartícula del electrón es el positrón, y tiene, por tanto, carga eléctrica opuesta a la del electrón. Si electrones y positrones se colocan juntos, se aniquilan, liberando la energía inmensa de su masa según la equivalencia masa-energía einsteniana.

                      Una partícula y su antipartícula no pueden coexistir: hay aniquilación de ambas.

¿Cómo predijeron los físicos la existencia de antipartículas? Bueno, por la «interpretación estadística» implicaba que la intensidad de un campo determinaba la probabilidad de hallar sus partículas correspondientes. Así pues, podemos imaginar un campo en un punto del espacio describiendo la creación o aniquilación de sus partículas cuánticas con una probabilidad concreta. Si esta descripción matemática de la creación y aniquilación de partículas cuánticas se inserta en el marco de la teoría relativista del campo cuántico, no podemos contar con la posibilidad de crear una partícula cuántica sin tener también la de crear un nuevo género de partícula: su antipartícula. La existencia de antimateria es imprescindible para una descripción matemáticamente coherente del proceso de creación y aniquilación según la teoría de la relatividad y la teoría cuántica.

La misteriosa sustancia conocida como “materia oscura” puede ser en realidad una ilusión, creada por la interacción gravitacional entre partículas de corta vida de materia y antimateria. Un mar hirviente de partículas en el espacio puede crear la gravedad repulsiva.

Puede ser posible que las cargas gravitacionales en el vacío cuántico podrían proporcionar una alternativa a la “materia oscura”. La idea se basa en la hipótesis de que las partículas y antipartículas tienen cargas gravitacionales de signo opuesto. Como consecuencia, los pares de partícula-antipartícula virtuales en el vacío cuántico y sus dipolos de forma gravitacional (una carga gravitacional positivos y negativos) pueden interactuar con la materia bariónica para producir fenómenos que se suele atribuir a la materia oscura. Fue el  físico del CERN, Dragan Slavkov Hajdukovic, quien propuso la idea, y demostró matemáticamente que estos dipolos gravitacionales podrían explicar las curvas de rotación de las galaxias observadas sin la materia oscura en su estudio inicial. Sin embargo,  señaló que quedaba mucho por hacer.

Pero sigamos con la cuántica…

El pionero en comprender que era necesario que existiesen antipartículas fue el físico teórico Paul Dirac, que hizo varías aportaciones importantes a la nueva teoría cuántica. Fue él quien formuló la ecuación relativista que lleva hoy su nombre, y a la que obedece el campo electrónico; constituye un descubrimiento comparable al de las ecuaciones del campo electromagnético de Maxwell. Cuando resolvió su ecuación, Dirac se encontró con que además de describir el electrón tenía soluciones adicionales que describían otra partícula con una carga eléctrica opuesta a la del electrón. ¿Qué significaría aquello? En la época en que Dirac hizo esta observación, no se conocían más partículas con esta propiedad que el protón. Dirac, que no deseaba que las partículas conocidas proliferasen, decidió que las soluciones adicionales de su ecuación describían el protón.

Pero, tras un análisis más meticuloso, se hizo evidente que las partículas que describían las soluciones adicionales tenían que tener exactamente la misma masa que el electrón. Quedaba así descartado el protón, cuya masa es por lo menos, 1.800 veces mayor que la del electrón. Por tanto, las soluciones adicionales tenían que corresponder a una partícula completamente nueva de la misma masa que el electrón, pero de carga opuesta: ¡El antielectrón! Esto quedó confirmado a nivel experimental en 1932 cuando Carl Anderson, físico del Instituto de Tecnología de Calífornia, detectó realmente el antielectrón, que hoy se llama positrón.

Antes de empezar, debemos recordar que el Premio Nobel de Física de 1936 se repartió a partes iguales entre Victor Franz Hess y Carl David Anderson. Merece la pena leer la Nobel Lecture de Carl D. Anderson, “The production and properties of positrons,” December 12, 1936, quien nos explica que en esta imagen un “electrón” de 63 MeV atraviesa un placa de plomo de 6 mm y emerge con una energía de 23 MeV, pero lo hace con la curvatura “equivocada” como si fuera una partícula de carga positiva, como si fuera un protón pero con la masa de un electrón. La Nobel Lecture muestra muchas otras fotografías de positrones y electrones. Anderson afirma: “The present electron theory of Dirac provides a means of describing many of the phenomena governing the production and annihilation of positrons.”

Por otro lado, el Premio Nobel de Física de 1933 se repartió a partes iguales entre Erwin Schrödinger y Paul Adrien Maurice Dirac. También vale la pena leer la Nobel Lecture de Paul A. M. Dirac, “Theory of electrons and positrons,” December 12, 1933, aunque no cuente la historia de su descubrimiento, afirma que su ecuación predice el “antielectrón” de soslayo: ”There is one other feature of these equations which I should now like to discuss, a feature which led to the prediction of the positron.” (fuente: Francis (th)E mule Science’s News).

Resultado de imagen de Las antipartículasResultado de imagen de Las antipartículas

La aparición de las antipartículas cambió definitivamente el modo de pensar de los físicos respecto a la materia. Hasta entonces, se consideraba la materia permanente e inmutable. Podían alterarse las moléculas, podían desintegrarse los átomos en procesos radiactivos, pero los cuántos fundamentales se consideraban invariables. Sin embargo, tras el descubrimiento de la antimateria realizado por Paul Dirac hubo que abandonar tal criterio. Heisenberg lo expresaba así:

“Creo que el hecho de que Dirac haya descubierto partículas y antipartículas, ha cambiado toda nuestra visión de la física atómica… creo que, hasta entonces, todos los físicos habían concebido las partículas elementales siguiendo los criterios de la filosofía de Demócrito, es decir, considerando esas partículas elementales como unidades inalterables que se hallan en la naturaleza como algo dado y son siempre lo mismo, jamás cambian, jamás pueden transmutarse en otra cosa. No son sistemas dinámicos, simplemente existen en sí mismas. Tras el descubrimiento de Dirac, todo parecía distinto, porque uno podía preguntar: ¿por qué un protón no podría ser a veces un protón más un par electrón-positrón, etc.?… En consecuencia, el problema de la división de la materia había adquirido una dimensión distinta.”

 

Dado que la antimateria tiene la misma masa que la materia, es decir son de la misma magnitud y signo (la definición de masa es positiva siempre), el efecto gravitacional de la antimateria no debe ser distinto de la materia, es decir, siempre sera un efecto atractivo. Pero, ¿acaso no importa la equivalencia establecida de antipartícula viajando al futuro = partícula viajando al pasado?

                Existe un “universo” que se nos escapa de la comprensión

 

La respuesta es sí. Dicha equivalencia proviene de algo llamado simetría CPT (Charge-Parity-Time), y nos dice que la equivalencia entre las partículas y antipartículas no solo corresponde a realizar una transformación sobre la carga, sino también sobre la paridad y el tiempo. La carga no afecta la gravedad, pero la paridad y el tiempo si la afectan. En otras palabras, al modificarse el tiempo (poner el tiempo al reves) y el espacio (la paridad es “girar” el espacio), estamos alterando el espacio-tiempo, y como la teoría general de la relatividad lo afirma, es la geometría de este el que determina la gravedad.

