viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Física y el Tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

dosnudos.jpg

Para el topólogo, un nudo es una curva continua, cerrada y sin puntos dobles. Esta curva está situada en un espacio de tres dimensiones y se admite que pueda ser deformada, estirada, comprimida, aunque está “prohibido” hacerle cortes. Cuando se puede, a través de diversas manipulaciones, se pasa de un nudo a otro y se dice que son equivalentes. Claro que, algunos se abstraen en cuestiones con otras, al parecer, no relacionadas.

Un viejo amigo bromeaba diciendo que el Andante en do menor de la Sinfonía Concertante de Mozart conseguía devolverle a su intimidad anímica de partida, y que por eso, en su opinión, plasmaba de forma inefable el tiempo cíclico, o mejor aún, una CTC (“curva de género de tiempo cerrada”). Y transcurridos los doce minutos que dura ese movimiento, volvíamos a escucharlo una vez más. Mientras, discutíamossin cesar sobre el tiempo.

                                                       No es bueno perder la perspectiva

Hay un tiempo para cada cosa. Un tiempo para soñar, inconmensurable, un tiempo para vivir, siempre corto, un tiempo para filosofar, misterioso,…, y un tiempo para la ciencia, sujeto a número.

Me gustaría empezar definiendo el tiempo, pero no sé. Sesudos pensadores, como Platón y Aristóteles, lo ensayaron con brillantez. El tiempo es una imagen móvil de la eternidad. Esta imagen es eterna, pero se mueve según número, dirá Platón en el TIMEO. El tiempo es el número de movimiento según el antes y el después…El tiempo no es movimiento, sino movimiento en tanto en cuanto admite enumeración. El tiempo es una especie de número. El tiempo es obviamente aquello que se cuenta, no aquello con lo cual contamos, escribirá Aristóteles en su FÍSICA.

http://jovenespepe.files.wordpress.com/2010/08/ecleciastes.jpg

           Alguna vez, en simbiosis con la Naturaleza, podemos sentir como se ha parado el tiempo

Son definiciones muy sugestivas, aunque teñidas de circularidad: movimiento en el tiempo, tiempo a través del movimiento. Agustín de Hipona vio esto claramente. Célebre es asimismo su declaración: Si nemo a me quaerat, scio; si quaerenti explicari velim, nescio (CONFESIONES). En uno de los análisis más penetrantes del tema, sugirió Agustín la mente como fuente de tiempo: En ti es, mente mía, donde mido los tiempos.

Time is what happens when nothing else happens, afirma Feynman; para a continuación advertir que toda definición del tiempo es necesariamente circular, y que lo importante no es decir qué es el tiempo, sino decir cómo se mide lo que llamamos tiempo. En su enciclopédico tratado sobre la gravitación, Misner, Thorne y Wheeler nos recuerdan de forma sencilla y profunda lo que toda medida del tiempo físico debe cumplir: Time is defined so that motion looks simple.

El tiempo es un concepto inventado por el hombre para ordenar, primero, sus sensaciones y actos, y luego, los fenómenos. Decían los escolásticos: Tempus est ens rationis cum fundamento in re. La primera unidad natural debió ser el día, por la ciclidad conspicua de las salidas del Sol. Los grandes avances científicos y tecnológicos a lo largo de los siglos han estado vinculados a los adelantos en la precisión con que se ha ido midiendo el tiempo. Hoy disponemos de relojes que aseguran un segundo en 20 millones de años, y el paso de la femtoquímica a la attofísica empieza a ser una realidad.

No pocas veces nos podemos ver perdidos en la vorágina de lo que llamamos tiempo, algo tan enorme que, en realidad, no sabemos lo que es. No lo hemos llegado a comprender, y, por si fuero poco, tampoco sabemos, si en realidad existe.

El tiempo antes de Einstein.

La física nació en torno al tiempo. Las regularidades en los ciclos astrales permitieron al acierto en las predicciones apoyadas en esta periodicidad, y con ello despertó sin duda la confianza del hombre en la racionalidad, inclinándole a escoger el cosmos frente al caos.

Breve historia de la medida del tiempo

La longitud de las sombras fue uno de los primeros métodos usados para fijar las horas. En el Museo Egipcio de Berlín hay un fragmento de piedra que posiblemente sea de un reloj de sol de alrededor de 1500 a.C. Los babilonios desarrollaron los relojes de sol, y se dice que el astrónomo Anaximandro de Mileto los introdujo en Grecia en el siglo VI a.C.

