Ago
26
Recordar es viajar en el Tiempo
por Emilio Silvera ~ Clasificado en Rumores del saber del mundo ~ Comments (16)
A finales del siglo XIX, poca gente sabía con exactitud a qué se dedicaban los “físicos”. El término mismo era relativamente nuevo. En Cambridge, la física se enseñaba como parte del grado de matemáticas.
En este sistema no había espacio para la investigación: se consideraba que la física era una rama de las matemáticas y lo que se le enseñaba a los estudiantes era como resolver problemas.
En la década de 1.870, la competencia económica que mantenían Alemania, Francia, Estados Unidos, y Gran Bretaña se intensificó. Las Universidades se ampliaron y se construyó un Laboratorio de física experimental en Berlín.
Cambridge sufrió una reorganización. William Cavendish, el séptimo duque de Devonshire, un terrateniente y un industrial, cuyo antepasado Henry Cavendish había sido una temprana autoridad en teoría de la gravitación, accedió a financiar un Laboratorio si la Universidad prometía fundar una cátedra de física experimental. Cuando el laboratorio abrió, el duque recibió una carta en la que se le informaba (en un elegante latín) que el Laboratorio llevaría su nombre.
Primer profesor J. J. Thomson como director del laboratorio
Tras intentar conseguir sin éxito atraer primero a William Thomson, más tarde a lord Kelvin (quien entre otras cosas, concibió la idea del cero absoluto y contribuyó a la segunda ley de la termodinámica) y después a Hermann von Helmohltz, de Alemania (entre cuyas decenas de ideas y descubrimientos destaca una noción pionera del cuanto), finalmente se ofreció la dirección del centro a James Clerk Maxwell, un escocés graduado en Cambridge. Este fue un hecho fortuito, pero Maxwell terminaría convirtiéndose en lo que por lo general se considera el físico más destacado entre Newton y Einstein. Su principal aportación fue, por encima de todo, las ecuaciones matemáticas que permiten entender perfectamente la electricidad y el magnetismo. Estas explicaban la naturaleza de la luz, pero también condujeron al físico alemán Heinrich Hertz a identificar en 1.887, en Karlsruhe, las ondas electromagnéticas que hoy conocemos como ondas de radio.
En el Laboratorio Cavendish de la Universidad de Cambridge, Cockcroft y Walton construyeron este acelerador de 500 kilovolts en 1932. Si lo comparamos con el LHC del CERN nos podemos dar cuenta de cómo la Ciencia ha ido avanzando en relativamente tan poco tiempo y, desde entonces hemos alcanzado un nivel que nos permite trabajar con 14 TeV, una energía de todo punto imposible e impensable en aquellos primeros tiempos.
Maxwell también creó un programa de investigación en Cavendish con el propósito de idear un estándar preciso de medición eléctrica, en particular la unidad de resistencia eléctrica, el ohmio. Esta era una cuestión de importancia internacional debido a la enorme expansión que había experimentado la telegrafía en la década de 1.850 y 1.860, y la iniciativa de Maxwell no solo puso a Gran Bretaña a la vanguardia de este campo, sino que también consolidó la reputación del Laboratorio Cavendish como un centro en el que se trataban problemas prácticos y se ideaban nuevos instrumentos.
Tubo de vacío usado por JJ Thomson en uno de los experimentos realizados para descubrir el electrón. Expuesto en el museo del laboratorio Cavendish. A este hecho es posible atribuir parte del crucial papel que el laboratorio iba a desempeñar en la edad dorada de la Física, entre 1.897 y 1.933. Los científicos de Cavendish, se decía, tenían “sus cerebros en la punta de los dedos.”
Maxwell murió en 1.879 y le sucedió lord Rayleigh, quien continuó su labor, pero se retiró después de cinco años y, de manera inesperada, la dirección pasó a un joven de veintiocho años, Joseph John Thomson, que a pesar de su juventud ya se había labrado una reputación en Cambridge como un estupendo físico-matemático. Conocido universalmente como J.J., puede decirse que Thomson fue quien dio comienzo a la segunda revolución científica que creó el mundo que conocemos.
Ernest Rutherford
Se dedicó al estudio de las partículas radioactivas y logró clasificarlas en alfaa (α), beta (β) y gamma (γ). Halló que la radiactividad iba acompañada por una desintegración de los elementos, lo que le valió ganar el Premio Nobel de Química de 1908. Se le debe un modelo atómico con el que probó la existencia de núcleol en los átomos, en el que se reúne toda la carga positiva y casi toda la masa del átomo. Consiguió la primera transmutación artificial con la colaboración de su discípulo Frederick Soddy.
Henry Cavendish en su Laboratorio
La primera revolución científica comenzó con los descubrimientos de Copérnico, divulgados en 1.543, y los de Isaac Newton en 1.687 con su Gravedad y su obra de incomparable valor Principia Matemática, a todo esto siguió los nuevos hallazgos en la Física, la biología y la psicología.
Pero fue la Física la que abrió el camino. Disciplina en permanente cambio, debido principalmente a la forma de entender el átomo (esa sustancia elemental, invisible, indivisible que Demócrito expuso en la Grecia antigua).
