miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Las estrellas! ¿Qué haríamos sin ellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia estelar    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://es.globedia.com/imagenes/noticias/2010/12/30/541531_1.jpg

 

Las estrellas enanas rojas son las más abundantes en el Universo y, desde luego, las que tienen la vida más larga. Algunas son casi tan viejas como el universo mismo, el poco material de fusión que sonsumen las llevan hasta esas edades matusalénicas de miles de millones de años, más de diez mil millones tienen algunas que, nos podrían contar muchas, muchas cosas de las que fueron testigos. Otras como nuestro Sol, estrellas GV2 enana amarilla es también del tipo más abundante. Luego están una prléyade de estrellas de mayor envergadura y grandes masas que van desde las 10 hasta las casi 150 masas solares.

Según se estima, las estrellas cuando tienen unas 120 masas solares han llegado a un límite en el que, su propia radiación las puede destruir. Sin embargo, se han descubierto estrellas que llegan hasta las 150 masas solares. ¿Por qué se mantienen “vivas” y no explotan. Bueno, todos los indicios apiuntan al hecho de que, para desahogar y esquivar los efectos de la inmensa radiación que produce la fusión nuclear, eyectan de manera periódica, material al espacio interestelar y se tranquiliza. Ahí tenenos el ejemplo de Eta Carinae.

Existen estrellas hipergigantes que son las que sobrepasan las 30 masas solares, así fueron denominadas cuando se observaron los objetos más brillantes en las Nubes de Magallanes, aunque en realidad, lo que vieron eran cúmulos de estrellas y no estrellas individuales. Sin embargo de estrellas supermasivas existen múltiples ejemplos y, hemos podido comprobar que, la enorme cantidad de material de fusión que consumen las lleva a una vida corta. Las estrellas supermasivas sólo viven unos pocos millones de años, mientras que estrellas como el Sol, llegan a los diez mil millones de años de vida.

Hay muchas clases de estrellas: Estrellas capullos envueltas en una nube de gas y polvo, estrellas de baja o de alta velocidad, con envoltura, con exceso de ultravioleta, de baja luminosidad, de baja masa, de Bario, de manganeso, de Carbono, de Litio, de Bariones, de campo, de Circonio, de estroncio, estrellas de Helio, de la rama gigante asintótica, de manganeso-mercurio, de metales pesados, de neutrones, (¿de Quarks?), estrellas de referencia, de Silicio, de Tecnecio, de tipo tardío, de tipo temprano, estrella del Polo, estrella doble, estrella enana, estrella estándar, evolucionada, estrella Flash, estrella fulgurante, magnética, estrella guía, hipergigante, estrella invitada, múltiple, peculiar, pobre en metales, estrella reloj, simbiótica, rica en metales, supermasiva, fijas, gigantes…, cada una de ellas tiene su propia personalidad, su propio color y temperatura y también, una media de vida que depende de manera directa de su masa.

Los elementos químicos se fraguan dentro de ellas, y, también al final de sus vidas, en las explosiones Supernovas, se crean los materiales más complejos de la Tabla Periódica. Estos materiales, van formar parte de las grandes Nebulosas de las que vuelven a surgir nuevas estrellas y nuevos mundos que estarán hechos de todos esos eslementos creados en las estrellas y, como nosotros mismos provenimos de ahí, es fácil oir la expresión: “Somos polvo de estrellas”.

Las estrellas no son ninguna excepción y como todo en nuestro Universo, con el paso del tiempo evolucionan y, a medida que van consumiento su combustibles nuclerar de fusión, van acortando sus vidas que, en funsión de la masa, será más corta o más duradera y también, sus finales serán distintos por la misma causa: Estrellas como el Sol = Enanas Blancas. Estrellas de varias masas solres = Estrella de Neutrones. Estrellas masivas y supermasivas = Agujeros Negros.

Esas transmutaciones que se producen durante un largo período de tiempo, conllevan fenómenos que se producen de distintastas maneras en cada una de esas estrellas. En unas, se alcanza la estabilidad al degenerarse los electrones (que son fermiones), que siguen la Ley de Pauli del Principio de esclusión. Ahí aparecen las enanas blancas.  De la misma manera sucede en estrellas más masivas que el Sol pero, al tener más masa, no es suficiente que los electrones se degeneren y, entonces, electrones y protones se fusionan para convertirse en Neutrones que son (al ser fermiones), los que se degeneran y estabiliza a la estrella como de Neutrones. Cuando ya la masa es muy grande, nada puede frenar a mla Gravedad y lo que nos queda es un Agujero Negro.