El carácter mutable de la materia se convirtió en piedra angular de la nueva física de partículas. El hecho de que partículas y antipartículas puedan crearse juntas a partir del vacío si se aporta energía suficiente, no sólo es importante para entender cómo se crean las partículas en aceleradores de alta energía, sino también para entender los procesos cuánticos que se produjeron en el Big Bang.

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

Como ya lo hemos expresado, el conocimiento que se obtuvo sobre la existencia de antifamilias de partículas o familias de antipartículas es una consecuencia de la aplicación de la teoría relativista del campo cuántico, para cada partícula existe una partícula que tiene la misma masa pero cuya carga eléctrica (y otras llamadas cargas internas) son de signo opuesto. Estas son las antipartículas. Así, al conocido electrón, con carga negativa, le corresponde un «electrón positivo» como antipartícula, llamado positrón, descubierto en 1932. El antiprotón, descubierto en 1956, tiene la misma masa que el protón, pero carga eléctrica negativa de igual valor. El fotón, que no tiene masa ni carga eléctrica, puede ser considerada su propia antipartícula.

Un agujero negro es un objeto que tiene tres propiedades: masa, espin y carga eléctrica. La forma del material en un agujero negro no se conoce, en parte porque está oculta para el universo externo, y en parte porque, en teoría, el material continuaría colapsando hasta tener radio cero, punto conocido como Singularidad, de densidad infinita.

Resultado de imagen de Agujero negro supermasivo en el centro de la Galaxia

Un agujero negro tiene tres propiedades: masa, espín y carga eléctrica. La forma del material de un agujero negro no se conoce, en parte porque está oculta para el universo externo, y en parte porque, en teoría, el material continuaría colapsando hasta tener radio cero, punto conocido como singularidad, de densidad infinita.

Resultado de imagen de Fotones libres

La luz (fotones), no son una onda distinta que un electrón o protón, etc.

1°- “No se dispersan”, no son más pequeñas, como las ondas del agua (olitas) cuando tiramos una piedrita, a medida que se alejan de su centro; sino que en el caso de la luz son menos partículas, pero son siempre el mismo tipo de onda (determinada frecuencia), igual tamaño.

2°- Las ondas con más energía son más grandes, los fotones al igual que las partículas son más pequeñas, contra toda lógica (contracción de Lorentz).

3°- No necesitan de un medio material para desplazarse. Viajan en el vacío. El medio que usan para viajar, es el mismísimo espacio.

4°- Su cualidad de onda no es diferente de las partículas. Lo podemos ver en la creación de pares y la cualidad de onda de las partículas, etc. En ningún momento la partícula, es una cosa compacta (ni una pelotita), siempre es una onda, que no se expande. En la comparación con la ola, sería como un “montón” o un “pozo” de agua, con una dirección, lo que conocemos como ecuación de Schrödinger. En ningún momento la partícula, es una pelotita; la ola sobre el agua, no es un cuerpo que se mueve sobre el agua, no es un montón de agua que viene (aunque parece), sino una deformación del agua. Así la partícula, no es un montón de algo, sino una deformación del espacio.

La curvatura está relacionadas con la probabilidad de presencia, no es una bolita que está en uno de esos puntos, sino que es una onda en esa posición. El fotón es una onda que no necesita de un medio material para propagarse, se propaga por el espacio vacío. Así como una onda de sonido es una contracción-expansión del medio en que se propaga, el fotón es una contracción-expansión del espacio (del mismísimo espacio), razón por la cual entendemos que el espacio se curva, se contrae y expande. La rigidez del medio, da la velocidad de la deformación (velocidad de  la onda), en el caso de la rigidez del espacio da una velocidad “c”.Esta onda por causa de la contracción del tiempo (velocidad “c”), no se expande, sino que se mantiene como en su origen (para el observador ), como si fuese una “burbuja”, expandida o contraída, en cada parte, positiva-negativa

Cada partícula está caracterizada por un cierto número de parámetros que tienen valores bien definidos: su masa, carga eléctrica, spin o rotación interna y otros números, conocidos como cuánticos. Estos parámetros son tales que, en una reacción, su suma se mantiene y sirve para predecir el resultado. Se dice que hay conservación de los números cuánticos de las partículas. Así, son importantes el número bariónico, los diversos números leptónicos y ciertos números definidos para los quarks, como la extrañeza, color, etc. Estos últimos y sus antipartículas tienen cargas eléctricas (± 1/3 o ± 2/3) y números bariónicos (±1/3) fraccionarios. No todos los números asociados a cada partícula han sido medidos con suficiente precisión y no todas las partículas han sido detectadas en forma aislada, por lo menos de su ligamento, como el caso de los quarks y de los gluones.

los quarks y de los gluones.

Los gluones son una especie de «partículas mensajeras» que mantienen unidos a los quarks. Su nombre proviene del término inglés “glue”, que significa pegamento, en español quizás podría ser gomón. Ahora, en cuanto a los quarks, ya hicimos referencia de ellos anteriormente. Pero recordemos aquí, que fueron descubiertos en 1964 por Murray Gell-Mann, como los componentes más reducidos de la materia. Hasta entonces se pensaba que los átomos consistían simplemente en electrones rodeando un núcleo formado por protones y electrones.

En estado natural, quarks y gluones no tienen libertad. Pero si se eleva la temperatura a niveles 100.000 veces superiores, como se ha hecho en aceleradores de partículas, a la del centro del Sol, se produce el fenómeno del desconfinamiento y por un brevísimo tiempo quedan libres. En ese preciso momento aparece lo que se suele llamar plasma, «una sopa de quarks y gluones» que equivale al estado en que se podría haber encontrado la naturaleza apenas una milésima de segundo luego del Big Bang.

11-three_quarks 11-heart2quarks_small

Recientemente se ha descubierto un nuevo estado de la materia, esta vez a niveles muy altos de energía, que los científicos han denominado Plasma Gluón-Quark. La transición ocurre a temperaturas alrededor de cien mil millones de grados y consiste en que se rompen las fuertes ligaduras que mantienen unidos los quarks dentro de los núcleos atómicos. Los protones y neutrones están formados, cada uno, por 3 quarks que se mantienen unidos gracias a los gluones (El gluón es la partícula portadora de interacción nuclear fuerte, fuerza que mantiene unida los núcleos atómicos). A temperaturas superiores se vence la fuerza nuclear fuerte y los protones y neutrones se dividen, formando esta sopa denominada plasma Gluón-Quark.

Resultado de imagen de Los Quarks libres

Pero por ahora aquí, nos vamos a quedar con los quarks al natural. Normalmente, los quarks no se encuentra en un estado separados, sino que en grupos de dos o tres. Asimismo, la duración de las vidas medias de las partículas, antes de decaer en otras, es muy variable (ver tablas).