John Dalton
En estos primeras décadas del siglo XIX, químicos como John Dalton se habían visto forzados a aceptar la teoría de los átomos como las unidades mínimas de los elementos, con miras a explicar lo que ocurría en las reacciones químicas (por ejemplo, el hecho de que dos líquidos incoloros produjeran, al mezclarse, un precipitado blanco). De forma similar, fueron estas propiedades químicas y el hecho de que variaran de forma sistemática, combinada con sus pesos atómicos, lo que sugirió al ruso Dimitri Mendeleyev la organización de la Tabla Periódica de los elementos, que concibió jugando, con “paciencia química”, con sesenta y tres cartas en su finca de Tver, a unos trescientos kilómetros de Moscú.
Pero además, la Tabla Periódica, a la que se ha llamado “el alfabeto del Universo” (el lenguaje del Universo), insinuaba que existían todavía elementos por descubrir.
Dimitri Mendeléiev en 1897
La tabla de Mendeleyev encajaba a la perfección con los hallazgos de la Física de partículas, con lo que vinculaba física y química de forma racional: era el primer paso hacia la unificación de las ciencias que caracterizaría el siglo XX.
En Cavendish, en 1.873, Maxwell refinaría la idea de átomo al introducir la idea de campo electromagnético (idea que tomó prestada de Faraday), y sostuvo que éste campo “impregnaba el vacío” y la energía eléctrica y magnética se propagaba a través de él a la velocidad de la luz. Sin embargo, Maxwell aún pensaba en el átomo como algo sólido y duro y que, básicamente, obedecían a las leyes de la mecánica.
El problema estaba en el hecho de que, los átomos, si existían, eran demasiado pequeños para ser observados con la tecnología entonces disponible.
Esa situación empezaría a cambiar con Max Planck, el físico alemán que, como parte de su investigación de doctorado, había estudiado los conductores de calor y la segunda ley termodinámica, establecida originalmente por Rudolf Clausius, un físico alemán nacido en Polonia, aunque lord Kelvin también había hecho algún aporte.
El joven Max Planck
Clausius había presentado su ley por primera vez en 1.850, y esta estipulaba algo que cualquiera podía observar, a saber, que cuando se realiza un trabajo la energía se disipaba convertida en calor y que ese calor no puede reorganizarse en una forma útil. Esta idea, que por lo demás parecería una anotación de sentido común, tenía consecuencias importantísimas.
Dado que el calor (energía) no podía recuperarse, reorganizarse y reutilizarse, el Universo estaba dirigiéndose gradualmente hacia un desorden completo:
cántaro roto…
Una casa que se desmorona nunca se reconstruye así misma, una botella rota nunca se recompone por decisión propia. La palabra que Clausius empleó para designar este fenómeno o desorden irreversible y creciente fue “entropía”: su conclusión era que, llegado el momento, el Universo moriría.
En su doctorado, Planck advirtió la relevancia de esta idea. La segunda ley de la termodinámica evidenciaba que el tiempo era en verdad una parte fundamental del Universo, de la física. Sea lo que sea, el tiempo es un componente básico del mundo que nos rodea y se relaciona con la materia de formas que todavía no entendemos.
La noción de tiempo implica que el Universo solo funciona en un sentido, hacia delante, nunca se está quieto ni funciona hacia atrás, la entropía lo impide, su discurrir no tiene marcha atrás. ¿No será nuestro discurrir lo que siempre marcha hacia delante, y, lo que tenemos por tiempo se limita a estar ahí?
En el Laboratorio Cavendish, me viene a la memoria que fue allí, donde Thomson, en 1.897, realizó el descubrimiento que vino a coronar anteriores ideas y trabajos de Benjanmin Franklin, Euge Goldstein, Wilhelm Röntgen, Henri Becquerel y otros. El descubrimiento del electrón convirtió a la física moderna en una de las aventuras intelectuales más fascinantes e importantes del mundo contemporáneo.
Thomson descubrió el electrón.
Los “corpúsculos”, como Thomson denominó inicialmente a estas partículas, hoy conocidas como electrones, condujo de forma directa al trascendental avance realizado una década después por Ernest Rutherford, quien concibió el átomo como una especie de “sistema solar” en miniatura, con los electronesdiminutos orbitando alrededor de un núcleo masivo como hacen los planetas alrededor del Sol. Rutherford demostró experimentalmente lo que Einstein había descubierto en su cabeza y revelado en su famosa ecuación, E = mc2 (1905), esto es que la materia y la energía eran esencialmente lo mismo.
Todo aquello fue un gran paso en la búsqueda del conocimiento de la materia. El genio, la intuición y la experimentación han sido esenciales en la lucha del ser humano con los secretos, bien guardados, de la N
emilio silvera
Ago
25
La Gravedad…Esa fuerza misteriosa.
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Dos nuevos estudios realizados por investigadores de Australia, Austria y Alemania han puesto en entredicho la en la que entendemos la física de la gravedad. Los descubrimientos, publicados en las revistas Astrophysical Journal y Monthly Notices of the Royal Astronomical Society, se basan en observaciones de galaxias enanas satélite o galaxias más pequeñas que se encuentran en el extrarradio de la gran galaxia espiral que es la Vía Láctea.