Lo cierto es que, la química de las estrellas está presente en los mundos para que pueda surgir la Vida

Decir eso de que los elementos estelares llegaron a la Tierra y pudo surgir la Vida, no es, en realidad, contar gran cosa de lo que pudo pasar para que nosotros ahora, podamos estar aquí contando sobre ello. Los actuales descubrimientos de la Paleontología, la más tradicional de las científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica. Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutíles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy. Nada surge de manera espontánea, todo se fragua durante un tiempo que tiene marcado por la Naturaleza y, nosotros, hemos tardada (como humanos verdaderos), más de 13.000 millones de años en porde llegar hasta aquí. El tiempo necesario para que las estrellas fabricaran la materia prima y después, el mundo pusiera su granito de arena para que ésta pudiera evolucionar, con la ayuda de la radiación del Sol, el agua corriente, una adecuada atmósfera, la presencia de océanos, las placas tectónicas que reciclan periódicamente el planeta… ¡No, no es nada fácil que la vida surja en un Mundo!

Pero en el Universo, son muchas las cosas que pueden pasar, muchos los objetos que están presentes, innumerables los fenómenos que de una u otra cuestión pueden estar pasando de manera continuada y que no siempre, sabemos comprender.

 Resultado de imagen de Imágenes del Blog de emilio silvera

 

 

               ¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas

 

 

Simplemente se trata del fenómeno que conocemos como “Halo atmosférico”, un anilo o arco de luz que parece rodear al Sol (también a la Luna), resultado de la refracción y la reflexión de la luz solar o lunar por los cristales de hielo de los cirros. Los halos solares y lunares más comunes un diámetro angular de 46º. Por lo general, el borde del halo muestra un efecto prismático, estandio la luz azul refractada hacia el borde exterior y la rpoja al interior. Como resultado de la refracción preferencial de la luz hacia el borde del halo , la zona del cielo interior a un halo es más oscura que la interior. Los halos lunares solo pueden ser vistos claramente cuando la Luna es brillante, típicamente en un intervalo de cinco días en torno a la Luna llena.

 

 

 

 

El Halo Galáctico está referido a cualquier material situado en una distribicón aproximadamente esférica de una galaxia, y que se extiende hasta más allá de las regiones visibles. Puede referirse a la población de estrellas viejas (Población II), incluyendo a los cúmulos globulares, con poca o ninguna rotación alrededor del centro galáctico; o gas tenue, altamente ionizado y de alta temperatura que envelve a toda la galaxia, incluso, muchas veces el halo galáctico está referido a una especie de neblina inconcreta que circunda toda la galaxia sin que termine de hacerse presente pero, ahí está.

File:Ngc604 hst.jpg

 

 

Alguna vez podemos contemplar una que nos parece más o menos atractiva pero, no sabemos discernir sobre lo que en realidad estamos contemplando. Por ejempo, arriba tenemos la conocida como NGC 604,  una región H II gigante en la galaxia del Triángulo. Una región H II es una de gas y plasma brillante que puede alcanzar un tamaño de cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de luz ultravioleta extrema (con longitudes de onda inferiores a 912 Ångstroms) que ionizan la Nebulosa a su alrededor.

 

 

File:Ssc2005-02a.jpg

 

Las regiones H II son muy abundantes en Galaxia

 

Cada de hidrógeno ionizado contribuye con dos partículas al gas, es decir, con un protón y un electrón. Las Regiones H II son calientes con temperaturas típicas de 10 000 K, y son entre 10 y 100 000 veces más densas que las regiones H I. Se encuentran normalmente alrededor de las estrellas O y B jóvenes y masivas, siendo el gas ionizado por su intensa luz ultraviloleta, haciendo que éste brille. La Nebulosa de orión es una famosa Región H II. Las Regiones H II pueden ser detectadas en la Galaxia por sus intensas emisiones en e infrarrojo. La radio-emisión es debidaal bremsstrahlung del gas ionizado, y la radiación infrarroja a la emisión térmica del polvo.