En el siglo II a C, Eratóstenes, de la biblioteca de Alejandría, concibió y llevó a cabo la primera medida de las dimensiones de la Tierra de la que se tiene noticia. En el Año Internacional de la Astronomía, una de las actividades que se llevaron a cabo fue, precisamente averiguar el radio terrestre por el mismo método.

Aparte de relojes de sol, en la antigüedad se usaron también relojes de arena, de agua, cirios y lámparas de aceite graduadas.

En la segunda mitad del siglo XIII aparecen los primeros relojes mecánicos. Su precisión era muy baja (10-20%). En el XIV se mejoran, con el invento del escape de rueda catalina, y ya se alcanzan precisiones de 20 a 30 minutos por día (1-2%). Por allá al año 1345 se empieza a dividir las horas en minutos y segundos.

El tiempo físico asoma en el siglo XIV, en el Merton College Oxford y luego en la Universidad de París, con Oresme. Se representa en una línea horizontal, mientras en vertical se disponen las cualidades variables. Son los primeros gráficos de función (en este caso, función del tiempo). La cinemática celeste brinda un buen reloj a través de la segunda ley de Kepler, midiendo tiempos mediante áreas. La ley armónica de Kepler permitirá medirlos a través de longitudes. Galileo desarrolló la cinemática terrestre, y sugirió el reloj de péndulo. A Huygens debemos la técnica de medida del tiempo que ha llegado a nuestros días, y que suministró relojes más precisos y transportables mediante volantes oscilatorios acoplados a resortes de calidad.

Reloj de péndulo de Huygens

Diseño del reloj de péndulo de Huygens, 1656 (imagen de dominio público).

La importancia, no sólo científica sino económica, de disponer de relojes precisos y estables, queda reflejada en el premio ofrecido por el gobierno inglés de la reina Ana en 1714, que dispuso that a reward be settled by Parliament upon such person o persons as shall discover a more certain and practicable method of ascertainig longitude that any yet in practice. La recompensa era de 20, 000 libras para el que presentara un cronómetro capaz de determinar la longitud con error menor de 30´ de arco al término de un viaje a las Indias occidentales, equivalente a mantener el tiempo con error menor de 2 minutos tras seis semanas de viaje. Se la llevó casi medio siglo después el relojero británico John Harrison (1693-1776), con un reloj, conocido como H4, que incorporaba correcciones por variación en la temperatura, y que en un primer viaje de 81 días desde Porstmouth a Puerto Real (Jamaica) en 1761-62 se retrasó 5 s, esto es, de precisión 10⁻⁶ (10; 44).

Después se pasó a los de diapasón, de aquí a los de cuarzo, y hoy los atómicos ofrecen precisiones desde 10⁻¹² – 10⁻¹⁵ (Cs) hasta 10⁻¹⁶ (máser de H).

Una red de relojes atómicos de cesio, sincronizados mediante ondas de radio, velan actualmente por la exactitud de la hora sobre el planeta. Como señala Davies (10), ya no nos sirve como cronómetro el giro de la Tierra alrededor de su eje. Aunque durante siglos ha sido este viejo trompo un magnífico reloj de referencia, la falta de uniformidad de su giro (las mareas, por ejemplo, lo frenan incesantemente y alargan con ello el día en un par de milésimas de segundo por siglo, perceptible para los finos cronómetros actuales), y otras desviaciones estacionales, cuantitativamente similares a estos retrasos seculares, pero irregulares y de signo variable, son circunstancias que en conjunto obligan a añadir al tiempo civil un segundo intercalar cada uno o dos años (el último lo fue el 1 de enero de 1999, a las 0 horas) con el fin de remediar la asincronía entre los tiempos atómicos y los días astronómicos. El día no tiene 86 400 s justos (donde el segundo se define como la duración de 9 192 631 770 períodos de una determinada vibración de los átomos de Cs. Hoy la tecnología alcanza precisiones fabulosas: relojes que en treinta millones de años se desviarían a lo sumo en un diminuto segundo, como el NIST-F1 (Boulder, Colorado).

Por norma general y para mayor exactitud del sistema, dentro del campo visual de cualquier receptor GPS siempre hay por lo menos 8 satélites presentes. Cada uno de esos satélites mide 5 m de largo y pesa 860 kg . La energía eléctrica que requieren para su funcionamiento la adquieren a partir de dos paneles compuestos de celdas solares adosadas a sus costados. Están equipados con un transmisor de señales codificadas de alta frecuencia, un sistema de computación y un reloj atómico de cesio, tan exacto que solamente se atrasa un segundo cada 30 mil años.