Por otra parte, las partículas presentan una o más de las siguientes interacciones o fuerzas fundamentales entre ellas. Por un lado se tiene la gravitación y el electromagnetismo, conocidas de la vida cotidiana. Hay otras dos fuerzas, menos familiares, que son de tipo nuclear y se conocen como interacciones fuertes y débiles.

La gravitación afecta a todas las partículas, es una interacción universal. Todo cuerpo que tiene masa o energía está sometido a esta fuerza. Aunque es la más débil de las interacciones, como las masas son siempre positivas y su alcance es infinito, su efecto es acumulativo. Por ello, la gravitación es la fuerza más importante en cosmología.

Resultado de imagen de Los campos magnéticos están presentes por todo el Universo

                            Los campos magnéticos están presentes por todo el Universo

La fuerza electromagnética se manifiesta entre partículas con cargas eléctricas. A diferencia de las demás, puede ser de atracción (entre cargas de signos opuestos) o de repulsión (cargas iguales). Esta fuerza es responsable de la cohesión del átomo y las moléculas. Mantiene los objetos cotidianos como entidades con forma propia. Un vaso, una piedra, un auto, el cuerpo humano. Es mucho más fuerte que la gravitación y aunque es de alcance infinito, las cargas de distinto signo se compensan y sus efectos no operan a grandes distancias. Dependiendo de las circunstancias en que actúen, estas interacciones pueden manifestarse como fuerzas eléctricas o magnéticas solamente, o como una mezcla de ambos tipos.

La Fuerza Nuclear Débil: otra fuerza nuclear, considerada mucho más débil que la Fuerza Nuclear Fuerte. El fenómeno de decaimiento aleatorio de la población de las partículas subatómicas (la radioactividad) era difícil de explicar hasta que el concepto de esta fuerza nuclear adicional fue introducido.

La interacción nuclear débil es causa de la radioactividad natural y la desintegración del neutrón. Tiene un rol capital en las reacciones de fusión del hidrógeno y otros elementos en el centro de las estrellas y del Sol. La intensidad es débil comparada con las fuerzas eléctricas y las interacciones fuertes. Su alcance es muy pequeño, sólo del orden de 10-15 cm.

Archivo:CNO Cycle.svg

La interacción fuerte es responsable de la cohesión de los núcleos atómicos. Tiene la intensidad más elevada de todas ellas, pero es también de corto alcance: del orden de 10-13 cm. Es posible caracterizar las intensidades de las interacciones por un número de acoplamiento a, sin dimensión, lo que permite compararlas directamente:

Fuerte as = 15

Electromagnéticas a = 7,3 x 10-3

Débil aw 3,1 x 10-12

Gravitacional aG = 5,9 x 10-39

Por otro lado, la mecánica cuántica considera que la interacción de dos partículas se realiza por el intercambio de otras llamadas «virtuales». Tienen ese nombre porque no son observables: existen por un tiempo brevísimo, tanto más corto cuanto mayor sea su masa, siempre que no se viole el principio de incertidumbre de Heisenberg de la teoría cuántica (que en este contexto dice que el producto de la incertidumbre de la energía por el tiempo de vida debe ser igual o mayor que una constante muy pequeña). Desaparecen antes de que haya tiempo para que su interacción con otras partículas delate su existencia.

Monografias.com

                                 El fotón  virtual común se desplaza hacia la partícula menos energética.

Dos partículas interactúan al emitir una de ellas una partícula virtual que es absorbida por la otra. Su emisión y absorción cambia el estado de movimiento de las originales: están en interacción. Mientras menos masa tiene la partícula virtual, más lejos llega, mayor es el rango de la interacción. El alcance de la interacción es inversamente proporcional a la masa de la partícula portadora o intermedia. Por ejemplo, la partícula portadora de la fuerza electromagnética es el fotón, de masa nula y, por lo tanto, alcance infinito. La interacción gravitacional también tiene alcance infinito y debe corresponder a una partícula de masa nula: se le denomina gravitón. Naturalmente tiene que ser neutro. (Aún no ha sido vistos ni en pelea de perros).

Resultado de imagen de Bosones W+, W- y Zª

Como ya hicimos mención de ello, a las fuerzas nucleares se les asocian también partículas portadoras. Para la interacción débil estas partículas se llaman bosones intermedios, expresados como W+, W- y Zº (neutro). El W- es antipartícula del W+. Los W tienen masas elevadas comparadas con las otras partículas elementales. Lo de bosones les viene porque tienen spin entero, como el fotón y el gravitón, que también los son, pero que tienen masas nulas. Las fuerzas fuertes son mediadas por unas partículas conocidas como gluones, de los cuales habría ocho. Sin embargo, ellos no tienen masa, pero tienen algunas de las propiedades de los quarks, que les permiten interactuar entre ellos mismos. Hasta ahora no se han observado gluones propiamente tal, ya que lo que mencionamos en párrafos anteriores corresponde a un estado de la materia a la que llamamos plasma. Claro está, que es posible que un tiempo más se puedan detectar gluones libres cuando se logre aumentar, aún más, la temperatura, como está previsto hacerlo en el acelerador bautizado como “Relativistic Heavy Ion Collider”, empotrado en Estados Unidos de Norteamérica.

TABLA DE LAS PRINCIPALES PROPIEDADES DE LAS PARTÍCULAS PORTADORAS DE LAS INTERACCIONES FUNDAMENTALES

tabla3

Una partícula y su antipartícula no pueden coexistir si están suficientemente cerca como para interactuar. Si ello ocurre, ellas se destruyen mutuamente: hay aniquilación de las partículas. El resultado es radiación electromagnética de alta energía, formada por fotones gamma. Así, si un electrón está cercano a un positrón se aniquilan en rayos gamma. Igual con un par protón-antiprotón muy próximos.

La reacción inversa también se presenta. Se llama «materialización o creación de partículas» de un par partícula-antipartícula a partir de fotones, pero se requieren condiciones físicas rigurosas. Es necesario que se creen pares partícula-antipartícula y que los fotones tengan una energía mayor que las masas en reposo de la partículas creadas. Por esta razón, se requieren fotones de muy alta energía, de acuerdo a la relación de Einstein E=mc2 . Para dar nacimiento a electrones/positrones es necesario un campo de radiación de temperaturas mayores a 7×109 °K. Para hacer lo mismo con pares protón/antiprotón es necesario que ellas sean superiores a 2×1012 °K. Temperaturas de este tipo se producen en los primeros instantes del universo.

Resultado de imagen de Gran emisión de rayos gamma

Resultado de imagen de Gran emisión de rayos Gamma

Se detectan grandes emisiones de rayos gamma en explosiones supernovas y otros objetos energéticos

Los rayos gamma están presentes en explosiones de supernovas, colisión de estrellas de neutrones… Todos los sucesos de altas energías los hace presente para que nuestros ingenios los detecten y podamos conocer lo que la materia esconde en lo más profundo de sus “entrañas”. Aún no hemos podido conocer en profundidad la materia ni sabemos, tampoco, lo que realmente es la luz.

emilio silvera

¡La perfección! ¿No serán simples rumores?