 

 

 

http://bitacoradegalileo.files.wordpress.com/2010/12/m42_hallasnr.jpg

 

 

Las Regiones H II aquí muy presentes y dada su gran extensión. La nebulosa de Orión es uno de los objetos astronómicos más fotografiados, examinados, e investigados.8 De ella se ha obtenido información determinante acerca de la de estrellas y planetas y a partir de nubes de polvo y gas en colisión. Los astrónomos han observado en sus entrañas discos protoplanetarios, enananas marrones, fuertes turbulencias en el movimiento de partículas de gas y efectos fotoionizantes cerca de estrellas muy masivas próximas a la nebulosa.

 

 

 

 

 

Una región H I es una nube formada por hidrógeno atómico frío, poco denso y no ionizado con temperaturas de alrededor de 100 K. Las regiones HI no emiten radiación en el rango visual, sólo en la región de radio. La notación H I se refiere al hecho de que los átomos de Hidrógeno no están ionizados como lo están en los que están presentes en la regiones H II (arriba). Cada átomo de Hidrógeno neutro contribuye al gas justo con una partícula. la Densidad de las regiones H I es demasiado como para que se formen moléculas de hidrógeno, y la luz estelar disociará cualquier molécula formada, de manera que el gas permanece en forma de átomo. El Hidrógeno neutro contribuye (aproximadamernte) a la mitad de toda la materia interestelar en masa y en volumen,  con una densidad media de 1 Átomo/ cm3. Las regiones H I son frías.

Del asomnbroso universo son muchas las cosas que desconocemos, y, poco a poco, vamos pudiendo descubrir muchos de sus misterios que nos acercan cada vez más, a saber dónde estamos y lo que podemos o no podemos esperar de lo que hay en nuestro entorno.

 

 

 

 
El Sol de desplaza por el de una tenue nube de gas interestelar conocida como Local Fluff.

La de que la Voyager 1 había dejado atrás la zona bajo influencia directa del viento solar y se encontraba ya surcando el interplantario se convirtió rápidamente en una de las grandes noticias astronómicas del año, en especial por toda la carga simbólica que representa que, por primera vez, un construido por la Humanidad había traspasado por primera vez esa frontera invisible que nos separa y aisla del océano estelar. Pero para los científicos de la misión la llegada a este nuevo reino con una sonda aún operativa y capaz de seguir enviado al menos hasta 2020 es un regalo del que esperan grandes resultados. Y es que más allá del límite solar se extiende una región tan amplia como desconocida, y mucho más compleja de lo que podamos imaginar.

 

 

El movimiento de esta estrella binaria fue un misterio durante más de 30años, e incluso se presentó como un posible fracaso de la Relatividad General de Einstein. Ahora un encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha resuleto el misterio. Se observan hechos que no siempre podemos explicar y, persistimos en la búsqueda de las respuestas hasta que las podemos encontrar.

En el efecto periastro se puede contemplar el brillo de una estrella binaria que tiene una órbita altamente excéntrica. Cuando la separación entre las componentes es mínima. Es de hecho, un aumento del efecto de reflexión en el instante del periastro, y surge por la misma causa: la irradiación de una estrrella por la otra.

 

 

Hemos llegado a saber de nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí estan presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Ésta es una situación en resulta especialmente apropiado utilizar las unidades “naturales” la , longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros , lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

 

 

 

 

 

Lo cierto es que, desde el comienzo del Tiempo, allá por los confines impenetrables de la lejanía del Big Bang (si es que fue así realmente como nació el Universo), se tuvieron que esperar algunos cientos de millones de años para que surgieran las primeras estrellas, pasar por las Eras de la Radiación, la Era Leptónica, la de la Materia, que se produjera la descongelación de los fotones para que el Universo se hiciera de luz… Después de miles de millones de años, el Universo tenía los elementos necesarios para que, la Vida, pudiera surgir en los mundos adecuados y… ¡Aquí estamos!

Aquí estamos tratando de saber lo mismo que quisieron saber nuestros ancestros filósofos: ¿De dónde venimos? ¿Qué hacemos aquí? ?Hacia Dónde vamos? ¿Tendremos algún destino predeterminado…

Y seguiremos, dentro de nuestra inmensa ignorancia, haciendo preguntas mientras estémos por aquí.

emilio silvera

 

 

 

 

 

Las escalas del Universo no son Humanas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  Los 

Todos los seres vivvos conocidos están hechos de la misma cosa

Resultado de imagen de Rayos cósmicos
Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del  nuestro que lo como si existiera más materia de la que realmente hay debido a que, “la fuerza de gravedad de esos universos” vecinos, incide de manera real en este Universo nuestro, y, si es así, la tan cacareada “materia oscura” podría ser el mayor fraude de la cosmología moderna.

            A nuestro alrededor pasan muchas cosas a las que no prestamos atención

Inmersos en los problemas cotidianos prestamos poca atención a lo que pasa a nuestro alrededor, en la Naturaleza y, sólo cuando son fenómenos muy llamativos, inusuales, o, que nos ponen en peligro, ponemos nuestros cinco sentidos en el acontecimiento. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos estado más atentos, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la Naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

La edad actual del universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Resultado de imagen de La densidad de materia en el Universo es ínfima

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la T. de Planck

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas.

 

 

 

 

Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Imagen relacionada

La vida (creo), estará presente en muchos mundos que, al igual que la Tierra, ofrece las condiciones adecuadas

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución que tantos miles de millones de años le costó al Universo para poder plasmarla en una realidad que llamamos vida.

El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.

Imagen relacionada

         Una atmósfera planetaria adecuada dará la opción de que evolucione la vida y se creen sociedades

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

“Las historias de ciencia ficción en las cuales se sugiere la existencia de seres vivos construidos de silicio en vez del carbono han proliferado desde hace varias décadas, por ejemplo, en los argumentos de muchas películas y series de TV. La idea no es nueva, pues esta se originó en 1891 (¡!), cuando Julio Sheiner escribió sobre la posibilidad de vida extraterrestre fundada en el Silicio.” Biól. Nasif Nahle

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

emilio silvera

¿Viajes en el Tiempo? ¡Otro sueño de la Humanidad!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En cromodinámica cuántica, la propiedad de libertad asintótica hace que la interacción entre quarks sea más débil cuanto más cerca están unos de otros (confinación de los quarks) y la fuerza crece cuando los quarks tratan de separarse, es la única fuerza que crece con la distancia. Los quarks y los gluones están confinados en una región cuyo valor se define por:

R » ћc /L » 10-13 cm

Poder contemplar Quarks libres sólo podría haber sido posible en aquellos primeros momentos, antes de la formación de los hadrónes. En realidad, la única manera de que pudiéramos observar quarks libres, sería en un ambiente con la temperatura del universo primitivo, es la temperatura de desconfinamiento.

Ahora se cree que el Big Crunch nunca se producirá y que la muerte del Universo será térmica, es decir, una temperatura del cero absoluto que lo paralizará todo, ni los átomos se moveran en ese frío de muerte que dejará un universo congelado donde ni brillaran las estrellas ni estará presente ninguna clase de vida.

En la parte anterior de este mismo trabajo,  estaba hablando del Big Crunch y me pasé a otro (los quarks), así que cerremos este capítulo del Big Crunch que está referido a un estado final de un universo cerrado de Friedmann  (es decir, uno en el que la densidad excede a la densidad crítica). Dicho universo se expande desde el Big Bang inicial, alcanza un radio máximo, y luego colapsa hacia un Big Crunch, donde la densidad de la materia se vuelve infinita después de que la gravedad haga parar la expansión de las galaxias que, lentamente al principio, y muy rápidamente después, comenzarán a desplazarse en sentido contrario, desandarán el camino para que toda la materia del universo se junte en un punto, formado una singularidad en la que dejaría de existir el espacio-tiempo. Después del Big Crunch debería haber otra fase de expansión y colapso, dando lugar a un universo oscilante.  universo que se va y universo que viene.

Pero, ¿y nosotros?, ¿qué pintamos aquí?

¡Mirado así no parece que seamos gran cosa!

Antes de pasar a otros temas, retomemos el de los viajes en el tiempo y las paradojas que pueden originar.

Una versión de la máquina del tiempo de Thorne consiste en dos cabinas, cada una de las cuales contiene dos placas de metal paralelas. Los intensos cambios eléctricos creados entre cada par de placas de metal paralelas (mayores que cualquier cosa posible con la tecnología actual) rizan el tejido del espacio-tiempo, creando un agujero en el espacio que une las dos cabinas. Una cabina se coloca entonces en una nave espacial y es acelerada a velocidades próximas a la de la luz, mientras que la otra cabina permanece en la Tierra. Puesto que un agujero de gusano puede conectar dos regiones des espacio con tiempos diferentes, un reloj en la cabina de la nave marcha más despacio que un reloj en la cabina de la Tierra. Debido a que el tiempo transcurriría a diferentes velocidades en los dos extremos del agujero de gusano, cualquiera que entrase en un extremo del agujero de gusano sería instantáneamente lanzado al pasado o al futuro.