La posición que ocupan los satélites en sus respectivas órbitas facilita que el receptor GPS reciba, de forma constante y simultánea, las señales de por lo menos 6 u 8 de ellos, independientemente del sitio donde nos encontremos situado. Mientras más señales capte el receptor GPS, más precisión tendrá para determinar las coordenadas donde se encuentra situado.

Incluso hay relojes de pulsera comerciales (receptores de señales de radio) con precisión de un segundo por millón de años garantizada por un reloj atómico en una lejana estación. La naturaleza de altísima precisión: la estabilidad del púlsar binario b1855+09 puede ser de unas partes en 10¹⁵ o incluso mejor.

El tiempo en Newton:

En los PRINCIPIA, Newton empieza con una renuncia a definir el tiempo: El tiempo, el espacio, el lugar y el movimiento son de todos bien conocidos. Y no los defino. Pero digo que el vulgo no concibe esas cantidades más que por su relación a cosas sensibles. Para evitar ciertos prejuicios que de aquí se originan, es conveniente distinguirlas en absolutas y relativas, verdaderas y aparentes, matemáticas y vulgares.

Resultado de imagen de El Tiempo absoluto de newton

A continuación, sin embargo, Newton se arrepiente de su primer impulso y aclara: El tiempo absoluto, verdadero y matemático, de suyo y por su propia naturaleza fluye uniformemente sin relación a nada externo y se llama también duración: el tiempo relativo, aparente y vulgar es cualquier medida sensible y externa (exacta o no uniforme) de la duración por medio del movimiento y se usa vulgarmente en lugar del tiempo verdadero: tal como la hora, el día, el mes, el año.

¿Qué significa que el tiempo fluye? ¿Qué el tiempo “se mueve en el tiempo”? De nuevo la pescadilla mordiéndose la cola. El absolutismo del tiempo newtoniano recibió encendidas críticas. Leibniz opuso su idea de espacio y tiempos puramente relativos, el primero como un orden de coexistencia, el segundo como un orden de sucesiones de las cosas; ambos, espacio y tiempo, son phœnomena bene fundata. Los argumentos dinámicos con que Newton arropa su tesis de la naturaleza absoluta de la rotación y con ello la de un espacio absoluto, apoyo posterior para el tiempo absoluto, también hallan fuertes objeciones. Para Berkeley esas razones de Newton lo único que muestran es la importancia del giro respecto de las masas lejanas del Universo y no respecto de un espacio absoluto, que él no acepta. Ernst Mach, en la segunda mitad del XIX, insistirá decididamente en este punto de vista, y desde su positivismo acosará los absolutos newtonianos. De “medieval”, “no científico”, “metafísico”, tilda Mach a Newton: No tenemos derecho a hablar de un tiempo “absoluto”: de un tiempo independiente de todo cambio. Tal tiempo absoluto no puede medirse por comparación con ningún movimiento; por tanto no tiene valor práctico ni científico, y nadie tiene derecho a decir que sabe algo de él. Es una concepción metafísica vana.

El tiempo en Einstein:

El tiempo newtoniano, absoluto, el nos es familiar, tuvo que dejar paso al tiempo einsteniano, mutable y relativo, con tantos “ahora” por suceso cuantos estados de movimiento mutuo imaginemos.

El tercero de los trabajo enviados por Albert Einstein (AE) en su Annus Mirabilis de 1905 a Annalen der Physik lleva por título “Zur Elektrodynamik Bewegter Körper” (“Sobre la electrodinámica de los cuerpos en movimiento”). Junto con el quinto, titulado “Ist der Trägheit eines Körpers von seinem Energieinhalt abhängig?” (“¿Depende la inercia de un cuerpo de su contenido de energía?”), constituyen lo que hoy se llama TEORÍA ESPECIAL DE LA RELATIVIDAD.