Autor por Emilio Silvera    ~    Archivo Clasificado en Belleza sí    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La mujer más bella

                            Si sabemos verla, la Belleza está por todas partes

Espíritu de belleza, que has consagrado

Con tus propios matices todo aquello sobre lo que brillas

Del pensamiento o la forma Humanos, ¿adonde has ido?

¿Por qué has desaparecido y abandonado nuestra existencia,

Este oscuro Valle de lágrimas, vacío y desolado

El Universo está construido según un plan

cuya profunda simetría está presente de algún

modo en la estructura interna de nuestro intelecto.

El primero pretende ser un himno a la Belleza intelectual de Shelley y, en el segundo Paul Valery, nos transmite la idea de que, la belleza, forma parte de nuestro intelecto humano que, no simplemente valora lo material sino que, de alguna manera, deja un lugar para la excelencia del mundo.

Resultado de imagen de henri poincaré

    El Joven Henry Poincaré

Algunas veces, los físicos teóricos, como los artistias (uno se siente tentado a decir: como otros artistas) se seguían en su trabajo por preocupaciones estéticas tanto como racionales. “Para hacer ciencia, es necesario algo más que la pura lógica”, escribió Poincaré, quien identificaba este elemeto adicional como la intuición, que supone “el sentido de la belleza matemática”. Heisenberg hablaba de “la simplicidad y belleza” de los esquemas matemáticos que la Naturaleza nos presenta.

Usted también debe hacer sentido esto -le dijo a Einstein, la casi temible simplicidad e integridad de la relación que la Naturaleza repentinamente extiende ante nosotros”. Paul Dirac, el físico teórico ingles y enorme matemático, cuya descripción relativista del electrón está a la altura de las obras maestras de Einstein y Bohr, llegó hasta sostemer que “más importante que nuestras ecuaciones se ajusten a los experimentos es que sean bellas”.

La estética es, evidentemente,  subjetiva, y la afirmación de que los físicos buscan la belleza en sus teorías tiene sentido sólo si podemos definir la Belleza. Afortunadamente, esto se puede hacer, en cierta medida, pues la estética científica está iluminada por ese sol central de la simetría.

La simetría es un concepto venerable y en modo alguno inescrutable, que tiene muchas implicaciones en la ciencia y el arte, mucho después de que el físico chino – norteamericano Chen Ning Yang ganase el Premio Nobel por su trabajo en el desarrollo de una teoría de campos basada en la simetría, aún afirmaba que “no comprendo todavía todo el alcance del concepto de simetría”.

Debajo de las manifestaciones visibles y audibles de simetría hay profundas invariancias matemáticas. Los esquemas espirales que se encuentran en el interior del nautilus, en la superficie de los girasoles, por ejemplo, pueden ser presentados por aproximación mediante la serie de Fibonacci, una operación aritmética en la que cada miembro es igual a la suma de los dos precedentes (, 1, 2, 3, 5, 8, 13, 21, 34, …). La razón creada dividiendo cada número de la serie por el número que le sigue se aproxima al valor 0,618.

No es casual  que esta sea la fórmula de la “sección aurea”, una proporción geométrica que aparece en el Partenón, La Mona Lisa y El nacimiento de Venus de Boticelli, y es la base de la octava que se emplea en la músuca occidental desde el tiempo de Bach. Toda la fecunda diversidad de esta simetría particular, expresada en infinidad de modos, desde conchas marinas y las piñas hasta el Clave buien  temperado, deriva, por lo tanto, de una sola unvariancia, la de la serie de Fibonacci. La comprensión de que una sola simetria abstracta podría tener tantas frustíferas y diversas manifestaciones deleitó a los sabios del Renacimiento, quines la citaban como prueba de la eficacia de las matemáticas y de la sutileza de los designios de la Naturaleza sabia. Desde entonces, otras muchas simetías abstractas han sido identificadas en la naturaleza -algunas intactas y otras , “rotas” o estropeadas-, y sus efectos parecen incluso extenderse hasta los cimientos mismos de la materia y la energía.

Partenonhombre de Vitruvio (Leonardo) - Cruz - Planta Catedralmanos y simetría

El Partenón de Atenas. La Grecia clásica , fuente de simetría y canon. presente en todas las imágenes de arriba

La palbra simetría en griego, significa “la misma medida” (sun significa “juntos”, como en sinfonía, una unión de sonidos, metrón, “medición”); así, su etimología nos informa que la simetría para los griegos también significa la “debida proporción” , lo que sugiere que la repetición involucrada debe ser armoniosa y placentera; esto indica que una relación simétrica debe ser juzgada por un criterio estético superior. Pero en la ciencia del siglo XX se puso de relieve el primer aspecto de la vieja  definición: se dice que hay simetría cuando una cantidad medible permanece invariante (lo que significa que no cambia) bajo una transformación (que significa una alteración).

Nosotros, casi todos, hemos conocido la simetría en sus manifestaciones geométricas, o, en el Arte. Cuando decimos, por ejemplo, que una esfera tiene una simetrtía de rotación, lo que tratamos de indicar es que poseer unas características -en este caso, su perfil circular- que permanece invariante en las transformaciones producidas al hacerla rotar. Puede hacerso rotar la esfera en cualquier eje y cualquier grado sin que cambie su perfil, lo cual hace que sea más simétirca, por ejemplo, que un cilibro, que tiene una simetría similarsólo cuando rota alrededor de su eje largo; si rota alrededor de su eje corto, el cilindro se reduce a un círculo.

Korai

Las simetrías son comunes en las esculturas, empezamdo por el desnudo humano, que es (de modo aproximado) bilateralmente simétrico cuando se le contempla de frente o de atrás, y en arquitectura como en los planos de suelo en forma de cruz de las catefrales medievales, y aparecen en todas partes desde el tejido hasta el baile de figuras.

Hay muchas simetrías en la música de Bach, en un pasaje de la Tocata y Fuga en Mi menor (mo he podido encontrar la partitura) traslada arrina y abajo del pentagrama pequeños trios de notas como tiendas de campaña. Excepto con la ocasional diferencia de alguna que otra nota, la construcción tiene una simetría de traslación. Si quitamos un trío cualquiera y lo pusiéramos sobre otro, encajaría perfectamente.

Nos encontramos simetrías en el Universo, en el mundo que habitamos, también en nosotros y, nuestras Mentes, no son una excepción y en ellas subyace una simetría más profunda que trasciende a lo material.

De todas las maneras, es preciso que no perdamos de vista que, la Belleza, como otras muchas cuestiones, está sometida a la relatividad, no todos podemos ver la misma cosa y valorarla de la misma manera. Una imagen nos puede resultar a unos de una belleza extrema, y, a otros, les podría parecer un extraño objeto sin sentido. ?Por qué será eso? Creo que, precisamente es así debido a la diversidad que está presente en nuestras Mentes, y, también, a las circunstancias en las que esté inmerso el observador.

emilio silvera

¿El futuro? ¿Quién lo puede conocer?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Futuro incierto    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                                              ¿Qué papel jugaremos nosotros para cuando esto llegue?

A mí, particularmente, me da mucho miedo un futuro en el que las máquinas sean imprescindibles. En este mismo momento ya casi lo son. ¿Qué haríamos sin ordenadores que mediante sus programas dirigen fábricas, llevan todo el movimiento de las Bolsas del mundo y de los bancos, dirigen los satélites del espacio, llevan a cabo complicadas operaciones quirúrgicas y montan y ensamblan elaborados mecanismos industriales? El mundo quedaría paralizado.

 Resultado de imagen de Robots del futuro que superarán a los humanos

                                                                  Robots que, como Data, superen a los humanos

Pienso en un mundo mucho más avanzado, dentro de 500 – 1.000 años. ¿Qué habrá pasado con los robots?, máquinas cada vez más perfectas que llegarán a autofabricarse y repararse. ¿Cómo evolucionarán a partir de esos procesadores inteligentes de la nanotecnología? ¿Llegarán algún día a pensar por sí mismas? Ahí puede estar uno de los grandes peligros de la Humanidad.

La invención del robot (del checo, robota, trabajo) se debe al esfuerzo de las sociedades humanas por liberarse de las labores más ingratas y penosas a que se ven obligados algunos de sus individuos. En un principio, la apariencia de los robots sólo atendía a las razones prácticas de las funciones que cada modelo tenía que desempeñar, o sea, su morfología estaba aconsejada por criterios funcionales y prácticos.

    No saber donde está el límite… ¡Qué peligro!

Una vez superada la primera fase, el hombre trata de fabricar robots que cada vez sean más semejantes a su creador, y aunque las primeras figuras han sido algo groseras y poco hábiles en sus movimientos, poco a poco se va perfeccionando la imitación de los humanos.

Un robot se diferencia fundamentalmente de una máquina por su capacidad para  funcionar de modo automático sin la acción permanente del hombre. Los primeros robots se mostraron especialmente válidos para llevar a cabo aquellos trabajos sencillos y repetitivos que resultaban tediosos y pesados al hombre (al Ser Humano mejor). También son ideales para el trabajo en el que se está expuesto a cierto peligro o se trabaja con materiales peligrosos en lugares nocivos para los seres vivos

Nuevas generaciones de robots que…, ¿comienzan a ser peligrosos? Tienen cerebros positrónicos

Las máquinas del futuro nos pueden superar. Hemos comenzado a inventar robots que, cada vez son más sofisticados y tienen más prestaciones y, de seguir por ese camino, de no poner unas reglas claras, precisas u rígidas sobre el límite…las cosas podrían salir mal.

Una de las condiciones esenciales que debe tener una máquina-robot para ser considerada como tal es la posibilidad de ser programada para hacer tareas diversas según las necesidades y la acción que de ellos se requieran en cada situación. Y, si llegan a poseer la potestad de pensar por sí mismas, de repentizar soluciones no programadas, de sentir y ser conscientes…¡malo!

Dentro de algunas decenas de años, por ejemplo, no será necesario que ningún astronauta salga al espacio exterior para reparar estaciones espaciales o telescopios como hacen ahora, con riesgo de sus vidas, con el Hubble.

El miedo a los robots del futuro que antes citaba está relacionado con el hecho de que la robótica es el estudio de los problemas relacionados con el diseño, aplicación, control y sistemas sensoriales de los robots.

Ya van quedando muy viejos aquellos robots de primera generación (en realidad brazos mecánicos), muy utilizados en labores de menos precisión de la industria automovilística. Hoy día, los robots que se fabrican, están provistos de sofisticados sistemas “inteligentes” que son capaces de detectar elementos e incluso formas de vida rudimentarias. El proyecto de la NASA en el río Tinto es un ejemplo de ello; allí han utilizado pequeños robots capaces de comunicar datos científicos de los hallazgos en el fondo de un río. Actúan mediante programas informáticos complejos o no, que hacen el trabajo requerido.

… pusieron en marcha el proyecto Ptinto por el Centro de Astrobiología y el proyecto Snorkel por la NASA consistente en probar en dicho río varios robots subacuaticos que buscarían la presencia de vida … Aguas con un PH imposible que, sin embargo, contenía una rica diversidad de vida.

Las necesidades de la industria aeronáutica, poco a poco, han ido exigiendo sistemas de mayor precisión, capaces de tomar decisiones adecuadas en un entorno predefinido en función de las condiciones particulares de un momento dado. Estos ingenios, llamados de segunda generación, poseen instrumentos propios y programación informática dotada de medios de autocorrección frente a estímulos externos variables.

Los sensores utilizados por los sistemas robóticas de segunda generación son, con frecuencia, equipos de cámaras electrónicas digitales que convierten la imagen luminosa recibida desde el exterior en impulsos eléctricos que se comparan con patrones almacenados en un pequeño núcleo de memoria informática. Así mismo, disponen de instrumentos táctiles de alta sensibilidad y de detección de pesos y tensiones.

Robot 'Curiosity'

    Incluso en otros planetas a millones de distancia de la Tierra, realizan los trabajos programados

Los robots de tercera generación emplean avanzados métodos informáticos, los llamados sistemas de inteligencia artificial, y procedimientos de percepción multisensorial (estoy leyendo una maravillosa tesis doctoral de un ingeniero de materiales – hijo de un buen amigo – que es fascinante, y me está abriendo la mente a nuevos campos y nuevos conceptos en el ámbito de la inteligencia artificial. Su nombre es A. Mora Fernández, y tiene la suerte de ser, además, un físico teórico matemático, con lo cual, según lo que puedo deducir de su trabajo, le espera grandes empresas y mi deseo personal es que triunfe en ese complejo mundo de fascinantes perspectivas al que pertenece).

Estos ingenios de tercera generación adoptan algunas características del comportamiento humano al contar con la capacidad para percibir la realidad del entorno desde varias perspectivas y utilizar programas que rigen su propia actuación de modo inteligente. Conscientes de su situación espacial, los robots de tercera generación comprenden directamente el lenguaje humano y lo utilizan para comunicarse con las personas.

                                                 Los Androides del futuro. ¿Tendrán autonomía de pensamiento?

La ciencia robótica, basándose en avanzados principios de la electrónica y la mecánica, busca en la constitución y modo de funcionamiento del cuerpo y del cerebro humano los fundamentos con los que diseñar androides de posibilidades físicas e intelectivas semejantes a los del ser humano.

Nada de esto es ciencia ficción; es lo que hoy mismo ocurre en el campo de la robótica. Aún no podemos hablar de robots con cerebros positrónicos capaces de pensar por sí mismos y tomar decisiones que no le han sido implantados expresamente para responder a ciertas situaciones, pero todo llegará. Ya tienen velocidad, flexibilidad, precisión y número de grados de libertad. ¿Qué hasta donde llegarán? ¡Me da miedo pensar en ello!