Stephen Hawking

Viajar al pasado y conocer a personajes famosos a los que contar las novedades científicas. Algunos dicen que el viaje en el Tiempo está prohibido, aunque es posible. Siempre hemos tenido una gran imaginación y, cuando se sabíamos contestar a una cuestión compleja… ¡Inventamos la respuesta!

Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.

Parece que la función de las placas metálicas paralelas consiste en generar la materia o energía exótica necesaria para que las bocas de entrada y salida del agujero de gusano permanezcan abiertas y, como la materia exótica genera energía negativa, los viajeros del tiempo no experimentarían fuerzas gravitatorias superiores a 1g, viajando así al otro extremo de la galaxia e incluso del universo o de otro universo paralelo de los que promulga Stephen Hawking. En apariencia, el razonamiento matemático de Thorne es impecable conforme a las ecuaciones de Einstein.

Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.

                Muchas son las máquinas del tiempo que hemos desarrollado en nuestra imaginación

Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.

Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.

En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.

Nuestra línea de universo resume toda nuestra historia, que nacemos hasta que morimos. Cuanto más rápido nos movemos más se inclina la línea de universo. Sin embargo, la velocidad más rápida a la que podemos viajar es la velocidad de la luz. Por consiguiente, una de este diagrama  espacio-temporal está “prohibida”; es decir, tendríamos que ir a mayor velocidad que la luz para entrar en esta zona prohibida por la relatividad especial de Einstein, que nos dice que nada en nuestro universo puede viajar a velocidades superiores a c.

Agujero de gusano

            Agujero de Gusano

“Amos Ori describe una máquina para viajar en el tiempo que podría ser construida por una civilización más avanzada que la nuestra dentro de 100 o 200 años. Esa máquina tendría la capacidad teórica de provocar una curvatura del espacio con un campo de gravedad local en su interior suficientemente poderoso que sería en la práctica una máquina para viajar en el tiempo. “

                 Sí, ¿pero dónde está esa energía negativa para viajar en el Tiempo?

Resultado de imagen de average weak energy condition o AWEC

Este concepto más bien simple se conoce con un nombre que suena complicado: la condición de energía media débil (average weak energy condition, o AWEC). Como Thorne tiene cuidado en señalar, la  AWEC debe ser violada; la energía debe hacerse temporalmente negativa para que el viaje en el tiempo tenga éxito. Sin embargo, la energía negativa ha sido históricamente anatema para los relativistas, que advierten que la energía negativa haría posible la antigravedad y un montón de otros fenómenos que nunca se han visto experimentalmente.

Pero Thorne señala al momento que existe una forma de obtener energía negativa, y esto es a través de la teoría cuántica.

 Imagen relacionada

Estamos inmersos en una gran sopa cuántica de la que no somos conscientes pues la mayor parte de la energía que circula a nuestro alrededor, es imperceptible para nuestros sentidos físicos….

En 1.948, el físico holandés Hendrik Casimir demostró que la teoría cuántica puede crear energía negativa: tomemos simplemente dos placas de metal paralelas y descargadas ordinariamente, el sentido común nos dice que estas dos placas, puesto que son eléctricamente neutras, no ejercen ninguna fuerza entre sí. Pero Casimir demostró que, debido al principio de incertidumbre de Werner Heisenberg, en el vacío que separa estas dos placas existe realmente una agitada actividad, con billones de partículas y antipartículas apareciendo y desapareciendo constantemente. Aparecen a partir de la “nada” y vuelven a desaparecer en el “vacío”. Puesto que son tan fugaces, son, en su mayoría, inobservables, y no violan ninguna de las leyes de la física. Estas “partículas virtuales” crean una fuerza neutra atractiva entre estas dos placas que Casimir predijo que era medible.

Resultado de imagen de Fuerza Casimir

Cuando Casimir publicó el artículo, se encontró con un fuerte escepticismo. Después de todo, ¿cómo pueden atraerse dos objetos eléctricamente neutros, violando así las leyes normales de la electricidad clásica? Esto era inaudito. Sin embargo, en 1.985 el físico M. J. Sparnaay observó este efecto en el laboratorio, exactamente como había predicho Casimir. Desde entonces (después de un sin fin de comprobaciones), ha sido bautizado como el efecto Casimir.