Da A.E. un par de razones para justificar su tercer trabajo:

  1. La insatisfacción que le produce la asimetría en la descripción maxwelliana de los fenómenos electromagnéticos: la acción entre un conductor y un imán depende solo del movimiento relativo entre ambos, pero la teoría de Maxwell distingue entre el caso de conductor en reposo y el caso de imán en reposo: a) En el primer caso el campo magnético móvil engendra un campo eléctrico, con una energía determinada, que a su vez produce corrientes en el conductor en reposo. b) En el segundo caso, no se produce ningún campo electrónico, sino una fuerza electromotriz en el conductor, sin energía asociada, que engendra una corriente como en el caso anterior.
  2. La incapacidad de la óptica y del electromagnetismo (EM) para detectar el movimiento respecto del lichtmedium, es decir, de un inercial privilegiado. Esto le sugiere que la óptica y el EM tienen las mismas ecuaciones en todos los inerciales (sistemas en los que las leyes de la mecánica de Newton son las mismas). Y AE eleva esto a un principio, que llama “Prinzip der Relativität”, y le añade un compañero, aparentemente incompatible con él: “La velocidad de la luz en vacío es siempre la misma, con independencia del estado de movimiento del cuerpo emisor”.

¿Será ese de arriba el rayo de luz de Einstein, o, por el contrario, será un asteroide que se nos viene encima?

Siendo todavía muy joven, en 1895-1896, ya le preocupaba el EM y la luz, como recordaba en 1955: “Si persiguiéramos a la velocidad de la luz un rayo de luz, veríamos una onda independiente del tiempo. ¡Tal cosa, sin embargo, no existe! Este fue el primer experimento mental, infantil, en relación con la teoría especial de la relatividad”.

Este tercer trabajo de Einstein en 1905 no contiene ninguna referencia a otros trabajos, ni suyos ni de otros (como Lorentz o Poincaré).

Consciente de que su postulado de la constancia de la velocidad de la luz choca frontalmente con la ley galileana de adición de velocidades, Albert Einstein revisa los cimientos de la Física, empezando por definir físicamente y con sumo cuidado el concepto de Gleichzeitigkeit o simultaneidad entre sucesos. Considera un sistema inercial, para el que supone válida la geometría euclidiana para calcular distancias entre objetos estacionarios a través de sus coordenadas respecto de sus ejes cartesianos. Si A, B son dos observadores estacionarios, provistos de relojes iguales, y A (B) manda una señal luminosa a B (A), quien la devuelve sin tardanza a A (B), diremos que el reloj de A está sincronizado con el reloj de B si

t(B) – t(A) = t’(A) – t(B),

donde t(A) es el tiempo marcado por el reloj de A cuando envía la señal a B, t(B) lo que marca el reloj de B al llegarle la señal de A y reemitirla, y t’(A) la lectura del reloj de A al recibir la devolución de B.

Resultado de imagen de determinación de la velocidad de la luz por Galileo

No parece el mejor método para medir la velocidad de la luz, el empleado por Galileo. Claro que, en aquellos tiempos…¿Qué se podía hacer?

Supone Albert Einstein que esta definición no lleva a contradicciones, que es en principio posible entre cualquier par de observadores estacionarios en el inercial, y que la relación de sincronización anterior es de equivalencia: Si A está sincronizada con B, también B lo está con A, y si además B lo está con C, también A y C lo están. A esto le siguen ecuaciones que quiero obviar para no dar complejidad al trabajo.

No existe “el” presente

Pasa Albert Einstein a enunciar con precisión el principio de relatividad y el postulado de la constancia de la velocidad de la luz en el vacío:

  1. Las leyes que rigen los cambios de los sistemas físicos son las mismas en todos los inerciales.
  2. Todo rayo de luz se mueve en cualquier inercial con una misma velocidad, c, independientemente del movimiento de su fuente.

Como consecuencia, demuestra que el concepto de sincronía, y por ende de simultaneidad, es relativo, no absoluto. La noción de “presente”, “ahora” o cualquier instante determinado depende del referencial inercial.

Energía Taquiónica

           Algunos incluso hablaron de ernegía taquiónica

¿Más rápido que la luz?

¿Existen partículas que se muevan con velocidad superior a la de la luz? Sí; por ejemplo, cualquier partícula que lleve en agua, a temperatura entre 0 y 50 ºC, una velocidad ν > c / n, n = 1.3, irá más deprisa en ese medio que los fotones del espectro visible. Lo mismo ocurre con la mayoría de los rayos cósmicos que llegan a la atmósfera; son superlumínicos en relación con la velocidad de la luz en el aire. Precisamente en esta posibilidad de rebasar la velocidad de la luz en un medio reside el efecto Cerenkov.

Resultado de imagen de La velocidad de los taquiones

                  “La ignorancia afirma o niega rotundamente; la Ciencia duda.”

Lo que no se conocen son taquiones, o partículas que se muevan más deprisa que la luz en el vacío. Si existieran, podrían utilizarse para mandar información al pasado. Violando el orden causa-efecto. Por ello se “decreta” su inexistencia.