La Gran Nube de Magallanes, una pequeña galaxia satélite de la Vía Láctea
La Ley de la gravitación universal de Newton, publicada en 1687, sirve explicar cómo actúa la gravedad en la Tierra, por ejemplo por qué cae una manzana de un árbol. El profesor Pavel Kroupa del Instituto de Astronomía Argelander de la Universidad de Bonn (Alemania) explicó que «a pesar de que su ley describe los efectos cotidianos de la gravedad en la Tierra, las cosas que podemos ver y medir, cabe la posibilidad de que no hayamos sido capaces de comprender en absoluto las leyes físicas que rigen realmente la fuerza de la gravedad».
La ley de Newton ha sido puesta en entredicho por distintos cosmólogos modernos, los cuales han redactado teorías contradictorias sobre la gravitación que intentan explicar la gran cantidad de discrepancias que se dan las mediciones reales de los sucesos astronómicos y las predicciones basadas en los modelos teóricos. La idea de que la «materia oscura» pueda ser la responsable de estas discrepancias ha ganado muchos adeptos durante los últimos . No obstante, no existen pruebas concluyentes de su existencia.
En investigación, el profesor Kroupa y varios colegas examinaron «galaxias enanas satélite», cientos de las cuales deberían existir en la cercanía de las principales galaxias, incluida la Vía Láctea, según indican los modelos teóricos. Se cree que algunas de estas galaxias menores contienen tan sólo unos pocos millares de estrellas (se estima que la Vía Láctea, por ejemplo, contiene más de 200.000 millones de estrellas).
No obstante, a día de hoy sólo se ha logrado detectar treinta de estas galaxias alrededor de la Vía Láctea. Esta situación se atribuye al hecho de que, al contener tan pocas estrellas, su luz es demasiado débil como para que podamos observarlas una distancia tan lejana. Lo cierto es que este estudio tan detallado ha deparado resultados sorprendentes.
«En primer lugar, hay algo extraño en su distribución», indicó el profesor Kroupa. «Estas galaxias satélite deberían estar distribuidas uniformemente alrededor de su galaxia madre, no es el caso.»
Los investigadores descubrieron que la totalidad de los satélites clásicos de la Vía Láctea (las once galaxias enanas más brillantes) están situados prácticamente en un mismo plano que dibuja una especie de disco. También observaron que la mayoría de estas once galaxias rotan en la misma dirección en su movimiento circular alrededor de la Vía Láctea, de muy similar a como lo hacen los planetas alrededor del Sol.
Grupo Local de Galaxias
La explicación de los físicos a estos fenómenos es que los satélites debieron surgir de una colisión galaxias más jóvenes. «Los fragmentos resultantes de un acontecimiento así pueden formar galaxias enanas en rotación», explicó el Dr. Manuel Metz, también del Instituto de Astronomía Argelander. Éste añadió que «los cálculos teóricos nos indican la imposibilidad de que los satélites creados contengan materia oscura».
Estos cálculos contradicen otras observaciones del equipo. «Las estrellas contenidas en los satélites que hemos observado se mueven a mucha más velocidad que la predicha por la Ley de la gravitación universal. Si se aplica la física clásica, esto sólo atribuirse a la presencia de materia oscura», aseveró el Dr. Metz.
Este enigma nos indica que quizás se hayan interpretado de incorrecta algunos de los principios fundamentales de la física. «La única solución posible sería desechar la Ley de la gravitación de Newton», indicó el profesor Kroupa. «Probablemente habitemos un universo no Newtoniano. De ser cierto, nuestras observaciones podrían tener explicación sin necesidad de recurrir a la materia oscura.»
Universo sin la materia oscura
Hasta , la Ley de la gravitación de Newton sólo ha sido modificada en tres ocasiones: incluir los efectos de las grandes velocidades (la teoría especial de la relatividad), la proximidad de grandes masas (la teoría general de la relatividad) y las escalas subatómicas (la mecánica cuántica). Ahora, las graves inconsistencias reveladas por los obtenidos sobre las galaxias satélite respaldan la idea de que hay que adoptar una «dinámica newtoniana modificada» (MOND) para el espacio.
Según un nuevo análisis, unos datos recientes sobre galaxias ricas en gas coinciden exactamente con la predicción hecha por una teoría conocida como MOND, la cual constituye una modificación de la gravedad con respecto a los planteamientos teóricos más aceptados.
predicción, la última de varias hechas a la luz de esta teoría y que han tenido acierto, despierta nuevas dudas sobre la precisión del modelo cosmológico hoy vigente del universo.
La teoría MOND, propuesta en 1981, modifica la segunda ley de la dinámica de Newton para que con ella se pueda explicar la rotación a velocidad uniforme de las galaxias, que contradice las predicciones newtonianas que afirman que la velocidad de los objetos separados del centro será menor.
Los nuevos descubrimientos poseen implicaciones de gran calado para la física fundamental y para las teorías sobre el Universo. Según el astrofísico Bob Sanders de la Universidad de Groningen (Países Bajos), «los autores de artículo aportan argumentos contundentes. Sus resultados coinciden plenamente con lo predicho por la dinámica newtoniana modificada, pero completamente contrarios a la hipótesis de la materia oscura. No es normal encontrarse con observaciones tan concluyentes.»