Una manera de aprovechar el efecto Casimir mediante grandes placas metálicas paralelas descargadas, sería el descrito para la puerta de entrada y salida del agujero de gusano de Thorne para poder viajar en el tiempo.

Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como para contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.

Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.

En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.

         Podríamos ver como se forman las nebulosas y nacen y mueren las estrellas

Antes comentaba algo sobre disfrutar de un viaje al pasado pero, pensándolo bien, no estaría yo tan seguro. Rápidamente acuden a mi mente múltiple paradojas que, de una u otra especie han sido narradas, principalmente por escritores de ciencia-ficción que, por lo general, son los precursores del futuro.

Si viajar en el tiempo finalmente pudiera ser posible, cosas parecidas a esta locura ¡”podrían ocurrir”! I. B. S. Haldane, nos decía:

“La naturaleza no sólo es más extraña de lo que suponemos; es más extraña de lo que podamos suponer”.

emilio silvera

Cosas de Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El condensado de Bose-Einstein

Los cinco grandes descubrimientos de la Física de los últimos 25 años
NIST/JILA/CU-Boulder
Un nuevo estado de agregación de la materia, el condensado de Bose-Einstein

Sólido, líquido y gaseoso. Así es como la mayoría de la gente respondería si se les preguntara cuáles son los estados de la materia. Pero existe un cuarto, el plasma, y un quinto aún menos conocido: el Condensado de Bose-Einstein (CBE).

 

 

Se trata de un estado de la materia que se produce cuando las partículas denominadas bosones pierden sus características individuales para colapsar en un único estado colectivo en el que los efectos cuánticos se manifiestan en una escala macroscópica. Esta condensación fue predicha por Satyendra Nath Bose y Albert Einstein en la década de los 20 del pasado siglo.

Se trata también de la materia más fría que se conoce. Varios experimentos de laboratorio han conseguido formar CBE a temperaturas de apenas media milmillonésima de grado por encima del cero absoluto, es la temperatura más baja posible del Universo (-273 grados) y a la que cesa la actividad atómica.

 

 

 

Imagen relacionada

 

 

Seguramente habrá algún otro que aún no conozcamos porque, ¿qué clase de materia es la que conforma un agujero negro? Allí la materia que entra es atrapada hacia lo que llamamos singularidad que al parecer es lo mas denso que existe en nuestro Universo.

 

 

 

Los cinco grandes descubrimientos de la Física de los últimos 25 años
Archivo
La expansión del Universo es cada vez más rápida

En la década de los 20 del pasado siglo, el astrónomo Edwin P. Hubble confirmaba que el Universo no ha dejado de crecer desde el momento mismo en que surgió, a partir de la gran explosión, el Big Bang, hace 13.800 millones de años, según los últimos datos más precisos. En los 90, se descubrió que esa expansión, además, se está acelerando y es cada vez más rápida a medida que pasa el tiempo.

Lo que causa esta expansión fue denominado energía oscura, un tipo de energía de la que apenas sabemos nada. Junto a la materia oscura, completamente diferente a la materia ordinaria que todos conocemos, conforman el 96% de la masa total del Universo. Solo el 4% está hecho de materia ordinaria, la que forma todos los planetas, estrellas y galaxias que podemos ver.

El descubrimiento de la expansión acelerada del Universo sacudió las cimientos de todo lo que sabemos sobre el Cosmos.

Sí, los Neutrinos tienen masa

Los cinco grandes descubrimientos de la Física de los últimos 25 años
Archivo
Detector de neutrinos en Tokio

Durante mucho tiempo se creyó que los neutrinos, unas misteriosas partículas subatómicas, no tenían masa. Sin embargo, investigaciones posteriores demostraron que se transforman alternativamente, lo que solo es posible si tienen masa, aunque muy pequeña, menos de una milmillonésima de la masa de un átomo de hidrógeno. Este hallazgo ha obligado a revisar la teoría de las partículas elementales y fuerzas fundamentales de la naturaleza.

La masa de los neutrinos es tan ligera que pasan sin problema a través de planetas enteros sin ser interferidos ni siquiera por uno de sus átomos. Tampoco tienen carga eléctrica, por lo que los neutrinos no están sujetos a alteraciones magnéticas de ninguna clase y no son alterados por la fuerza de la gravedad. Se mueven libremente en cualquier clase de ambiente y condición.

Fuente: Reportaje de prensa.