  Pronto nos costará distinguirlos

Mecánicamente, el robot ya supera al ser humano; hace la misma tarea, con la misma velocidad y precisión o más que aquél, y tiene la ventaja de que no se cansa, puede continuar indefinidamente desempeñando la tarea en lugares que para nosotros serían imposibles por sus condiciones extremas.

Menos mal que, de momento al menos, el cerebro del ser humano no puede ser superado por un robot, ¿pero será para siempre así? Creo que el hombre es un ser que, llevado por sus ambiciones, es capaz de cometer actos que van encaminados a lograr la propia destrucción y, en el campo de la robótica, si no se tiene un exquisito cuidado, podemos tener un buen ejemplo.

Antes de dotar a estas máquinas de autonomía de obrar y de pensar, debemos sopesar las consecuencias y evitar, por todos los medios, que un robot pueda disponer como un ser humano del libre albedrío, como artificial que es, siempre debe estar limitado y tener barreras infranqueables que le impidan acciones contrarias al bienestar de sus creadores o del entorno.

Es muy importante que los sistemas sensoriales de los robots estén supeditados a los límites y reglas requeridas por los sistemas de control diseñados, precisamente, para evitar problemas como los que antes mencionaba de robots tan avanzados y libre pensadores e inteligentes que, en un momento dado, puedan decidir suplantar a la Humanidad a la que, de seguir así, podrían llegar a superar.

Resultado de imagen de Robots de las películas

                                  Esta simpática imagen ya ha sido superada

Pensemos en las ventajas que tendrían sobre los humanos una especie de robots tan inteligentes que ni sufrirían el paso del tiempo ni les afectaría estar en el vacío o espacio exterior, o podrían tranquilamente, al margen de las condiciones físicas y geológicas de un planeta, colonizarlo fácilmente, aunque no dispusiera de atmósfera, ya que ellos no la necesitarían y, sin embargo, podrían instalarse y explotar los recursos de cualquier mundo sin excepción. ¡Menuda ventaja nos llevarían! Además, lo mismo que nosotros nos reproducimos, los robots se fabricarán unos a otros.  Ni las famosas tres leyes de Asimos me tranquilizan… ¿Las recuerdan?

  1. Un robot no hará daño a un ser humano o, por inacción, permitir que un ser humano sufra daño.
  2. Un robot debe obedecer las órdenes dadas por los seres humanos, excepto si estas órdenes entrasen en conflicto con la 1ª Ley.
  3. Un robot debe proteger su propia existencia en la medida en que esta protección no entre en conflicto con la 1ª o la 2ª Ley.

Pero, ¿quién puede asegurar que con los complejos y sofisticados sensores y elementos tecnológicos avanzados con los que serán dotados los robots del futuro, éstos no pensarán y decidirán por su cuenta? ¡Creo que nadie está en situación de asegurar nada! La amenaza está ahí, en el futuro, y el evitarla sólo depende de nosotros, los creadores. ¡Es tanta nuestra ignorancia! No siempre hemos sabido cuando nos teníamos que parar, y, estamos hablando de crear una nueva especie con inteligencia que nos podría desbancar.

 

Ciertamente hemos imaginado mundos futuros en los que, no parece que las tres leyes de la robótica puedan preservar la integridad física de los humanos. Si los robots alcanzan ese nivel autónomo de pensamiento… Sería, ¡la rebelión de las máquinas! tantas veces vista en la ficción del cine.

¿Que puede impedir que en el futuro los robots tengan conciencia de ser, o, incluso, sentimientos?

“Investigadores españoles han realizado un estudio sobre el impacto que tendrán los robots en la sociedad del futuro. Los resultados son inquietantes: según sus descubrimientos para el año 2020 los robots serán tan “inteligentes” y su interacción con los humanos será tan grande que existirá un desequilibrio tecnológico enorme entre quienes posean o no una estas herramientas.”

Será lo mismo que el que ahora dispone de Ordenador y móvil y el que no.

Parece mentira que, alguna vez, lleguen a sentir… llorar o reir. El día que puedan tomar decisiones por sí mismos… ¡Mal futuro espera a la Humanidad!

Mirando a mi alrededor, de manera clara y precisa, puedo comprobar que el mundo biológico está compuesto por una variedad de seres que, siendo iguales en su origen, son totalmente distintos en sus formas y en sus mentes, y, de la misma manera, al igual que en nuestro planeta Tierra, pasará en otros situados en regiones remotas del espacio. Y, pensando en nuestras vidas, podemos llegar a preguntarnos si todo ésto tiene algún sentido. ¿Para qué tanto esfuerzo y trabajo? ¿No será que estamos preparando el terreno para “seres” artificiales que, mejor dotados que nosotros para salir al espacio exterior, serán los que suplanten a la Humanidad y cumplan finalmente los sueños de ésta, que harán suyos?.

¡Qué lastima! Si ese fuera nuestro destino. ¡Fabricar a una especie artificial para que cumpliera nuestros deseos! Lo cierto es que, nosotros los humanos, no estamos físicamente preparados para viajar a las estrellas, y, de hacerlo, necesitaríamos dotarnos de tanta seguridad que, los costes, serían impensables. Naves como ciudades que nos transportaran muy lejos, y, pensando en que estamos supeditamos a la velocidad de la luz, estas naves-ciudades estarían preparadas para mantener a generaciones.

 

    Ciudades que surcan el hiperespacio y que se pueden situar en los fondos marinos

Nuestro futuro es muy incierto, y, como podemos ver cada día, estamos supeditados a los caprichos de la Naturaleza. Conceptualmente, la biología generalmente va a la saga de la física. Si bien es cierto que las ideas de Darwin sobre la evolución han desplazado la concesión trasnochada y, ¿por qué no?, anti-ilustrada de la creación espacial, pero es cierto que bien entrado el siglo XX, muchos biólogos todavía pensaban instintivamente que los seres humanos representaban la culminación de la evolución, y que nuestra especie no era simplemente el centro del desarrollo evolutivo sino, en realidad, su razón de ser. Y, tales pensamientos, nos pueden dar una idea muy clara del nivel de sabiduría del que podemos presumir.

Ahora sabemos que nuestra contribución al árbol genealógico de la vida es tan periférica y minúscula como la de la Tierra en el Universo. El árbol, tal como lo podemos ver hoy, es realmente frondoso. Desde que surgió la vida en la Tierra, probablemente haya producido cientos de miles de millones, quizás billones, de ramitas, donde cada ramita representa una especie, y Homo sapiens es sólo una más entre ellas. En pocas palabras, nuestra especie ha sido tan cabalmente “periferalizada” por la biología como lo ha sido por la cosmología. Sólo somos una de las formas de vida que habita el Universo y, no es seguro que seámos la más inteligente.

       La vida pudo llegar del Espacio porque, por todo el Espacio están sembrados sus ingredientes

Una vez que hemos comprendido que no somos “los elegidos” y que, estamos en este Mundo, una infinitesimal fracción de una Galaxia de entre cientos de miles de millones de ellas, podemos ser conscientes de que, la humildad será nuestra mejor elección para no equivocarnos y llevarnos decepciones que, en otro caso, serían de consecuencias muy graves. Muchas pueden ser las criaturas que, habitantes de otros mundos, nos pueden superar en inteligencia y conocimientos y, seguramente por eso, porque en nuestro fuero interno algo nos dice que es así, nos estamos preparando para ese futuro que irremediablemente llegará, y, lo único que podemos hacer es crear réplicas de nosotros mismos que, aunque artificiales, puedan representarnos de alguna manera en ese futuro incierto.

                                No podemos saber lo que vendrá. ¡Es tan grande el Universo!

Ese encuentro maravilloso que tantas veces hemos imaginado, es posible que no lo sea tanto. No podemos saber las criaturas que pueden estar presentes en otros mundos y con qué medios puedan contar. Siempre se me hizo cuesta arriba el hecho de que, algún día del futuro, los robots fabricados por nosotros, podrían adquirir la supremacía del planeta. Sin embargo, alguna vez he pensado también que, quizás, sea la única manera de poder hacer frente a lo que vendrá.

Hemos oído en no pocas ocasiones que la realidad supera a la imaginación, y, desde luego, simplemente con ver todo lo que existe en el Universo, podemos dar fe de tal afirmación. ¿Quién iba a pensar hace 150 años en la existencia de Agujeros Negros o Estrellas de Neutrones? Y, de la misma manera que aquí en la Tierra surgieron cientos de miles de especies y formas de vida a lo largo de su historia, ¿qué prohíbe que en otros mundos surgieran también especies de vida que ni podemos imaginar? ¿Y, la Naturaleza? En Japón hemos visto estos días de lo que es capaz y, desde luego nada puede ser descartado.

                    Cualquier cosa puede ser posible, ¡es tan frágil la línea que nos separa del Caos!

Es cierto, nuestras limitaciones son enormes, enorme es también nuestra ignorancia y, si somos conscientes de ello, habremos dado un gran paso para hacer frente a lo que pueda venir. Al menos no nos cogerá desprevenido y, el suceso es menos doloroso cuando se espera.

Sí, es verdad, que a veces, confundimos la ilusión y la euforia del momento con la realidad. Sin embargo, nada más lejos de ser cierto. Vivimos en una falsa seguridad cotidiana que nos hace no pensar en lo que puede llegar: Un accidente, una enfermedad, un meteorito caído del cielo, un terremoto, o, incluso una estrella enana marrón que choque con la Luna y dé al traste con nuestra tranquila vida en este planeta.

 

El destino, ¡tiene tántas bifurcaciones! Parece un laberinto de espejos que lo hace incierto. ¿Cómo evolucionaremos? ¿Crearemos a nuestros destructores? Tenemos que ser consecientes de que jo somos nada especiales, de que la vida prolifera en el Universo por infinidad de mundos, que no podemos tirar por la borda lo que tanto trabajo nos costó conquistar, y, antes de dar algún paso de consecuencias irreversibles… ¡Debemos contar hasta un millón, para que nos dé tiempo a recapacitat!

Pero lo cierto es que, ilusos y tranquilos -de otra manera sería horrible la vida-, seguimos avanzando y, a veces, creyéndonos más de lo que en realidad somos. No podemos negar nuestros éxitos, en estos últimos años hemos sido capaces de determinar los genes responsables de las más variadas manifestaciones de nuestra existencia: susceptibilidad a la obesidad, diferentes tipos de tumores, esquizofrenia, depresión o la mayor o menor capacidad para danza y ritmo. Y, con sorpresa para algunos, se ha podido saber que nuestra secuencia genética sólo difiere un 0’5% de nuestros parientes cercanos neandertales o que tampoco estamos muy lejos, genéticamente hablando, de algunos equinodermos que divergieron de nuestra rama evolutiva hace ahora 500 millones de años. Siendo eso así (que lo es), habrá que ser más humildes y jugar a ser dioses.

Resultado de imagen de Misión Cassini-Huygens

También, al mismo tiempo, hemos construido ingenios que enviados a otros mundos, situados a millones de kilómetros del nuestro, nos mandan imágenes que podemos contemplar tranquilamente sentados en el salón de nuestras casas. Y, paralelamente, se trabaja en cerebros artificiales espintrónicos y, más adelante, positrónicos que ocuparan cuerpos perfectos de robots que, aunque artificiales, algún día llegarán a pensar y sentir. ¿Serán nuestros sucesores? ¿Serán los que finalmente realizarán nuestros sueños de viajar a las estrellas?

Sin embargo, y a pesar de tantas proezas, si en algo sigue la ciencia gateando en la oscuridad, es precisamente en el total desconocimiento de la parte más compleja y delicada de nuestro cuerpo: ¡el Cerebro! ¡Si tuviéramos tiempo!

emilio silvera

El Universo y… ¿Nosotros?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Mente    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

            Heber Doust Curtis

June 27, 1872. Muskegon, Michigan

Heber Doust Curtis fue un astrónomo estadounidense,  conocido por defender en el conocido “Gran Debate”,  la hipótesis de que las conocidas como nebulosas espirales eran galaxias fuera de la Vía Láctea frente a las idea contraria defendida por Harlow Shapley.  La situación era con confusa que, en abril de 1920, Shapley y Herbert Curtis, uno de los principales proponentes de la hipótesis del universo-isla, mantuvieron un debate en el Instituto Smithsoniano, sobre la cuestión de la estructura del universo. Financiado por la National Academy od Sciencie.

Como podréis comprender, por aquellas fechas no existían los grandes telescopios que hoy nos traen ante nuestros ojos las imágenes de los cúmulos de galaxias situados a muchos años-luz del Sistema Solar. Así que, en aquellos tiempos el Debate entre Herbert Curtis y Shapley, fue el no va más y, todavía, es considerado por los Astrónomos  como el equivalente a los famosos debates Huxley-Wilberforce sobre la validez de la evolución.

Shapley presentó sus pruebas del tamaño de la Vía Láctea y Curtis argumentó a favor de la existencia de otras galaxias, como la nuestra. Nadie “ganó” el debate, en primer lugar porque los dos hombres dicutían diferentres temas. Cada uno era correcto en su propio dominio. La Vía Láctrea es realmente muy grande, como aducía Shapley, pero las distancias a las otras galaxias son aún mayores.