Claro que, todos estos nuevos derroteros y atisbos de teorías (hay algunas más circulando por ahí), no son más que demostraciones de la insatisfacción que algunos sienten al comprender que…, ¡falta algo! y, yo personalmente en mi modestia y con humildad, me decanto por el simple hecho de que aún, no conocemos a fondo eso que llamamos Gravitación que debe ser mucho más amplia de lo que nos dijo Einstein y, no me extrañaría que, incluso eso que llamamos “materia oscura” no sea otra cosa que un continuo de esa Gravedad, es decir, la desconocida y que, al ser ignorantes de su existencia, nos hemos inventado “la materia oscura” que nos cuadren los números.
Para más información, consulte:
Instituto Argelander de Astronomía:
http://www.astro.uni-bonn.de
Astrophysical Journal:
http://www.iop.org/EJ/journal/apj
Monthly Notices of the Royal Astronomical Society:
http://www.wiley.com/bw/journal.asp?ref=0035-8711
Ago
25
Transportarse a otro mundo sin salir de este nuestro
por Emilio Silvera ~ Clasificado en Canción de desamor ~ Comments (0)
Sarah Brightman – Scarborough Fair – YouTube
Perejil, salvia, romero y tomillo (Parsley, Sage, Rosemary and Thyme), una pócima de amor muy popular en la Edad Media, son las palabras que se repiten en la popular Scarborough Fair, una canción tradicional inglesa del siglo XII de autor desconocido que multitud de versiones y letras diferentes aunque la más conocida es laSarah Brightman que la canta con una delicadeza y hechizo incomparables.
Scarborough Fair hace referencia a la Feria de Scarborough, localidad situada en la costa del Mar del Norte en el condado de Yorkshire, que en tiempos medievales representaba uno de los mayores puntos comerciales de toda Inglaterra, con un enorme mercado junto al mar que se prolongaba 45 días a partir del 15 de agosto.
La canción Scarborough Fair es una historia de desamor y trata de un joven abandonado por su novia que pide a quien vaya a la feria que reclame a su antigua amada cosas imposibles recuperar su amor. Cuando la canta una nujer, ella es, la abandonada.
Tristeza y una profunda emoción es lo que expresa este tema cuya clave son cuatro de las hierbas más importantes de la cocina europea: perejil, salvia, romero y tomillo que se repiten en el segundo verso de estrofa como símbolos de las virtudes que representan:
* el perejil atenúa el amargor
* la salvia simboliza la salud y longevidad
* el romero representa la lealtad, fortaleza y amor
* el tomillo significa valentía y coraje
Scarborough Fair es una canción atemporal y universal que, sin importar su procedencia, llega por igual a los corazones de todos los que la oyen cantar si tienen algo de sensibilidad. la oí cantar por primera vez a Sarah Brightman, me quedé hechizado por la calidad voz y embelezado por la historia contada.
No sólo de Pan vive el hombre
Ago
25
Siempre buscando respuestas sobre el Universo y la Vida
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (0)
La NASA y la ESA, hace algunos años ya que comenzaron a colaborar en una nueva generación de proyectos que podrían usar una tecnología de nuevo cuño. La crisis económica por la que estamos pasando todos, ha hecho que finalmente, muchos de edsos proyectos se fusionen en un Proyecto verdaderamente global, y, se llevan a cabo mediante la colaboración de diversas Entidades y Organismos de diferentes paises que participan en la aventura del Espacio para saber del Universo y, poco a poco, ir descubriendo sus secretos.
La sonda Gaia de la ESA descubrió su primera supernova en una galaxia distante a unos 500 millones de años-luz de distancia, siendo el primer fenómeno de este tipo que encuentra desde su lanzamiento el 19 de diciembre de 2013.
Sería una colaboración entre todos los expertos de renombre que hay en la Tierra para buscar la prueba de que no estamos solos en el Universo -Gaia en su conjunto buscando otras Gaias- El Proyecto de la Agencia Espacial Europea se conoce como el proyecto Darwin, pero también se denomina de una manera más prosaica, Interferómetro Espacial de Infrarrojos (IRSI = Infrared Space Interferometer); equivalente al de la NASA denominado Terrestrial Planet Zinder (TPF). Los dos proyectos funcionaron según los mismos principios.
Más de cien moléculas diferentes han sido identificadas hasta hoy en las densas nubes de gas y polvo del medio interestelar y, algunas de ellas, son esenciales para la la formación de estructuras básicas para la vida. Entre otras muchas, han detectado la presencia de naftaleno en el medio interestelar en dirección a la estrella Cernis52, en la constelación de Perseo. Esta molécula está formada por dos anillos de átomos de carbono en forma hexagonal rodeados por átomos de hidrógen. También han sido detectadas moléculas de azúcares en algunas nebulosas gigantes conocidas como nubes moleculares.
De estas moléculas, ochenta y tres contienen carbono, entre las que se encuentran el ácido cianhídrico HCN, el amoníaco NH3 y el formaldehído H2CO. Moléculas precursoras que generalmente conducen a los aminoácidos. Para verificar que la síntesis de aminoácidos en las condiciones del medio interestelar es posible, una mezcla de hielo de agua, amoníaco, metanol, monóxido y dióxido de carbono ha sido irradiada en el Laboratorio de Astrofísica de Leyde en Holanda, en condiciones que imitan a las del medio interestelar (vacío impulsado de 10-7 mbar, y temperatura de -261°C).
Pero, ¿es fácil localizar planetas como la Tierra?
Sin embargo, por sorprendente que pueda parecer, especialmente después de ver las imágenes de la Tierra tomadas desde el espacio, en las cuales ésta aparece como una brillante bola azul y blanca sobre un fondo oscuro, la luz visible no ofrece las mejores perspectivas para detectar directamente otros planetas similares a la Tierra. Esto es así por dos razones:
En primer lugar, la luz visible que se recibe desde un planeta como la Tierra es en esencia el reflejo de la luz procedente de su estrella progenitora, por lo que no sólo es relativamente débil, sino que resulta muy difícil de captar a distancias astronómicas sobre el fondo iluminado por el resplandor de dicha estrella.
En segundo lugar, los planetas del tipo de la Tierra alcanzan en realidad su brillo máximo en la parte de rayos infrarrojos del espectro electromagnético, por el modo en que la energía absorbida procedente del Sol vuelve a irradiarse en la zona de infrarrojos de dicho espectro, con longitudes de onda más largas que las de la luz visible.
En una longitud de onda de unas pocas micras, la Tierra es el planeta más brillante del Sistema solar y destacaría como un objeto impactante si se utiliza cualquier telescopio de infrarrojos suficientemente sensible situado en nuestra proximidad estelar. El problema es que, dado que la radiación de infrarrojos es absorbida por los propios gases de la atmósfera terrestre, como el dióxido de carbono y el vapor de agua, que son lo que nos interesa descubrir, el telescopio que se utilice para buscar otros planetas como la Tierra tendrá que ser colocado en las profundidades del espacio, lejos de cualquier fuente potencial de contaminación. También tendrá que ser muy sensible, lo que significa muy grande. De ahí que estemos hablando de un proyecto internacional muy caro que tardará décadas en llevarse a buen puerto haciéndolo una realidad.
La sola presencia de gases como el dióxido de carbono y el vapor de agua no es suficiente como un signo de vida, pero sí de la existencia de planetas del tipo de la Tierra en el sentido de que tendrían una atmósfera como Venus y Marte, mientras que, en particular, la presencia de agua indicaría la probabilidad de que existiera un lugar adecuado para la vida.
La evolución de la materia creada en las estrellas alcanzó un nivel inusitado en seres que, como nosotros, pudieron llegar a comprender el Universo, generar pensamientos y sentir de una manera tal que nos lleva a un nivel superior, hasta tal punto de, sin pensarlo, dar la vida por los seres amados.
En realidad, cuando se estudian de forma detenida y pormenorizada los mecanismos del Universo, podemos ver la profunda sencillez sobre la que este se asienta. Los objetos más complejos del Universo conocido son los seres vivos, como, por ejemplo, nosotros mismos.
Estos sistemas complejos están hechos de las materias primas más comunes que existen en Galaxias como la Vía Láctea. En forma de aminoácidos estas materias primas se ensamblan de manera natural, dando lugar a sistemas autoorganizadores donde unas causas subyacentes muy sencillas pueden producir complejidad en la superficie, como en el caso del tigre y sus manchas. Finalmente, con el fin de detectar la presencia de esta complejidad máxima de unos sistemas universales no necesitamos ninguna prueba sofisticada para distinguir la materia viva de la materia “inerte”, si no únicamente las técnicas más sencillas (aunque asistidas por tecnologías altamente avanzadas) para identificar la presencia de uno de los compuestos más simples del universo: El oxígeno.
El caos y la complejidad se combinan para hacer del universo un lugar muy ordenado que es justo el entorno adecuado para formas vivas como nosotros mismos. Como dijo Stuart Kauffman, “en el universo estamos en nuestra propia casa”. Sin embargo, no es que el universo se haya diseñado así para beneficiarnos a nosotros. Por el contrario, lo que sucede es que estamos hechos a imagen y semejanza del universo.
Planteémonos una simple pregunta: Dadas las condiciones que imperaban en la Tierra hace cuatro mil millones de años, ¿qué probabilidades había de que surgiera la vida?
No basta con responder que “la vida era inevitable, puesto que nosotros estamos aquí “. Obviamente, la vida sí se inició: nuestra existencia lo demuestra. Pero ¿tenía que iniciarse? En otras palabras, ¿era inevitable que emergiera la vida a partir de un combinado químico y radiado por la energía interestelar y después de millones de años?
Nadie conoce una respuesta exacta a esta pregunta. El origen de la vida, según todos los indicios y datos con los que hoy contamos, parece ser un accidente químico con una alta probabilidad de reproducirse en otros lugares del Universo que sean poseedores de las condiciones especiales o parecidas a las que están presentes en nuestro planeta.