En fin, que la velocidad de la luz en el vacío, al menos que sepamos, es infranqueable. Es un límite impuesto por la Naturaleza al que habrá que vencer, no superándolo (que no se puede), sino mediante una artimaña física inteligente que logre burlar dicho límite.

Aparte de algún que otro añadido, el artículo (parcialmente expuesto aquí -se obviaron partes complejas), es del Físico de la Universidad Complutense D. Alberto Galindo Tixaire. Fue publicado en el Volumen 19, número 1 de la Revista Española de Física en 2005 Año Mundial de la Física

Año mundial de la Física

En realidad, un Homenaje a Einstein por haber pasado más de un siglo desde aquel acontecimiento memorable de la Relatividad Especial en el año 1.905 y estar a punto de cumplirse otro siglo desde su relatividad general de 1905. Dos acontecimientos que marcaron el camino de la Física y la Cosmología. Precisamente ahora, se cumplen los 100 años desde que Einstein diera al mundo la segunda parte de su Teoría.

emilio silvera

 

  1. 1
    Constanza Alvarez
    el 10 de mayo del 2016 a las 10:48

    El tiempo es el instante de quietud que elige la conciencia para observarlo. El resto son recuerdos de otros instantes de quietud (pasado), y otras elucubraciones (futuro). En ese instante de quietud conviven todos los pasados y futuros, porque el instante del ahora es el resultado de elecciones pasadas y es en el ahora en el único momento en el que se puede elegir el futuro.

    Así lo entiendo yo. 

    Responder
    • 1.1
      emilio silvera
      el 11 de mayo del 2016 a las 5:41

      ¡Hola, Constanza Alvarez!
      Bonita reflexión sobre lo que el Tiempo es, y, sobre todo, has dado en la diana cuando dices:

      “…porque el instante del ahora es el resultado de elecciones pasadas y es en el ahora en el único momento en el que se puede elegir el futuro.”

      El Tiempo, amiga mía, es ese algo que todos queremos tener y que desde el momento mismo de nuestro nacimiento comienza a querer marcharse de nosotros, es lo que nunca acabamos de aprovechar bien, es el bien escaso que todos quisiéramos eternizar y que se esfuma de nuestras vidas para frustrar la consciencia que, impotente, observa su transcurrir sin que nada lo pueda deterner.
      Del Tiempo han sido muchos los filósofos que quisieron dar una explicación, y, sin embargo, ninguno de ellos pudo dejar una que fuese tan completa que lo pudioera definir, es ese algo que llamamos pasado, presente y futuro pero que, en realidad, es esa ilusión efímera que nadie puede conservar, es cómo la felicidad completa, ¡nadie la puede atrapar!
      Nosotros, unos seres con algo de inteligencia sabemos (como bien has apuntado tú), que el Tiempo pasado nos dio la opoetunidad de construir el presente, y, en éste, dependiendo de lo que podamos hacer, se plasmárá uno u otro futuro. El Tiempo presente, de inmediato, se convierte en pasado para entrar en el futuro que, también, se hace presente al instante. Estamos condenados a vivir en un  Eterno presente recordando el pasado e imaginando el futuro.
      Un saludo cordial.

      Responder
  2. 2
    kike
    el 10 de mayo del 2016 a las 15:35

    Hola Constanza.

     En tu pensamiento sobre el tiempo, y quizás sin saberlo, te has puesto de acuerdo con los últimos estudios sobre el tiempo, en los que nos dicen que en realidad el tiempo no existe, que es simplemente una percepción mental de los seres con un cierto rango cerebral.

     Y es que parece ser que el cerebro en lo grande(o algo grande) y el electrón en lo pequeño, reúnen una buena parte de los secretos del universo; creo en ello porque si alguna vez pudiéramos desvelar todos sus secretos, ya tendríamos una información vital sobre el conjunto del cosmos.