 Resultado de imagen de Las Nebulosas

                                             La Nebulosa Cabeza de Caballo en Orión

La Naturaleza de las Nebulosas fue finalmente averiguada en 1923 cuando el Astrónomo Edwin Hubble se convirtió en una de los primeros científicos que pudo utilizar el nuevo telescopio de 100 pulgadas del Monte Wilson, cerca de los Ángeles. Con este instrumento Hubble era capaz de aislar estrellas individuales, incluidas en las Cefeidas variables, en las galaxias cercanas. Utilizando la correlación entre pulsación y brillo desarrollado por Leavitt, Hubble demostró que las distancias a las nebulosas espirales debían medirse en millones de años-luz, distancias mucho mayores que las asignadas por Shapley al tamaño de la Galaxia.

http://kellyoakes.files.wordpress.com/2011/02/nature09681-f2-2.jpg

Una vez más el universo se expandía al aumentar nuestra capacidad para ver en él. No sólo había otros universos islas, sino que estaban mucho más lejos de lo que nadie había podido imaginar nunca. Las Nebulosas espirales eran en realidad sistemas de estrellas como el nuestro, situados a enormes distancias de nosotros. Otras Nebulosas  -las que tienen relativamente pocas estrellas y mucho material diseminado-, son nubes de gas en nuestra propia Galaxia. Para señalar la diferencia entre las dos necesitábamos un telescopio capaz de determinar que un conjunto de nebulosas estaba más distante que el otro. Una vez que se hizo esto, el problema quedó resuelto.

Resultado de imagen de Cúmulos de galaxias

Las galaxias no están distribuidas por el espacio de manera aleatoria o azarosa, sino que tienden a reunirse en estructuras llamadas cúmulos que a su vez están agrupados en supercúmulos que llegan a tener miles o cientos de miles de galaxias. Claro que Hubbkle no podía saber eso y en aquellos tiempos, poder explicar la desiguadad en la distribución de las galaxias constituía uno de los mayores problemas. Incluso algunos, dicen que es el mayor problema de la Cosmología moderna.

Claro que, por importante que pudiera ser el descubrimiento o demostración de Hubble de la existencia de otras galaxias, todavía fue mucho más asombroso que hizo como parte del mismo estudio. Observando las galaxias más cercanas, Hubble podía ver que se alejaban de él, y que cuanto más lejos estaba la galaxia, más rápidamente se movía. Este descubrimiento era tan desconcertante -tan cuajado de implicaciones para la cosmología moderna- que era necesario considerar la base del razonamiento sobre el que hizo Hubble sus afirmaciones.

efecto_doppler

Del Efecto Doppler todos hemos oido hablar y sabemos que, si un coche se nos acerca percibimos las ondas sonaras muy juntas, más fuertes y, cuando pasa de largo y se aleja, las ondas también se alejan y nos suenan más suaves. Esto explica (de manera muy sencilla el efecto Doppler, y también explica como descubrió Hubble la expansión del universo. Lo que sucede con el sonido también sucede con cualquier tipo de onda, desde las olas del océano hasta la luz. En el caso de la Luz, el apretarse de las ondas cuando un objeto se acerca se percibe un desplazamiento hacia el Azul en el color del objeto; al separarse las ondas cuando un objeto se aleja se descubre como un desplazamiento hacia el rojo.

“Las diferentes longitudes de ondas respecto al movimiento de las galaxias a la tierra.”

Lo que en realidad hizo Hubble fue comparar la luz emitida por átomos de elementos conocidos en las galaxias cercanas con la luz de los mismos átomos emitidas en laboratorios terrestres y descubrió que la luz de las galaxias distantes se desplazaba hasta el extremo rojo del espectro, de lo que concluyó que las galaxias se estaban alejando de la Tierra. Al estudiar lo lejos que estaban las galaxias apareció otro modelo, Hubble vio que los datos marcaban una tendencia: cuanto más lejos estaban las galaxias, más elevado era el desplazamiento al rojo.

El descubrimiento de Hubble tiene que ser atribuido en parte, a la buena técnica experimental y en parte a una premonición inspirada en lo que surgiría cuando se pudieran hacer mejores mediciones con aparatos más modernos y tecnologías más avanzadas. Así, especulando, fuimos mejorando los telescopios en las distintas partes del Mundo hasta que llegó el Hubble, el Telescopio Espacial al que se le pudo el nombre de aquel gran Astrónomo.

No sería justo cerrar esta pequeña reseña sin mencionar… ¡Lo que sigue!

Esta ilustración muestra al astrónomo estadounidense Edwin Hubble (1889-1953) y al sacerdote y cosmólogo belga Georges Lemaître (1894-1966). Ambos científicos deben compartir la autoría del descubrimiento, de forma independiente, de la expansión del universo a finales de 1920. A Lemaître también se le atribuye la propuesta de una teoría sobre el origen del universo, que más tarde sería llamada el “Big Bang”. El telescopio de la izquierda es el telescopio Hooker de 100 pulgadas en el Monte Wilson, California. El Telescopio Espacial Hubble está a la derecha. Crédito: NASA, ESA, y A. Feild (STScI)
Hay que reconocerle a Hubble y a Lemaître también, que sus observaciones y experimentos y  ideas, dejaron bien plantada la semilla de lo que más tarde sería el Modelo de nuestro Universo, es decir, el Big Bang.
Llegamos a este mundo sin saber el destino que nos aguarda. Todos venimos de la misma manera. El tiempo pasa igual para todos. Todos nos vamos por el mismo camino. Es la Ley del Universo y, tendemos a confundir las cosas siempre, pintamos ese final que nos espera como algo tétrico y, sin embargo, lo cierto es que, ¡mientras haya muerte hay esperanzas!
“¿Por qué nace la gente? ¿Por qué muere ¿Y por qué pasa tanto tiempo intermedio llevando relojes digitales?
Doug Adams en La guía Hitchhiker para la galaxia.
No hay ninguna duda: si quieres conocer las respuestas a las cuestiones más fundamentales de la ciencia, debes dirigirte a la cosmología. A través de la historia los csmólogos han asumido la tarea de responder a cuestiones como ¿Cómo comenzó el Universo? ¿Cómo está constituido? o ¿Cuál es su futuro? Cuando se hacen estas preguntas a un cosmólogo hoy día, la respuesta la respuesta que se obtiene está expresada en el lenguaje del modelo aceptado en nuestra época: El Big Bang. El modelo es un desarrollo lógico de los descubrimientos acerca de las galaxias realizados por Hubble y algunos otros.
Resultado de imagen de El MOdelo del Big Bang
Es lo mejor que hemos podido construir, el Modelo del Big Bang que, al menos de momento parece que coincide con lo que se ha observado. Un universo en expansión cuyas galaxias se alejan las unas de las otras y es cada vez más frío. Los cosmólogos nos dicen que el universo nació hace ahora unos 13.750 millones de años, durante todo ese tiempo inmenso y para nuestras mentes inimaginable, todo ha estado evolucionando y lo sencillo se convirtió en complejo, los átomos se juntaron para formar moléculas y estas conformar estrellas, mundos y galaxias y, de todo esa complejidad evolucionada, en un mundo perdido en los confines del Universo, en un Sistema Solar perdido en uno de los brazos espirales de la galaxia, surgieron a la vida seres que, como nosotros, llegamos a poder ser conscientes de Ser. Hemos tratado de saber dónde estamos y de donde venimos y, a estas altura de la Historia, seguimos tratando de saber las respuestas.
emilio silvera