Es probable que, como ocurre aquí en la Tierra, las formas de vida más abundantes en el espacio exterior, sean las Bacterias y demás dominios del mundo microscópico de la vida, y, más difícil será seres inteligentes como nosotros…sin descartar su existencia. Simplemente se trata de hacer unas sencillas cuentas. La vida en la Tierra está presente desde hace unos 4.000 millones de años pero, nosotros, sólo tenemos una antigüedad de unos escasos tres millones de años. La Evolución es lenta y se ha necesitado mucho tiempo para que podamos estar aquí, de la misma manera, ocurrirá en esos mundos perdidos por el espacio y, si están en sus fases primeras, la posible vida existente en ellos…será bacteriana.
Pero la vida, no consiste solo en ADN, genes y replicación. Es cierto que, en un sentido biológico estricto, la vida está simplemente ocupada en replicar genes. Pero el ADN es inútil por sí sólo. Debe construir una célula, con todas sus sustancias químicas especializadas, para llevar a cabo realmente el proceso de replicación. En las denominadas formas de vida superior debe construir un organismo completo para que tenga todos los requisitos exigidos para que pueda replicarse. Desde la perspectiva de un genoma, un organismo es una manera indirecta de copiar ADN.
Sería muy laborioso y complejo explicar aquí de manera completa todos y cada uno de los pasos necesarios y códigos que deben estar presentes para formar cualquier clase de vida. Sin embargo, es necesario dejar constancia aquí de que los elementos necesarios para el surgir de la vida sólo se pueden fabricar en el núcleo de las estrellas y en las explosiones de supernovas que pueblan el universo para formar nebulosas que son los semilleros de nuevas estrellas y planetas y también de la vida.
Se descubrirán mundos con extrañas formas de vida, con ADN y ARN totalmente diferentes
El surgir de la vida en nuestro Universo puede ser menos especial de lo que nosotros pensamos, y, en cualquier lugar o región del Cosmos pueden estar presentes formas de vida en condiciones que para nosotros podría ser como las del infierno.
Hace varias décadas, los biólogos quedaron sorprendidos al descubrir bacterias que vivían confortablemente a temperaturas de setenta grados Celsius. Estos microbios peculiares se encontraban en pilas de abonos orgánicos, silos e inclusos en sistemas domésticos de agua caliente y fueron bautizados como termófilos.
Resultó que esto era sólo el principio. A finales de los años setenta la nave sumergible Alvin, perteneciente al Woods Hole Océano Graphic Institute, fue utilizada para explorar el fondo del mar a lo largo de la Grieta de las Galápagos en el océano Pacífico. Este accidente geológico, a unos dos kilómetros y medio bajo la superficie, tiene interés para los geólogos como un ejemplo primordial de las chimeneas volcánicas submarinas conocidas como “húmeros negros “. Cerca de un humero negro, el agua del mar puede alcanzar temperaturas tan altas como trescientos cincuenta grados Celsius, muy por encima del punto de ebullición normal. Esto es posible debido a la inmensa presión que hay en dicha profundidad.
El término termófilo se aplica a organismos vivos que pueden soportar temperaturas imposibles y vivir en lugares de aguas calientes y sulfurosas, en terrenos de alto índice de salinidad o de Ph no apto para seres vivos, así como en lugares y situaciones que, se podrían, sin lugar a ninguna duda, comparar con otros existentes en el exterior, planetas y lunas sin atmósfera o de atmósfera reducida o demasiado densas.
Resultó que esto era sólo el principio. A finales de los años setenta la nave sumergible Alvin, perteneciente al Woods Hole Océano Graphic Institute, fue utilizada para explorar el fondo del mar a lo largo de la Grieta de las Galápagos en el océano Pacífico. Este accidente geológico, a unos dos kilómetros y medio bajo la superficie, tiene para los geólogos como un ejemplo primordial de las chimeneas volcánicas submarinas conocidas como “húmeros negros “. Cerca de un humero negro, el agua del mar puede alcanzar temperaturas tan altas como trescientos cincuenta grados Celsius, muy por encima del punto de ebullición normal. Esto es posible debido a la inmensa presión que hay en dicha profundidad.
Fumarola negra descubierta en el Caribe
Lugares como este permitieron la proliferación de pequeños seres vivos que, al calor de sus emisiones de gases tóxicos (de los que se alimentaban) salieron adelante y se expandieron de una manera bastante prolífica. Se cree que en lugares como este pudieron surgir especímes que evolucionaron hacia otros niveles. De hecho se han descubierto unas lombrices que viven ahí tan ricamente.
La favorita de estas lombrices es el azufre, no necesita oxígeno para nada. Se basta, en concreto, con el sulfuro de hidrógeno que sale de las chimeneas termales. Sale hirviendo así que las lombrices tienen que sorber con cuidado. Usan esas plumas rojas para captar el sulfuro. Las plumas, tienen ese color debido a la hemoglobina, esa sustancia que tambien nosotros tenemos en la sangre y nos ayuda a transportar el oxígeno. A ellas les ayuda a transportar azufre, lo cual nos mataría a nosotros enseguida.
Para asombro de los científicos implicados en el proyecto Alvin la región en torno a los húmeros negros de las Galápagos y otros lugares de las profundidades marinas resultó estar rebosante de vida. Entre los moradores más exóticos de las profundidades había cangrejos y gusanos tubulares gigantes. También había bacterias termófilas ya familiares en la periferia de los húmeros negros. Lo más notable de todo, sin embargo, eran algunos microbios hasta entonces desconocidos que vivían muy cerca de las aguas abrasadoras a temperaturas de hasta ciento diez grados Celsius. Ningún científico había imaginado nunca seriamente que una forma de vida pudiera soportar calor tan extremo.
Resultó que las aguas rojas del Tinto estaban llenas de vida a pesar del PH imposible
Igualmente se han encontrado formas de vida en lugares de gélidas temperaturas y en las profundidades de la tierra. Así mismo, la NASA ha estado en un pueblo de Huelva para estudiar aguas con un PH imposible para la vida y cargada de metales pesados que, sin embargo, estaba rebosante de vida. El proyecto de estos estudios se denomina P-TINTO, ya que, las aguas a las que nos referimos son precisamente las del Río Tinto, llenas de extremófilos.
La anterior reseña viene a confirmarla enorme posibilidad de la existencia de vida en cualquier parte del universo que está regido por mecanismos iguales en cualquiera de sus regiones, por muchos años luz que nos separen de ellas. En comentarios anteriores dejamos claro que las Galaxias son lugares de autorregulación, y, podríamos considerarlos como organismos vivos que se regeneran así mismos de manera automática luchando contra la entropía del caos de donde vuelve a resurgir los materiales básicos para el nacimiento de nuevas estrellas y planetas donde surgirá alguna clase de vida.
La idea de que la vida puede tener una historia se remonta a poco más de dos siglos. Anteriormente, se consideraba que las especies habían sido creadas de una vez para siempre. La vida no tenía más historia que el Universo. Sólo nosotros, los seres humanos, teníamos una historia. Todo lo demás, el Sol y las estrellas, continentes y océanos, plantas y animales, formaban la infraestructura inmutable creada para servir como fondo y soporte de la aventura humana. Los fósiles fueron los primeros en sugerir que esta idea podía estar equivocada.
Durante cerca de tres mil millones de años, la vida habría sido visible sólo a través de sus efectos en el ambiente y, a veces , por la presencia de colonias, tales como los extremófilos que asociaban billones de individuos microscópicos en formaciones que podrían haber pasado por rocas si no fuera por su superficie pegajosa y por sus colores cambiantes.
Toda la panoplia de plantas, hongos y animales que en la actualidad cubre el globo terrestre con su esplendor no existía. Sólo había organismos unicelulares, que empezaron con casi toda seguridad con bacterias. Esa palabra, “bacteria”, para la mayoría de nosotros evoca espectros de peste, enfermedades, difteria y tuberculosis, además de todos los azotes del pasado hasta que llegó Pasteur. Sin embargo, las bacterias patógenas son sólo una pequeña minoría, el resto, colabora con nosotros en llevar la vida hacia delante, y, de hecho, sin ellas, no podríamos vivir. Ellas, reciclan el mundo de las plantas y animales muertos y aseguran que se renueve el carbono, el nitrógeno y otros elementos bioquímicos.
Por todas estas razones, podemos esperar que, en mundos que creemos muertos y carentes de vida, ellas (las bacterias) estén allí. Están relacionadas con las primeras formas de vida, las bacterias han estado ahí desde hace cerca de 4.000 millones de años, y, durante gran parte de ese tiempo, no fueron acompañadas por ninguna otra forma de vida.
Pero, ¿No estamos hablando del Universo? ¡Claro que sí! Hablamos del Universo y, ahora, de la forma más evolucionada que en él existe: Los seres pensantes y conscientes de SER, nosotros los humanos que, de momento, somos los únicos seres inteligentes conocidos del Inmenso Universo. Sin embargo, pensar que estamos solos, sería un terrible y lamentable error que, seguramente, nos traería consecuencias de difícil solución.
Otros mundos, otras formas de vida, otras estaciones diferentes a los ciclos de la Tierra ¿Cómo sería la vida de otros seres, cuyo mundo, estuviera alumbrado por dos soles?
Hay que pensar seriamente en la posibilidad de la vida extraterrestre que, incluso en nuestra propia Galaxia, podría ser muy abundante. Lo único que necesitamos es ¡Tiempo! Y, si pensamos con algo de lógica, no desecharemos la idea de que esa vida, como toda la que existe y ha existido en la Tierra, esté también, basada en el Carbono, el elemento de la vida que, por sus características especiales, mejor se adapta a ella.
Tiempo para poder avanzar en el conocimiento que nos lleve, por ejemplo, a poder aprovechar la energía de los Agujeros Negros. Cuando eso llegue, estaremos preparados para dar el salto hacia las estrellas, y, allí, nos esperan sorpresas que ahora, ni podemos sospechar.
Podemos visitar otros mundos sin salir de este. Simplemente con el pensamiento lo podemos crear
Pero, por otra parte, nuestra imaginación, es casi tan grande como el Universo mismo, y, ¡cuando de verdad, nos ponemos a pensar! Cualquier cosa será posible, dentro de los límites impuestos por el propio Universo.
En todo el Universo siempre es lo mismo, rigen las mismas leyes, las mismas fuerzas que ayer mismo quedaron explicadas aquí, e, igualmente, en todas partes está presente la misma Materia.
T O D O |
Quarks | |
Nucleones | ||
Núcleos | ||
Átomos | ||
Moléculas | ||
Sustancias | ||
Cuerpos | ||
Planetas (Vida) | ||
Estrellas | ||
Galaxias | ||
Cúmulos de galaxias |
Siempre he dicho aquí que todo lo grande estñá hecho de cosas pequeñas. Las infinitesimales partículas subatómicas, todas esas familias de los pequeños objetos que interactúan con las fuerzas fundamentales del universo, Quarks para conformar Hadrones (bariones y Mesones) y Leptones, son los pequeños objetos que se unen para formar átomos de materia, éstos de juntan y forman células que, a su vez, unidas crean moléculas que cuando se unen unas a otras construyen objetos más grandes, tan grandes como todos los que podemos contemplar a nuestro alrededor y mirando por un telescopio, todos están hechos de esas minúsculas partículas.
emilio silvera
Ago
24
La puerta a la física del futuro
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Vista del interior de uno de los detectores de partículas del Gran Colisionador de Hadrones (LHC) del CERN en Ginebra, Suiza.
(1) El bosón de Higgs era una de las últimas piezas del puzzle que compone el Modelo Estándar de la Física. Su hallazgo en 2012 se publicó con una certeza de cinco sigmas, es decir con un 99,9% de probabilidades de que se trate del verdadero bosón de Higgs del Modelo Estándar. Así que aún falta completar el análisis de sus propiedades para asegurar al 100% que se trata de la esquiva partícula y no de otro tipo de bosón. Pero si la ronda de colisiones que se están produciendo hoy en día en el LHC (el Gran Colisionador de Hadrones del CERN de Ginebra) confirma los resultados, se podría dar por cerrado el marco conceptual que rige la física conocida.
Pero (según nos dicen), eso sólo explicaría el 5% del Universo. El 95% restante son preguntas abiertas que aún no sabemos contestar: ¿Qué es la materia oscura? ¿Por qué existe una asimetría entre la materia y la antimateria? ¿Qué es la energía oscura que supone el 70% del Cosmos?… Para responder a esas cuestiones los físicos necesitan aceleradores capaces de imitar lo más posible las condiciones que se dieron instantes después del Big Bang, cuando las colisiones de partículas se producían con una energía inmensa.
Llegar más allá de los Quarks
Por ese motivo, el siguiente proyecto que está desarrollando el CERN (el laboratorio europeo de física de partículas) busca multiplicar casi por 10 la energía del acelerador actual, aumentando desde los 13 TeV hasta los 100 TeV. De acuerdo con la más que célebre formulación de Albert Einstein -E=mc2-, se trata de incrementar la energía para generar partículas con mayores masas, más parecidas a las que se generaron tras el Big Bang. Eso abriría una nueva ventana hacia el universo desconocido y permitiría avanzar en el conocimiento de las partículas que forman la materia oscura o, quizá, permita saber por dónde empezar para estudiar la energía oscura, uno de los mayores misterios del Universo a los que los físicos aún no saben ni cómo meter mano. «O quizá encontremos algo completamente nuevo que no está aún en los lápices de los físicos teóricos. Y eso también sería genial», comentó el exdirector del CERN, Rolf Heuer, a este diario.
“ALBA es un sincrotrón, de la red de Infraestructura Científico y Técnica Singular (ICTS) española que está emplazado en Barcelona (Cataluña, España), en el campus de la Universidad Autónoma de Barcelona en Cerdañola del Vallés. La construcción fue cofinanciada a cargo de los presupuestos del Gobierno de España y de la Generalidad de Cataluña. La planificación de las obras y su posterior explotación se llevó a cabo por el Consorcio para la Construcción, Equipamiento y Explotación del Laboratorio de Luz de Sincrotrón (CELLS) con sede en Bellaterra. Esta instalación de última generación permitirá a la comunidad científica española desarrollar investigaciones en el estudio fundamental de la materia para su comprensión y beneficio humano.”
«Es una gran infraestructura que nos tiene que llevar al siguiente paso del conocimiento. Es de una dimensión de casi 4 veces mayor que el LHC y tendrá que ser construido con grandes retos tecnológicos», explicó Francis Pérez, jefe de aceleradores del sincrotrón ALBA de Barcelona, en la presentación de la conferencia El Futuro Colisionador Circular: desafíos técnicos y detectores impartida por Michael Benedikt, jefe del Estudio del Futuro Colisionador Circular, y por José Miguel Jiménez, director del Departamento de Tecnología del CERN, en la Fundación BBVA.
De momento, es un proyecto en fase de estudio, no es una iniciativa financiada que esté ya en marcha. Pero el grupo que lidera Benedikt ya tiene muy avanzada una propuesta para construir un gran acelerador de partículas en un túnel de 100 kilómetros de diámetro en el área de Ginebra. La idea es aprovechar las instalaciones que ya existen en el CERN, que podrían servir como inyectores del futuro colisionador que se instalaría en la misma localización en la que se encuentra el LHC, de 27 kilómetros de diámetro.
Fuente: El Mundo
(1) Los parámetros aleatorios y metidos con calzador en el Modelo estándar eran 20, y, al descubrir el Boson de Higgs, quedaron en 19 (mucho es lo que nos queda por saber).