    Responder
  3. 3
    FRANCISCO PONCE MORENO
    el 16 de septiembre del 2018 a las 17:13

     Bueno, este comentario no corresponde exactamente a lo se está hablando pero, como me incorporé tardíamente al blog no lo incluí cuando pudo ser su momento. Ahí va: Se habla de multiversos y no soy yo el que niegue su existencia, entre otras razones porque por su propia definición sea imposible afirmar o negar puesto que, obviamente, los que no son el nuestro están fuera de él y son inalcanzables e indefinibles. Sin embargo, sí opino que puede haber un multi Big Bang, es decir varios acontecimientos de inicio en diversos momentos en nuestro universo; al fin y al cabo, fluctuaciones cuánticas de la nada puede haber la tira. Y eso más que nada porque la idea de un huevo cósmico infinitamente denso repugna a mi mente, lo que poco indica porque también le repugna lo que dicen la mayoría de los políticos y qué puedo hacer contra ello además de no votarles, y prefiero pensar, en lo del Big Bang, que de forma análoga a la acumulación de agua en el planeta Tierra que según parece proviene de multitud de cometas incidiendo en él en una muy temprana época de formación le aportaron el hielo que los sustentaban en su mayor parte, la materia y la energía, oscura o no, proviene de múltiples inicios, con lo que los huevos cósmicos ya no tendrían que ser infinitamente densos sino solo bastante densos, como el platino o algo más.   Sucesos que pudieron ser simultáneos o no, cada uno de ellos creando su espacio y su tiempo que a lo largo de los eones se ha ido uniformando y dado lugar a lo que ahora tenemos. También soy de la opinión de que las primeras partículas hubieron de ser las más elementales: los quarks componentes de toda la materia y de la energía, no tengo opinión fundamentada em general y no es que la correspondiente a las partículas lo esté, pero me parece lógica y necesaria. Por otra parte, no soy partidario de las estimaciones temporales que se hacen respecto a los acontecimientos iniciales del Big Bang. Cuando hablan de periodos infinitesimales de segundos me parece imposible que hubiera sido así. Imagino que los sabios que tratan esos temas tienen fundamentos para establecer esos hitos pero también pudiera ser que se hayan equivocado de escala. Claro que también puede ser una explicación plausible de por qué tenemos un mundo tan revuelto y degradado: le falta un hervor; no tuvo tiempo para desarrollarse adecuadamente, que menos que un siglo, un milenio  o así para conseguir algo aceptable. Imagino que habrá alguna causa profunda, tal vez basada en alguna condición de contorno necesarias para la resolución de algunas ecuaciones diferenciales en derivadas parciales, que ya son ganas de resolver.

    Responder
    • 3.1
      Emilio Silvera
      el 17 de septiembre del 2018 a las 5:34

      ¡Hola, Francisco!

      Lo que piensas sobre los multiversos es lo mismo que callan otros muchos y no se atreven a exponerlo en público (me refiero a profesionales del tema), y, desde luego, el que existan otros universos es lo más probable según los mecanismos que ya conocemos del nuestro, pensar en esa posibilidad no es nada descabellado, lo que ocurre es que tenemos difícil el poder comprobarlo. Ya un equipo de astrónomos y cosmólogos que hicieron un estudio tratando de localizar el “borde del Universo”, concluyeron diciendo: “… parece que más allá de nuestro universo existe una enorme estructura que…”

      Tu idea de lo que pudo ser ese principio tiene mucha lógica, ya que, el punto que llaman “singularidad” con densidad y energía infinitas… ¡Es difícil de asimilar! Son más probables las repetidas fluctuaciones de las que hablas. Nunca nadie ha podido llegar a esos primeros momentos para saber lo que realmente pasó, lo que ocurre es que, algún Modelo teníamos que adoptar y se decantaron por el Big Bang que era lo que más se asemejaba a las observaciones y lo que aconsejaba el fondo cósmico de microondas.

      En cuanto al mundo, lo que se espera de seres inteligentes es que con el paso del Tiempo todo mejore y, sin embargo, al ver lo que tenemos, lo que hacen políticos como el Presidente actual (por ejemplo) que, para llegar al puesto que ocupa se vale de artimañas arteras y anuncia una moción de censura para convocar elecciones y una vez alcanzado el objetivo se cambia de vía y aliándose con el diablo, se mantiene a toda costa en un puesto que nunca ganó. Eso dice poco en su favor, nos habla de su verdadera catadura y nos hace pensar en la regresión de la cordura y de la poca nobleza que existe en algunas personas, no todo vale para alcanzar el objetivo.

      Cuando se tocan estos temas, siento vergüenza ajena al ver la degradación de los políticos y lo poco que la buena gente hace por remediarlo… ¡los malos ganan porque los buenos no hacen nada.

      Mejor seguiremos hablando de universos múltiples y de estrellas masivas que se convierten en agujeros negros, o, en nuevos mundos descubiertos que, como el nuestro, están situados en zonas habitables y podrían tener seres inteligentes que, al contrario de nosotros, sí hayan sabido organizarse de manera que impere la justicia y la igualdad entre ellos.

      Saludos.

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting