lunes, 06 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡¡Quásares!! Extraños objetos de inusitado brillo y energía

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

File:Artist's rendering ULAS J1120+0641.jpg

 

           Una composición artísdtica del quásar  brillante descubierto hasta el momento: ULAS J1120+064.

Los quásares son galaxias distantes muy luminosas, alimentadas por un agujero negrosupermasivo en su centro. Su brillo los convierte en poderosos faros que pueden ayudar a investigar la época en que se formaron las primeras estrellas y galaxias.Son útilespara ir comprendiendo cómo se formó el universo al revelar el estado de ionización del medio intergaláctico que tuvo lugar unos mil millones de años después del Big Bang. Parece que ULAS J1120+064 es es quásar más distante descubierto hasta el momento. Situado a más de doce mil millones de años-luz de nuestra Galaxia, está cerca de los limites del universo visible. La masa del agujero negro situado en el centro de ULAS J1120+0641 equivale a dos mil millones de veces la masa del Sol.

Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres. Los quasáres son objetos distantes de gran energía. El quasar de arriba a la izquierda está a 1.4 mil millones de años luz de la Tierra. La imagen a la derecha muestra un quasar que puede ser el resultado del choque de dos galaxias viajando a 1 millón de millas por hora. Esta galaxia está a 3 mil millones de años luz de distancia. En la foto del centro un quasar se une con una galaxia.
STScI.

Los quásares han sido identificados históricamente en estudios ópticos, insensibles a fuentes de desplazamiento al rojo más allá de 6,5. Con el estudio de ULAS J1120+0641 se ha podido compronbar que tiene un acercamiento de 7,085, lo que significa 770 millones de años después del origen del universo. El quásar más cercano a este punto observado hasta el momento tenía un desplazamiento de 6,44 (100 millones de años más joven que este). Estudiar la distancia entre los dos “faros” servirá para arrojar algo de luz a una época de la que los científicos no tienen mucha información. Para la ciencia no es fácil poder explicar cómo, en una fase tan temprana del universo, se pudo crear un objeto con una masa tan inmensa que derriba las actuales teorías sobre el crecimiento de los agujeros negrossupermasivos que predicen un crecimiento lento a medida que “el monstruo” atrae materia hacia sí desde la región circundante.

La imagen  de arriba es otra representación artística de un Quásar, las auténticas los las seis fotografías  que más arriba podéis ver y que representan -al menos eso es lo que parece- una apariencia estelar, muy similar a una estrella común tomada en la lejanía. Sin embargo el análisis detallado y profundo nos delatan algunas peculiaridades que rodean a esta clase de objetos y que los define en su singularidadpropia que los hace muy diferents a las estrellas comunes al tener estructuras muy complejas. El descubrimiento de los quásares se debió a que son intensos emisores de radio ondas y también fuentes de rayos X, radiación ultravioleta, luz visible e infrarroja, es decir, la emisión de los cuásares recorre todo el espectro electromagnético.

File:3C273 Chandra.jpg

                        Imagen de 3C273 recogida por el telescopio espacial Chandra

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los cálculos lo ubicaron a unos 2.000 millones de años-luz. Posteriormente, se comprobó que elcorrimiento al rojo de todos los quásares es mayor que el de las galaxias conocidas; por lo tanto, se encuentran más distantes que cualquiera de ellas. Esta evidencia confirmaría que se trata de los objetos más lejanos del universo conocido.

Así, las luces brillantes de los cielos que parecían estrellas, pero que eran demasiado luminosas para serlo, comenzaron a ser conocidas como objetos casi-estrellas o, resumiento, quasares. La extraordinaria luminosidad de los quasares era sólo una de entre sus poco frecuentes propiedades. Todavía era más extraño el hecho de que esa enorme efusión de energía parecía proceder de una región del espacio notablemente pequeña, más pequeña, de hecho, que nuestro Sistema solar.

Comparando las dos imágenes, aunque sean tan distitas y representan realidades tan opuestas, lo cierto es que uno se hace una idea de lo inmensamente rica que es la diversidad del Universo con todas las formas y objetos que contiene. Un simple paisaje de nuestro planeta y un quásar lejano y, sin embargo, todo lo que está presente en ambos lugares está hecho de la misma cosa, Quarks y Leptones que se conforman de manera distinta para dar resultados diferentes y diferentes propiedades que han partido de una fuente común.

Resultado de imagen de Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres

Lo asombroso de los quásares está en una pregunta  que se hacen todos los astrónomos: ¿Cómo puede un objeto tan “pequeño” como un sistema solar producir la energía de cientos de miles de millones de estrellas? Y, sin embargo, el espacio que ocupan no tiene lugar para contener tántas estrellas como serían necesarias para emitir esa enorme energía. Lo cierto es que no se sabe si existe alguna fuerza desconocida para  la ciencia que pueda generar la energía de los quásares. Una fuerza incluso más poderosa que la nuclear que es la que genera la energía que irradian las estrellas.

El misterio fue desvelado a base de observaciones y cálculos y más comprobaciones: Los quásares eran, en realidad, enormes agujeros negros situados en el centro de las galaxias más lejanas del Universo que, habían tenido el tiempo suficiente para hacerse tan inmensamente grandes que, dominaban la galaxia que los contenían y eran una gran parte de ella. Otros postulan que son galaxias jovenes que tienen un agujero negro central. Lo cierto es que, saber, lo que se dice saber lo que son los quásares, nadie lo sabe con exactitud milimétrica y todos son aproximaciones y conjeturas más o menos acertadas como otros muchos misterios que rodean las cosas del Universo que no hemos llegado a comprender.

Arriba podemos contemplar la simulación por ordenador de Joshua Barnes de la Universidad de Hawai. Abajo la escenificación artística del corazón de un quásar, un agujero negro masivo que absorbe una estrella en un vórtice de gas. Los astrónomos e Hawai creen que el Quásar brilla debido a que una galaxia gigante con un agujero negro colisiona con otra galaxia rica en gas que alimenta al agujero negroSegún todos los síntomas y datos que podemos poner sobre la mesa de estudio, la conclusión que podría ser la más acertada nos lleva a pensar que, los quásares, son inmensos agujeros negros alojados en los núcleos de grandes galaxias ricas en gas y numerosas estrellas que rodean al masivo objeto que, de manera gradual va describiendo una espiral de materia que atrae hasta él. A medida que cada estrella se acerca lo suficiente al agujero negro, su cuerpo gaseoso se desprende…

… debido a la fuerza de gravedad que genera el agujero negro y que es totalmente irresistible para la estrella que, inevitablemente, se espaguetiza y cae en las fauces del monstruo para engrosar su increíble y densa masa que lo hace más y más poderoso a medida que engulle materia de todo tipo que por las cercanias pueda pasar.

Los átomos de materia gaseosa situados en el interior de la estrella que, literalmente se desintegra, tomando gran velocidad por la fuerza de atracción que sobre ella ejerce el agujero negro, se mueve cada vez más rápidamente, como deseosa de llegar a su fatal destino. Cuando los átomos se aproximan a los límites del agujero negro, chocan unos con otros. Estas colisiones elevan la temperatura del gas, y este gas caliente irradia energía al espacio. Esta energía es la que detectan nuestros ingenios cuando estamos observando a un quásar lejano.

Nuestro Universo nos puede mostrar maravillas y cosas tan extrañas que durante muchos años no llegamos a comprender. El intenso estudio y las repetidas observaciones que en los distintos lugares del mundo se llevan a cabo sobre estos exóticos objetos, poco a poco, van generando datos que, unidos, nos llevan hacia la comprensión de lo que allí sucede, de cómo se pudieron generar algunos de estos extraños cuerpos masivos, o, pongamos por caso, cuál es el origen de las beiznas luminosas de gas plasmático que podemos contemplar en el remanente de una explosión supernova. La materia, amigos míos, puede adoptar tan extrañas y exóticas formas que, algunas, nos resultan desconcoidas y misteriosas.

La teoría prevé que el diámetro de un agujero negro es proporcional a la cantidad de materia que hay en su interior. De esta manera, cada vez que un agujero negro se encuentra con otro y lo absorbe, el agujero negro resultante es mucho mayor. Al ser mucho más grande, ese mismo agujero negro tiene más posibilidad de chocar con otros objetos al atraerlos gravitacionalmente y, los engulle para hacerce más y más grande. A partir de cierto momento, la capacidad de ese agujero negro de seguir absorbiendo más y más masa, se hace imparable y entra en un proceso sin fin en el que, cuanto mayor sea el agujero negro, más probabilidades tendrá de seguir consumiendo la materia que -pobre de ella- pase por sus dominios gravitatorios. De estos agujeros negros gigantes, han sido detectados -al menos así lo parecen los efectos de radiación y otros muy específicos que han sido comprobados- una buena cantidad en diversas galaxias más o menos lejanas.

Cuando un agujero negro engulle a una estrella, al ginal del proceso, se emite una inmensa explosión de energía. Estas explosiones de energía que se siguen unas a otras a medida que las estrellas más cercanas al agujero negro son consumidas por él, alimentan la extraordinaria cantidad de energía del quásar. Así que, resulta que el quásar es una galaxia que tiene un agujero negro gigante en el centro.

La deslumbrante radiación del quásar se crea a partir de las estrellas que, una por una, van alimentando al agujero negro gigante. Cada vez que el agujero negro gigante captura una estrella, vemos como el quásar tiene un fulgor como cuando arrojamos otro leño al fuego -guardando las distancias-. Al principio,  el fuego resplandece con gran fulgor porque el agujero negro gigante tiene a su alcance un amplio suministro de estrellas disponibles para alimentar su insaciable voracidad.

Hemos podido llegar tan lejos gracias a que la Ciencia de la Astronomía y la Astrofísica no ha dejado de avanzar desde aquellos rudimentarios datos observacionales de los sumerios, y babilonios, o, los chinos los griegos y los árabes hasta llegar a Galileo y Kepler, Tycho Brahe y tantos otros que, enamorados de las maravillas del Universo, entregaron sus vidas al estudio de la Naturaleza del espacio infinito.

Así, hemos podido llegar a saber que, pasando el tiempo, muchas estrellas de la zona interior de las galaxias han ido desapareciendo al ser engullidas por esos monstruosos gigantes que llaamamos agujeros negros. Después de un intervalo de tiempo relativamente corto, quizá de unos cientos de millones de años, quedan ya muy pocas estrellas. Al quedar sin fuente de energía, el quásar se va oscureciendo y allí, donde antes resplandecía un fulgurante quásar, sólo queda ahora una galaxia de apariencia normal que, eso sí, en su interior aloja a un monstruo que está al acecho de lo que por allí pueda pasar para devorarlo.

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los …

Se conocen más de 200.000 cuásares. Todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los quasares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc  (780 millones de años luz) y el más lejano a 6 Gpc  (13.000 millones de años luz). La mayoría de los quasares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuasares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.

Cuando profundizamos en las maravillas que el Universo contiene, cuando llegamos a comprender el por qué de los sucesos que podemos observar en el espacio profundo, cuando el estudio y la obervación ilumina nuestras mentes y el inmenso resplandor del saber nos inunda, entonces, y sólo entonces, llegamos a comprender la materia, la energía, los objetos estelares y cosmológicos que pueblan el Cosmos, todo ello, se rige por una serie de normas que son inalterables: Las cuatro fuerzas fundamentales y las constantes universales que, no sólo hacen posible la existencia de Quásares lejanos alentados por la presencia de agujeros negros gigantes, sino que también, esas mismas leyes y normas, hacen posible la existencia de las estrellas y los mundos y, en ellos, de la vida y de la inteligencia que todo lo vigila y de todo quiere saber.

Claro que, esa inteligencia a la que me refiero podría estar plasmada de muchas formas e incluso, algunas, aíun teniéndolas junto a nosotros ni la podríamos ver. La vida en el Universo, aunque la única que conocemos es la que está presente en el planeta Tierra, de cuya diversidad nos asombramos cada día -sólo tenemos que recordar que de las formas de vida que han estado presente en nuestro planeta, simplemente el uno por ciento pervive y está presente en estos momentos, el resto se entinguió por uno u otro motivo-, y, si la diversidad es tan grande en un redudico espacio como la Tierra… ¿Qué no habrá por ahí fuera?

emilio  silvera

La Historia de la estrella que nos alumbra

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

NACIMIENTO, VIDA Y MUERTE DEL SOL

 

Antes de dar comienzo a la charla sobre el tema propuesto hoy,  os quiero decir que estamos rodeados de cosas maravillosas en las que, inmersos en nuestros problemas cotidianos, no prestamos atención.

Viajamos en una “nave espacial” llamada Tierra que se mueve y gira sobre sí misma a 1.700 Km/h., viajando alrededor del Sol a 107.000 Km/h., no sentimos ningún movimiento debido a que estas velocidades son constantes, ni se aceleran ni desaceleran.

Todo en nuestro Universo nace con tiempo determinado de vida que, que de no ocurrir algún percance inesperado, se cumplirá:

Una mosca vive entre 2 y 4 semanas, un elefante 60 años, una tortuga galápago más de 150 años, nosotros sobre los 80 años, y, una estrella (dependiendo de su masa puede vivir millones o miles de millones de años.

Ya lo dijo Einstein, el Tiempo es relativo y no pasa de la misma manera para todos. Una hora no será medida de la misma manera para quién la pase junto a la persona amada al que ese espacio de tiempo le parecerá efímero, y, el enfermo aquejado de dolores en la cama de un Hospital que medirá la misma hora como si fuera eterna.

Nosotros, aunque nunca hemos sabido explicar lo que es el Tiempo, sí que hemos sabido dotarlo de espacios que, en nuestras Sociedades, nos han servido para calcular momentos determinados durante el día y la noche, hora de levantarse, ir al trabajo, comer, ver la tele o hacer las tareas, dormir…

Sobre todo, hemos querido clasificarlo según para qué, y, lo hemos dividido en tres grupos:

PASADO: (El Tiempo que se fue, lo que ya no está, lo que tenemos que rememorar y fijarnos en los aciertos para repetirlos y mejorarlos y en los fracasos para no volver a caer de nuevo en ellos).

PRESENTE: (Que está cargado de ese pasado que fue), es el Tiempo en el que estamos viviendo y, su nombre lo dice, es como un regalo que debemos disfrutar mientras podamos, y, desde luego, sacar de él todo el fruto posible dentro de los límites que marcan las Normas sociales. Lo que no hagamos durante el presente… ¡Nunca podremos hacerlo!

       El Tiempo que se va y no regresa

FUTURO: Hablamos mucho de él sabiendo que nunca podremos estar allí. El futuro es lo que aún no ha pasado, lo que está por venir, lo incierto. Como no tenemos ningún elemento de juicio para decir como será, lo que hacemos es conjeturar y teorizar sobre lo que podría ser.

        Lo que podría ser y que nunca podremos saber si esas escenas serán realidad “mañana”

Es curioso que durante toda la vida estemos hablando del pasado y del futuro, en uno ya estuvimos y sólo lo podemos recordar, el otro nunca será nuestro. Lo que nosotros llamamos nuestro futuro en realidad, será el Tiempo de otros que detrás de nosotros llegarán pero, para ellos… ¡También será presente!

Estamos condenados a vivir en un Eterno presente. Bueno, se me vino a la mente el Tiempo al estar pensando que, hace ahora 4.600 millones de años que nació el Sol en una Nebulosa molecular gigante.

 

 

 

En una nebulosa como la que arriba podemos contemplar, se formó un disco protoplanetario del que nació el Sol y los planetas, igual que otras muchas estrellas se condensan a partir de ingentes cantidades de material de éstas nebulosas y, con ayuda de la fuerza de Gravedad se condensan inmensos grumos y, en el núcleo llegan a fusionarse los átomos de Hidrógeno formándose la estrella que, a partir de ahí entran en la Secuencia Principal en la que, durante miles de millones de años estarán fusionando elementos sencillos en otros más complejos.

 

 

La explicación más aceptada para la formación del Sistema solar es la hipótesis nebular. Según ella, el Sol y los planetas y todos los objetos del Sistema solar se formaron a partir del material nebulosa hace ahora miles de millones de años.

La conjetura que en su momento fue planteada para la formación del sistema solar, es ahora aceptada como pauta general para la formación de estrellas y planetas por todo el Universo.

El Sol está conformado por Hidrógeno y Helio y tiene trazas de Carbono, Oxígeno, Nitrógeno, Neón… Hierro. El 99,86% de toda la masa del Sistema solar la tiene el Sol.

La Tierra, el planeta que nos acoge, está situado a una distancia de 150.000.000 de kilómetros del Sol, en lo que se llama zona habitable.

Dicha distancia hace posible que, la superficie del planeta no esté ni achicharrada ni congelada y, el agua pueda correr líquida para hacer posible la presencia de la Vida.

 

 

Así que el Sol es la estrella más cercana a nuestro planeta, y, la más próxima a ella es un conjunto llamado Alpha Centauri que está situado a 4.37 años luz de distancia del Sol. Es decir, unos 42 billones de kilómetros.

 

Un año luz está referido a la distancia recorrida por la luz en el vacío del espacio en un año y marcaría la distancia de 9.460.730.472.580.8 Km.

 

 

 

Para viajar al sistema de Alpha Centauri con la tecnología actual, tardaríamos unos 30.000 años. Precisamente eso es lo que hace imposible (de momento) los viajes espaciales a otros mundos).

Nuestro Sol, la estrella que alumbra al planeta Tierra, lleva 4.500 millones de años fusionando Hidrógeno en Helio a razón de 4.654.600 toneladas de Hidrógeno en 4.650.000 toneladas de Helio, y, las 4.600 toneladas perdidas en el proceso, son enviadas al espacio en forma de luz y calor, de lo que, una pequeña fracción, llega a la Tierra para hacer posible el sustento de casi todas las formas de vida que conocemos a través de la fotosíntesis y determina el clima de la Tierra y su meteorología.

La luz del Sol nos llega al planeta en 8 minutos y 20 segundos. Determina el día y la noche al unísono con la rotación del planeta.

En la Tierra, la energía radiada por el Sol es aprovechada por los seres fotosintéticos que constituyen la base de la cadena trófica, siendo la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos.

 

 

 

Como decíamos antes, el Sol supone el 99,86 por ciento de toda la masa del Sistema solar. Aunque sea una estrella enana amarilla de las que, sólo en nuestra Galaxia, la Vía Láctea existen miles de millones como ella, para nosotros, y todos los habitantes del planeta, es la estrella más importante, la que nos suministra la energía y permite que la vida tenga sus hábitats proliferando por los más dispares lugares que imaginarnos podamos.

 

 

El Sol lleva brillando en la secuencia Principal 4.500 Millones de años, y, todavía le quedan 5.000 millones de años hasta que agote su combustible nuclear de fusión. Cuando llegue ese momento, la estrella sufre una serie de procesos que la llevan a convertirse en una Gigante roja que, en el caso del Sol llegará a tener un radio de unos 100 millones de kilómetros, es decir, aumentará hasta engullir a Mercurio y Venus y seguramente la Tierra. Cuando eso suceda, las temperaturas subirán tanto que, los mares y océanos de la Tierra se evaporarán y, la vida, tal como la conocemos dejará de existir en nuestro planeta.

 

El tamaño actual del Sol en comparación con su tamaño máximo (estimado) durante la fase de Gigante roja dentro de unos 5.000 millones de años.

Las capas externas de las gigantes rojas están poco ligadas gravitacionalmente por lo que, expulsa masa para formar (después de un largo tiempo), una Nebulosa planetaria.

 

Así, las capas externas de la gigante roja son eyectadas al Espacio Interestelar para formar una Nebulosa Planetaria que es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado, que, como decimos, ha sido expulsado de la fase de rama asintótica gigante que atraviesan las estrellas gigantes rojas al final de sus vidas. Estas Nebulosas tienen forma de anillo o burbujas y, en su centro, aparecerá un puntito blanco que no es otra cosa que, el resto de la masa de la estrella que, una vez liberada de la fusión nuclear que la hacía expandirse, queda a merced de la Gravedad que la contrae, es decir, la condensa más y más, hasta tal punto que alcanzan los 10 ⁶ g/cm³, varias toneladas por centímetro cúbico.

 

 

“A estas densidades entran en juego el principio de indeterminación de Heisenberg y el principio de exclusión de Pauli para los electrones, los cuales se ven obligados a moverse a muy altas velocidades, generando la llamada presión de degeneración electrónica, que es la que efectivamente se opone al colapso de la estrella. Esta presión de degeneración electrónica es un fenómeno radicalmente diferente de la presión térmica, que es la que generalmente mantiene a las «estrellas normales». Las densidades mencionadas son tan enormes que una masa similar a la del Sol cabría en un volumen como el de la Tierra (lo que daría una densidad aproximada de 2 t/cm3), y solamente son superadas por las densidades de las estrellas de neutrones y de los agujeros negros. Las enanas blancas emiten solamente energía térmica almacenada, y por ello tienen luminosidades muy débiles.”

Las estrellas enanas blancas están formadas principalmente de Carbono y Helio viven largo tiempo mientras se enfrían para convertirse en enanas negras.

emilio silvera

¿En qué Universo estamos? ¿Habrá otros más allá del nuestro?

Autor por Emilio Silvera    ~    Archivo Clasificado en Universos paralelos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

“A pesar de la frecuencia con la que aparecen en novelas y películas de ciencia ficción, los universos paralelos no eran, hasta ahora, más que una especulación científica. Sin embargo, matemáticos de la Universidad de Oxford han demostrado que existen en realidad. Los universos paralelos existen. Así de contundentes son los resultados del último estudio efectuado por científicos de la Universidad de Oxford, en el que demuestran matemáticamente que el concepto de estructura de árbol de nuestro universo es real. Esta propiedad del universo es la que sirve de base para crear nuestra realidad.

La teoría de los universos paralelos fue propuesta por primera vez en 1950 por el físico estadounidense Hugh Everett, en la que intentaba explicar los misterios de la mecánica cuántica que resultaban completamente desconcertantes para los científicos. Expresado de una manera muy simplificada, lo que propuso Everett fue que cada vez que se explora una nueva posibilidad física, el universo se divide. Para cada alternativa posible se “crea” un universo propio.”

 

 

 

 

Algunos dicen que la Humanidad podría estar viviendo en el pasado de un Universo paralelo. Ya lo he dicho en muchos de estos trabajos… ¡Imaginación sin límites!

 

 

Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del  nuestro que, se comporta como si existiera más materia de la que realmente hay debido a que, la fuerza de gravedad de esos “universos” vecinos, incide de manera real en este Universo nuestro. Como podréis comprobar, los distintos estudios sobre el tema, nos dan también, diferentes resultados y, confirmar la Inflacción, las ondas gravitatorias y la existencia del multiverso… ¡Nos queda lejos aún! Sin embargo, algunos se dejan llevar por el esntusiamo.

Imagen relacionada

Los estudios del MAPW han derivado en deducciones que nos dicen: “El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.

Ωbh= 0,002267 + o,000558/  0,000059

Ωch2 = 0,1131 ± 0.0034

ΩΛ      = 0,726± 0.015

n= 0,960 ± 0,013

τ          = 0,084 ± 0.016

σ= 0,812 ± 0.026

                      Los tres ingenios que estudian el problema planteado

Estos son los valores de los parámetros cosmológicos obtenidos a partir de los datos combinados de 5 años de observación de WMAP, medidas de distancia de supernovas tipo I y la distribución de galaxias Omega b, c, lambda que son las densidades de materia bariónica, materia oscura y energía oscura respecto a la densidad crítica (la correspondiente a un espacio euclideo) h = 0,71 es el parámetro de Hubble que mide la razón de expansión del universo, τ es la profundidad óptica, y ns y σson el índice espectral y la amplitud del espectro de las fluctuaciones de la materia, respectivamente.

Además de los parámetros cosmológicos, el estudio de la distribución estadística de las anisotropías en la intensidad de la polarización de la radiación también nos proporciona una información muy valiosa sobre la historia remota del Universo. El Modelo estándar de inflación predice que las fluctuaciones en la densidad de energía se distribuye siguiendo, muy aproximadamente, un campo aleatorio gausiano. Sin embargo el modelo estándar se basa en el caso ideal de existencia de un solo campo cuántico, el inflatón, que evoluciona lentamente hasta el mínimo de potencial.

En el artículo nos dicen:

 

“El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.”

 

 

En los numerosos análisis realizados a los datos de WMAP se han encontrado una serie de “anomalías” cuyo origen está aún por determinar. En el artículo se nos dice: ” El flujo oscuro es controvertido debido a que la distribución de la materia en el Universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del Universo visible -fuera de nuestro “horizonte”- está tirando de la materia en nuestra vecindad”. Es decir, que de lo que en realidad se trata es, de saber cuanto vale Omega (Ω), o, lo que es lo mismo, la cantidad de materia que contiene el Universo metiendo en ese “saco” tanto a la materia bariónica como a la oscura.

Las anomalías observadas no son debidas ni al ruido ni a residuos contaminantes, lo más probable es que sea debida a defectos topológicos en forma de textura. Seguramente la misión Planck de la ESA nos proporcionará la mejor medida de la anisotropía en la intensidad del Fondo Cósmico de Microondas en todo el cielo con una sensibilidad, resolución y cubrimiento frecuencial sin precedentes.

Las fronteras del conocimiento sobre el Universo se amplian día a día y, a no tardar mucho podremos saber sobre:

  • Las características de la época inflacionaria así como de las fluctuaciones primordiales en la densidad que allí se generaron.
  • La existencia de ondas gravitatorias primordiales.
  • La naturaleza de la materia oscura y la energía oscura y su contribución al contenido material/energético total del Universo.
  • La distribución de cúmulos de galaxias seleccionados mediante el efecto Sunyaev-Zeldovich.
  • La época de reionización”.

Y, muchas cosas más que de momento ignoramos y que, como podemos leer en el artículo de arriba, cada día quedan más cerca de nuestro entendimiento gracias al trabajo de muchos y, sobre todo, al ingenio de los seres humanos que, con su inagotable imaginación y, por fin, unificando los conocimientos adquiridos durante largos años, ahora van aprendiendo a dirigir sus esfuerzos en la debida dirección, que nos llevará, a desvelar cosas que no comprendemos para saber, cada vez más profundamente, como funciona el Universo en el que vivimos y por qué de sus comportamientos.

La naturaleza a temperaturas muy bajas tiene una gran cantidad de sorpresas bajo la manga”, comenta Meyer. “No quiero especular sobre cuál resultará ser la explicación de la emisión criogénica, pero no me sorprendería si la estructura de banda de los semiconductores desempeña un papel importante”.

 

         Estructuras desconocidas arrastran las galaxias de nuestro universo

¡Hay tantas cosas que desconocemos! Pudiera incluso ser posible que, esa fuerza misteriosa que tira de nuestras galaxias y, cuya responsabilidad se la adjudicamos a “la materia oscura”, sea, enrealidad, la fuerza de Gravedad que generan cientos de miles de Galaxias situadas en otro universo que, vecino del nuestro, incide de manera directa en el comportamiento de los objetos que el nuestro contiene.

Resultado de imagen de Estructuras desconocidas arrastran nuestras galaxias hacia sí

Porque, ¿quién puede asegurar que nuestro Universo es el único universo? Nosotros decimos, en relación a “nuestro” Universo, que comprende “todo” lo que existe, incluyendo el espacio, el tiempo y la materia. Claro que, al decir “todo lo que existe” nos estamos refiriendo al ámbito del propio Universo, sin pensar en que, más allá de éste nuestro, puedan existir otros iguales o diferentes que, como el nuestro, tenga también espacio, tiempo y materia, y, si es así, ¿Por qué esa materia vecina no puede incidir, con la fuerza de Gravedad que su materia genera, en éste Universo nuestro? Si recordamos bien, se dice que, tanto el alcance de la fuerza electromagnética como el de la Gravitatoria, son infinitos. De esa manera, esa materia que conforma otros universos, podría estar “tirando” de nuestras galaxias y, haciendo que corran a más velocidad de la que tendrían de no concurrir en escena, alguna otra fuerza externa. Claro que, nosotros, creyendo que la idea de otros universos es algo atrevida, hemos preferido adoptar a la “Materia Oscura” para que explique, o, más bien justifique, las anomalías observadas.

Una cosa sí que está clara, el Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Tal separación gradual, a medida que el tiempo pasa, hace que el Universo sea, cada vez más frío.

 

¿No pasará con los universos como ocurre con las galaxias? Sabemos que Andrómeda se nos echa encima a 100 Km/s, y, de la misma manera, son múltiples las galaxias que se han fundido en una sola galaxia mayor. Si eso es así (que lo es), si las leyes del Universo son las que son, ¿quién puede negar que al igual que las galaxias, también los universos se funden en otro mayor?

Yo, la verdad es que no acabo de estar de acuerdo con la dichosa “materia oscura”, algo me dice que hay algo más que no sabemos ver y, posiblemente, la fuerza de Graedad tenga alguna propiedad o extensión desconocida. Por otra parte,  la idea, no de universos paralelos que serían intangibles para nosotros al estar situados en otro plano dimensional, sino la idea de universos conexos que, de alguna manera, se relacionan entre sí a una escala tan enorme que aún no hemos podido captar.

Resultado de imagen de Las tres clases de universo

Creo firmemente que, eso debe ser así según los indicios que, cada vez son más fuertes apuntando en dicha dirección, y, esos modelos que nos hemos inventado del Universo Plano, Abierto o Cerrado, no son más que palos de ciego tratando de explicar lo que no comprendemos.

La materia que conforma nuestro Universo es la que podemos ver y detectar, la que confroman todos los objetos existentes nosotros incluidos, y, sin importar la forma que esté adoptando en este momento, la materia, materia es: es decir, Quarks y Leptones. Es posible que, seguramente, esté acompañada de esa otra escondida en eso que llamamos “fluctuaciones de vacío” donde, que sepamos, puede haber oculto mucho más de lo que hemos podido localizar, ya que, su dominio, el dominio de los llamados “océanos de Higgs” nos quedan muy, pero que muy lejos, y, ahora, con el LHC, posiblemente podamos obtener algunas de las respuestas tan deseadas y necesarias para rellenar muchos de los espacios “vacíos” que están presentes en nuestros conocimientos limitados.

Screenshot of CERN's new blog

Pensemos en el Universo y que con el Hubble y otros magníficos aparatos tecnológicos de complejo diseño, hemos podido acceder a un conocimiento más profundo de lo que puede ser la materia y las partículas de que está conformada. Por otra parte y pensando en el enorme costo que nos suponen esos inmensos aceleradores de partículas que nos llevan (durante una fracción de segundo) al instante mismo de la creación para que, allí, podamos “ver” lo que fue y entender, de esa manera, lo que es, a costa de una inemnsa energía. Precisamente por ello, sería deseable busca otros caminos más dinámicos y menos costosos (la Química) que nos llevaran hasta el mismo lugar sin tanta estructura y con menos esfuerzo económico que se podría destinar a otros proyectos del espacio.

James Webb Space Telescope.jpg

El James Webb situado más lejos y con mayores prestaciones nos enseñará… ¡El borde del universo?

Sabemos de su magnificencia y de su “infinitud”. Lleva 13.700 millones de años creciendo, y, hemos logrado la proeza de captar galaxias situadas a unos 13.ooo millones de años-luz de nosotros, es decir, de cuando el Universo era muy joven.

Con las nuevas generaciones de aparatos, con las nuevas y más avanzadas tecnologías, seguramente, alcanzaremos a poder ver, incluso el momento mismo de “la gran explosión”.

Sin embargo, tales hallazgos no serán suficientes para explicar todo lo que en verdad existe y está ahí, “junto” a nosotros, haciéndonos señales que no podemos captar, y, seguramente, enviándonos mensajes que no podemos recibir.

¡Algún día, muy lejos en el futuro, podremos, al fin saber, en qué Universo estamos y si, éste Universo nuestro, tiene otros hermanos!

“Kashlinsky y su equipo afirman que su observación representa la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”

Resultado de imagen de Más allá del Universo visible

“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.

En el escenario de inflación, la expansión está dirigida por un campo de energía de un origen misterioso. Erickcek y sus colegas argumentan que la asimetría podría ser el remanente de las fluctuaciones en un campo de energía adicional, el cual empezó siendo diminuto, pero estalló por la inflación hasta que se hizo mayor que el universo observable.

Como resultado, el valor de este campo de energía varió desde un lado del universo al otro en los inicios, aumentando las variaciones de temperatura – y densidad de materia – en un lado del cielo con respecto a otro.

Imagen relacionada

      No creo que estas lejanas regiones las temperaturas sean diferentes a otras regiones del Universo

La conclusión, si es correcta, haría añicos una apreciada suposición sobre el universo. “Uno de los sustentos básicos de la cosmología es que el universo es el mismo en todas las direcciones, y el modelo estándar de la inflación se construye sobre estos cimientos”, dijo Erickcek a New Scientist. “Si la asimetría es real, entonces nos dice que un lado del universo es de algún modo distinto al otro lado”.

“El universo, tan vasto para la mayoría de nosotros, a veces les resulta pequeño a los cosmólogos. Observando a enormes distancias de la Tierra han encontrado una “ventana” que podría mostrarnos que existe algo más allá de los 93.000 millones de años luz, el “borde final” observable de esta burbuja cósmica que nos aloja. ¿Constituye esto una evidencia de la existencia otros universos?”

Ilc 9yr moll4096.png

“El universo observablehorizonte del universo u horizonte cosmológico constituye la parte visible del universo total. Parece tener un espacio-tiempo geométricamente plano. Tiene un radio de 1,37 x 1026 m, un volumen de 1,09 x 1079 m3 y una masa de 9,27 x 1052 kg.”

 

 

Imagen que explica la diferencia sobre el dato de la edad del universo (1.37×1010 años luz) en comparación a la estimación sobre el radio real del universo observable (4.65×1010 años luz).4​ La explicación de tal sería que al mirar la radiación de fondo y las galaxias más lejanas se observa el pasado con una mayor densidad de materia por centímetro cúbico del universo.

 

He buscado diversas opiniones y estudios que arriba están para su lectura, y, también he plasmado aquí mis propias opiniones sobre todo este complejo tema. Leyendo a unos y otros sabemos que, a nada se ha llegado de manera definitiva pero, la idea de que más allá del horizonte de nuestro Universo, hay algo más, toma fuerza y amplia nuestra visión en relación a dónde podemos estar y lo que, verdaderamente pueda ser todo esto.

Para más abundamiento, se incluyen hoy dos entrevistas que el Pais publicó sobre el tema y, con ellas, oyendo lo que los científicos opinan del tema, podéis sacar vuestras propias conclusiones.La mías es: ¡Que todo es posible! Sin embargo, necesitamos Tiempo para demostrarlo.

emilio silvera

Todo es Universo… ¡También nosotros!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Resultado de imagen de Imagen de la luna Titán

la Luna Titan captada por la Huygens con atmósfera como la de la Tierra hace millones de años, océanos de metano, y, características que, en el futuro, podríann ser idóneas para la vida.

Sobrevuelos a Venus, la Tierra y Júpiter investigando  Saturno y sus lunas. Ha sido una de las misiones espaciales más rentable hasta el momento.

La masa de la sonda Cassini es tan grande que no fue posible emplear un vehículo de lanzamiento que la dirigiese directamente a Saturno. Para alcanzar este planeta fueron necesarias cuatro asistencias gravitacionales; de esta forma, Cassini empleó una trayectoria interplanetaria que la llevaría a Venus en dos ocasiones, posteriormente hacia la Tierra y después hacia Júpiter. Después de sobrevolar Venus en dos ocasiones a una altitud de 284 Km, el 26 de abril de 1998 y a 600 Km, el 24 de junio de 1999, el vehículo se aproximó a la Tierra, acercándose a 1171 Km de su superficie el 18 de agosto de 1999. Gracias a estas tres asistencias gravitacionales, Cassini adquirió el momento suficiente para dirigirse al Sistema Solar externo. La cuarta y última asistencia se llevaría a cabo en Júpiter, el 30 de diciembre de 2000, sobrevolándolo a una distancia de 9.723.890 Km, e impulsándose hacia Saturno.

¿Que es el núcleo atómico?

El propio Rutherford empezó a vislumbrar la respuesta a la pregunta que arriba hacemos. Entre 1.906 y 1.908 (hace más de un siglo) realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos. La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol), pero no todos. Algunas de aquellas partículas no aparecían por ninguna parte, parecían que chocaban con algo sólido… ¿Qué sería?

Pero centrémonos en el trabajo que aquí se expone que se anuncia arriba como: Todo es Universo… ¡También nosotros!

El Universo lo es todo. El Espacio y el Tiempo, la Materia y las fuerzas que con ella interaccionan, las Constantes de la Naturaleza y todo ello, implica una serie de cuestiones de una complejidad inmensa que aún, no hemos podido resolver. La cantidad de teorías, de modelos, de experimentos y de posibilidades que están en marcha en los distintos campos del saber, son enormes, y, finalmente, todas deberán ser unidas en un solo y complementado conocimiento que nos lleve a ese entendimiento profundo de nuestro Universo como un todo que es, lo que podremos ver, trás unir las piezas del rompecabezas con el que ahora estamos trabajando al dilucidar parcelas de esa inmensidad que no podemos abarcar con la vista y menos con el conocimiento, sólo la imaginación se acerca a ese todo que pretendemos construir.

Resultado de imagen de Una imagen del Universo

No podemos tener una imagen del Universo completo, es demasiado grande para que eso sea posible y sólo, pequeñas regiones del mismo podemos captar con nuestros telescopios que nos enseñan regiones más o menos lejanas del inmenso Cosmos. En cualquier parte que podamos mirar y observar, nos daremos cuenta de que las cosas que allí puedan pasar, son las mismas que pasan en otros lugares, toda vez que, el Universo se rige por leyes que actúan en todas partes de la misma manera. Muchos, desde hace mucho tiempo, pensaron en todas esas cuestiones.

Tales nació en la ciudad de Mileto en el año 639 a. de C. Fue el primero de los 7 sabios de Grecia y era matemático, geógrafo, pensador, astrónomo y astrólogo. Hijo de Examio y Cleóbula. Se marchó a Egipto para formarse con los sacerdotes del faraón en Geometría, astrología y física, allí aprendió cosas tan útiles como medir las pirámides por la longitud de la sombra. Era experto en astrosofía (algo que unía astronomía con filosofía) y que le daba el título de erudito en el más alto nivel. Se cuenta de él que, un día caminaba, de noche, observando las estrellas y cayó en un socabón que había en el suelo. Él fue el primero en dar al Agua la importancia que tiene para la vida.

Resultado de imagen de Los conocimientos de Tales de Mileto


Hoy trataré de dejar aquí una insignificante brizna de toda esa búsqueda, desesperada, por ese saber incansablemente perseguido por la especie humana que,deseosa de conocer todos aquellos misterios encerrados dentro de esa burbuja que llamamos Universo, no ha dejado, desde que Tales de Mileto desterró la mitología para emplear la lógica, de buscar el por qué del mundo, de los cielos y, en fin, de la Naturaleza. Claro que, desde aquel entonces hasta ahora, mucho es lo que nuestra curiosidad nos ha podido dar de ese saber que buscamos y del que no todos, hanestado siempre seguros de lograr.

Por ejemplo:

No olvidemos que, en el siglo XIX, algunos científicos declararon que la composición de las estrellas estaría siempre fuera del alcance del experimento, y, que la única manera que tendríamos de conocerlas sería la de mirar al cielo y verlas allí, inalcanzables como puntos de luz brillantes y lejanos en la oscuridad del vacío del cosmos.Sin embargo, podemos decir hoy, finalizando la segunda década del siglo XXI, , que no solo podemos saber la composición de las estrellas, sino también como nacen, “viven” y mueren, las distancias que las separan de nosotros y un sin fin de datos más que el estudio y la investigación nos ha posibilitado descubrir.

http://chandra.harvard.edu/photo/2007/a3627/a3627.jpg

Las estrellas del cielo, ¡tan lejanas! ¡tan misteriosas! que en las noches oscuras nos envían guiños de complicidad, como si trataran de decirnos alguna cosa, como si nos estuvieran llamando. Fue tanto el misterio que en nuestras mentes sembraron las estrellas que, no hemos parado ni un momento por saber, no sólo de qué estaban hechas, sino como surgen a la vida, como se desarrollan sus mecanismos, como mueren y en qué se convierten después. Sabemos que las estrellas son importantes en nuestras vidas hasta el punto de que, sin ellas, no podríamos estar aquí. Una de ellas, a la que llamamos Sol, nos envía su luz y su calor haciendo posible la vida en el planeta Tierra, otra antes que el Sol, hace seguramente muchos miles de millones de años, regó el espacio con su materia estelar y, pasado el tiempo, se condenso (ayudada por la Fuerza de Gravedad) en lo que hoy conocemos como el Sistema Solar.

Archivo:Buenos Aires-Plaza Congreso-Pensador de Rodin.jpg

Nada más cierto que lo que quiere simbolizar esa enorme imagen del Pensador. Es un fiel reflejo de lo que, a través de los tiempos, ha sido el SER Humano. Nunca hemos dejado ni dejaremos de pensar, en ello está nuestro futuro. A las pruebas de la Historia me remito.

Particularmente creo que el ser humano es capaz de realizar todo aquello en lo que piensa dentro de unos limites racionales.Podremos, en un futuro no muy lejano, alargar de manera considerable la media de vida.Podremos colonizar otros planetas (terraformarlos) y explotar recurso mineros en las lunas de nuestro sistema solar (las grandes compañias petroleras estarían encantadas en Titán), los turistas irán al planeta Marte o a las lunas Ganímedes o Europa.Los transportes de hoy serán reliquias del pasado y nos trasladaremos mediantes sistemas de transportes aéreos más limpios, rápidos y exentos de colisiones, sus modernos censores lo impedirán.Tendremos computadoras de cifrado cuántico que harán más seguras las comunicaciones y el intercambio de datos será realmente el de la velocidad de c, y así en todos los campos del saber humano.

En el nombre “Internet del Futuro” se asocian una serie de conceptos y tecnologías que abarcan desde la infraestructura de red, dispositivos e interfaces, software y aplicaciones que compondrán el que en unos años conformará el panorama de las Tecnologías de Información y Comunicaciones.

Entre estos temas, aparece la red de redes de gran velocidad y llegando a todas partes, mediante nuevos dispositivos, con nuevas formas de interaccionar con el mundo digital, acceso fácil e inteligente los diferentes tipos de contenidos con mención especial a 3D, y todo ello soportado por innovadores modelos de negocio adaptados a este nuevo panorama.

A los jóvenes no hay que convencerles de que Internet es imprescindible. El futuro para ellos es ya hoy. Una reciente encuesta pone de relieve la enorme vocación juvenil de tomar la red como bandera generacional. De hecho ellos, los jóvenes lo van a construir y modelar a su gusto y, probablemente, el Internet del futuro poco se parecerá al Internet que conocemos hoy. Alguien ha dicho: “Hoy, Internet está en su Prehistoria”. Lleva toda la razón

Estamos inmersos en un avance exponencial, imparable.

http://cuchyx.files.wordpress.com/2010/10/tecnologia1.jpg

Se podría decir que, gracias a los Aceleradores de Partículas, podemos jugar con los átomos para mirar en su interior y saber, de qué está hecha la Materia que nos confroma a nosotros, a las estrellas y a los mundos de las galaxias del Universo.

Imagen relacionada

Otro ejemplo de una idea “inverificable” la tenemos en la existencia del átomo.En el siglo XIX, la hipótesis atómica se reveló como el paso decisivo en la comprensión de las leyes de la química y la termodinámica.Sin embargo, muchos físicos se negaban a creer que los átomos existieran realmente, los aceptaban como un concepto o herramienta matemática para operar en su trabajo que, por accidente, daba la descripción correcta del mundo.Hoy somos todavía incapaces de tomar imágenes directas del átomo debido al principio de incertidumbre de Heisemberg, aunque ahora existen métodos indirectos.En 1.905, Einstein proporcionó la evidencia más convincente, aunque indirecta, de la existencia de átomos cuando demostró que el movimiento browniano (es decir, el movimiento aleatorio de partículas de polvo suspendidas en un líquido) puede ser explicado como colisiones aleatorias entre las partículas y los átomos del líquido.

Ejemplo en el que se observa la variación de los valores de la dimensión de masa y de la dimensión del contorno calculada por el método del compás en los siguientes DLA.

Resultado de imagen de Otra posibilidad de crecimiento DLA es el vertical. Las partículas se lanzan desde lo alto y las partículas fijas se sitúan en el fondo del recipiente. Se puede observar en la siguiente figura como cuando una formación sobresale, las de sus lados dejan de crecer.

Otra posibilidad de crecimiento DLA es el vertical. Las partículas se lanzan desde lo alto y las partículas fijas se sitúan en el fondo del recipiente. Se puede observar en la siguiente figura como cuando una formación sobresale, las de sus lados dejan de crecer. Esto es debido a que las más grandes absorben los recursos de las más pequeñas e impiden su crecimiento, fenómeno que se da en la naturaleza cuando un árbol grande impide que crezcan los que están a su alrededor quitándoles los recursos de luz, agua…

Por analogía, podríamos esperar la confirmación experimental de la física de la décima dimensión utilizando métodos indirectos que aún ni se han inventado o descubierto.En lugar de fotografiar el objeto que deseamos, quizá nos conformaríamos, de momento, con fotografiar la “sombra” del mismo.

Bueno, con la imagen de la sombra podemos tener una idea, bastante acertada de la imagen original, el movimiento lo delata. Lo curioso del caso  es que, si la  miras, fijamente, comenzará  a  dar vueltas hacia el  lado contrario.

También la existencia de los neutrinos, propuestos por Wolfgang Pauli en 1.930, para dar cuenta de la energía perdida en ciertos experimentos sobre radiactividad que parecían violar la conservación de la materia y la energía, también digo, era inverificable (en aquel momento).Pauli comprendió que los neutrinos serían casi imposibles de observar experimentalmente, porque interaccionarían muy débilmente y, por consiguiente muy raramente con la materia.La materia, toda la materia, si profundizamos en ella a niveles microscópicos, podremos comprobar el hecho de que, en un 99% está constituida de espacios vacíos y, siendo así, los neutrinos pueden atravesarla sin rozar siquiera sus átomos, de hecho, pueden atravesar la Tierra como si ni siquiera existiera y, al mismo tiempo, también nosotros somos atravesados continuamente por billones de neutrinos emitidos por el sol, incluso por la noche.

Resultado de imagen de Unos quieren pesar planetas y otros neutrinos pero, todos quieren saber sobre los misterios del Universo

Unos quieren pesar planetas y otros neutrinos pero, todos quieren saber sobre los misterios del Universo

Hablando de neutrinos recuerdo cuando el experimento Opera de los neutrinos pusiera en tela de juicio la teoría de Einstein, la medición de la luz proveniente de las galaxias confirmaron por primera vez a escala cósmica la teoría de la relatividad del genio físico.Sin embargo, no en una, sino en varias ocasiones han querido quitarle al bueno de Einstein el honor de haber marcado el límite de velocidad en nuestro Universo

Pauli admitió:  ”He cometido el pecado más grave, he predicho la existencia de una partícula que nunca puede ser observada”. Él predijo la existencia del neutrino para explicar “la masa perdida” en procesos de desintegración.

Pero incluso Pauli, con todos sus enormes conocimientos, se equivocaba, y el neutrino ha sido comprobado mediante distintos métodos que no dejan dudas de su existencia. Incluso producimos regularmente haces de neutrinos en colisionadores de átomos, realizamos experimentos con los neutrinosemitidos por reactores nucleares y, detectamos su presencia en enormes depósitos de agua pesada colocados en profundas minas abandonadas en las entrañas de la Tierra. Cuando una espectacular supernova de iluminó en el cielo del hemisferio sur en 1.987, los físicos registraron una ráfaga de neutrinos que atravesaron sus detectores situados, precisamente, en profundas minas.

         El Enorme recipiente lleno de agua pesada (SNOLSB), delatará a los neutrinos que lo atraviesen.

Dentro de una antigua mina de Sudbury (Ontario, Canadá) está ubicado el complejo de investigación astrofísica SNOLAB. Una de sus instalaciones es el Observatorio de Neutrinos (ONS, en la imagen). Los neutrinos son partículas subatómicas con una masa tan ínfima —se ha calculado que menos de una milmillonésima parte de la masa de un átomo de hidrógeno— que pueden atravesar la materia ordinaria sin apenas perturbarla. La materia está “compuesta” en su mayor parte de vacío aunque nuestros ojos y nuestro cerebro (en primera instancia) no lo interpreten así.

Para evitar la interferencia de otras partículas cósmicas este peculiar observatorio no está situado en la superfície, sino nada menos que a dos kilómetros de profundidad en el interior de la corteza terrestre. La instalación ONS es básicamente un “cazador de neutrinos” capaz de detectar estas partículas producidas por las reacciones de fusión en el interior Sol y así poder analizar la composición del núcleo de nuestra estrella. La cubierta acrílica del ONS contiene un kilotón (1.000 toneladas) de agua pesada (D2O) que al reaccionar con los neutrinos hacen que se produzcan unos azulados destellos de radiación o luz Cherenkov, llamada así en honor del destacado miembro de la Academia de Ciencias de la Unión Soviética Pável Alekséyevich Cherenkov (1904-1990), Premio Nobel de Física de 1958 por el descubrimiento e interpretación de este fenómeno. El primer detector orbital de partículas de estas características —Detector Cherenkov— fue uno de los equipos científicos instalados en el satélite Sputnik-3, lanzado por la URSS el mismo año en que Cherenkov recibiera el Nobel.

Si hablamos de la masa de Planck, lo hacemos de la masa de una partícula cuya longitud de onda Compton es igual a la Longitud de Planck, está dada por la ecuación de arriba, donde tenemos la constante de Planck racionalizada (la h cortada con ese palito arriba), c que es la velocidad de la luz y G la constante gravitacional, la descripción de una partícula elemental de esta masa.o partículas que interacionan con energías por partículas equivalentes a ellas a través de E = mc2, requiere una teoría cuántica de la Gravedad. Como la masa de Planck es del orden de 10-8 kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del ordende 10-27 Kg y las mayores energías alcanzables en nuestros aceleradores de partículas actuales son de un orden (aún pequeño) los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas. Sin embargo, en el universo primitivo se cree quen las partículas tenían ejnergías del orden de la energía de Planck (representada en la ecuación de abajo) que sería la energía necesaria para llegar hasta las cuerdas.

[energia_de_Planck.png]

Echando una larga mirada a la historia de la ciencia, creo que existen motivos para un moderado optimismo. Witten está convencido de que la ciencia sería algún día capaz de sondear hasta las energías de Planck.

E. Witten, padre de la versión más avanzada de la teoría de supercuerdas, la teoría M, dice:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles.En el S.XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible.Si usted hubiera dicho a un físico del siglo XIX que hacia elS. XX sería capaz de calcularlo, le habría parecido un cuento de hadas…. La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante veinticinco años.”

 

 

Lo mismo que otros muchos, no creo que tengamos que esperar un siglo antes de que nuestro ingenio y nuestras máquinas puedan sondear de manera indirecta la décima dimensión, alguien sabrá, durante ese periodo de tiempo, resolver esa teoría de campos de cuerdas o alguna otra formula no perturbativa.El problema es teórico, no experimental.Necesitamos alguien con el ingenio y la inteligencia necesaria (además de un enorme índice de observación), para saber “ver” lo que probablemente tenemos ante nuestras narices, utilizando para ello todos los datos e indicios existentes de gente como Einstein, Kaluza y Klein, Veneziano y Suzuki, el cuarteto de cuerdas de Princeton, Michio Kaku, Witten…, y tantos otros.

Suponiendo que algún físico brillante resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro Universo, sigue existiendo el problema practico de cuándo seríamos capaces de aprovechar el poder de la teoría del hiperespacio.Existen dos posibilidades:

  1. Esperar que nuestra civilización alcance la capacidad para dominar energías millones de veces mayores que las de hoy.
  2. Encontrar civilizaciones extraterrestres que, más avanzadas, hayan dominado el arte de manipular el Hiperespacio.

 

                                      Pero, si no son como esta…¡Mejor!

Antes de que Edison (robara las ideas de Tesla) y con sus otros colaboradores aprovecharan los descubrimientos de Faraday y las ecuaciones de Maxwell, sobre la electricidad y el magnetismo, para explotarlos de manera práctica, pasaron unos setenta años.

La civilización moderna depende crucialmente del aprovechamiento de esta fuerza.La fuerza nuclear fue descubierta casi con el cambio de siglo, pasó todo el siglo XX y estamos en la primera década del XXI, han pasado 100 años, y, sin embargo, todavía no tenemos medios de aprovecharla con éxito en reactores de fusión, la energía limpia que produce el Sol.

Resultado de imagen de La teoría de campo unificado

El próximo paso, el aprovechar la potencia de la teoría de campo unificado, requiere un salto mucho mayor en nuestra tecnología, aunque sea un salto que probablemente tendrá implicaciones muchísimo más importantes.

El problema reside en que obligamos a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando su “ámbito natural” está en la energía de Planck.Energía que sólo fue liberada en el propio instante de la creación.Es decir, la teoría de supercuerdas es una teoría de la propia creación, así nos puede explicar todas las partículas y la materia, las fuerzas fundamentales y el espacio-tiempo, es decir, es la teoría del propio Universo.

http://2.bp.blogspot.com/-DMfdwHfKrQI/TcGvQe-jUMI/AAAAAAAAAHE/RaQZiXk2GN4/s1600/worm3.jpg

El dolor de cabezas que nos causa pensar en el espacio-tiempo y en el cómo podemos desplazarnos por él a grandes distancias de tiempo y también de espacio. ¿Se conseguirá alguna vez? ¿Será cierto que existen los Agujeros de Gusano? ¿Podremos alguna vez construir naves que surquen el Hiperespacio hacia otras galaxias y otros mundos?

Durante estos comentarios, frecuentemente he reseñado la palabra “espacio-tiempo” refiriéndome a una geometría que incluye las tres dimensiones espaciales y una cuarta dimensión temporal.En la física newtoniana, el espacio y el tiempo se consideraban como entidades separadas y el que los sucesos fueran simultáneos o no era una materia que se consideraba como obvia para cualquier observador capacitado.

En el concepto de Einstein del universo físico, basado en el sistema de geometría inventada por H. Minkowski (1864-1909), el espacio y el tiempo estaban considerados como enlazados, de manera que dos observadores en movimiento relativo podían estar en desacuerdo sobre la simultaneidad de sucesos distantes.En la Geometría de Minkowski (inspirada a partir de la teoría de la relatividad especial de Einstein), un suceso se consideraba como un punto de universo en un continuo de cuatro dimensiones.

Pero volvamos a las supercuerdas.El problema fundamental al que se enfrenta esta teoría es este: de los millones de universos posibles que pueden ser generados matemáticamente por la teoría de supercuerdas, ¿cuál es el correcto? Como ha dicho David Gross:

Resultado de imagen de tres dimensiones espaciales

“Existen millones y millones de soluciones con tres dimensiones espaciales. Existe una enorme abundancia de soluciones clásicas posibles… Esta abundancia de riqueza era originalmente muy satisfactoria porque proporcionaba evidencia de que una teoría como la de la cuerda heterótica podía tener un aspecto muy parecido al mundo real. Estas soluciones, además de tener cuatro dimensiones espacio-temporales, tenían otras muchas propiedades que se asemejaban a nuestro mundo: el tipo correcto de partículas tales como quarks y Leptones, y el tiempo correcto de interacciones… Esto constituyó una fuente de excitación en su momento.”

 

 

Es difícil escenificar lo que las supercuerdas son, nunca nadie pudo ver ninguna.

 

Gross, sin embargo, advierte que aunque alguna de estas soluciones están muy próximas al modelo estándar, otras dan lugar a propiedades físicas muy embarazosas e indeseables, lo que finalmente se traduce en una auténtica incomodidad o problema, ya que tenemos muchas soluciones pero ninguna forma aceptable de escoger entre ellas.Además algunas tienen propiedades deseadas y otras potencialmente desastrosas.

Un profano, al oir esto por primera vez, puede quedar intrigado para preguntar: ¿por qué no calcular simplemente que solución se adapta o prefiere la cuerda? Puesto que la teoría de cuerdas es una teoría bien definida, parece enigmático que los físicos no puedan calcular la respuesta.

Lo único seguro es que los físicos seguirán trabajando a la búsqueda de la solución que, más pronto o más tarde, llegará.

Efecto túnel a través del espacio y del tiempo

Resultado de imagen de efecto túnel

         ¡Extraña mecánica cuántica!

Estaría bien poder saber como un electrón, cuando absorbe un fotón, desaparece del lugar que ocupa y, de manera instántanea, aparece en otro lugar más ener´getico sin haber recorrido la distancia que separa ambos lugares, es el efecto túnel o salto cuántico. ¿Cuánto podríamos ganar si aprendiéramos como se hacer eso?

En definitiva, estamos planteando la misma cuestión propuesta por Kaluza, cuando en 1.919, escribió una carta a Einstein proponiéndole su teoría de la quinta dimensión para unificar el electromagnetismo de James Clark Maxwell y la propia teoría de la relatividad general. ¿Dónde está la quinta dimensión?, pero ahora en un nivel mucho más alto.Como Klein señaló en 1.926, la respuesta a esta cuestión tiene que ver con la teoría cuántica.Quizá el fenómeno más extraordinario (y complejo) de la teoría cuántica es el efecto túnel.

Resultado de imagen de Efecto túnel

El efecto túnel se refiere al hecho de que los electrones son capaces de atravesar una barrera al parecer infranqueable hacia una región que estaría prohibida si los electrones fuesen tratados como partículas clásicas.El que haya una probabilidad finita de que un electrón haga un túnel entre una región clásicamente permitida a otra que no lo está, surge como consecuencia de la mecánica cuántica.El efecto es usado en el diodo túnel.La desintegración alfa es un ejemplo de proceso de efecto túnel.

Antes preguntábamos, en relación a la teoría de Kaluza – Klein, el destino o el lugar en el que se encontraba la quinta dimensión.

El profesor Teodor Kaluza nos hablaba de la Quinta Dimensión que unificaba la Relatividad de Einsteincon la Teoría de Maxwell. Todo en cinco dimensiones…Ahí comenzó toda la historia que después, desembocaron enm las supersimetrías, supergravedad, cuerdas y supercuerdas, cuerda heteráotica y teoría M…¿Qué vendrá después?

La respuesta de Klein a esta pregunta fue ingeniosa al decir que estaba enrollada o compactada en la distancia o límite de Planck, ya que, cuando comenzó el Big Bang, el Universo se expandió sólo en las cuatro dimensiones conocidas de espacio y una de tiempo, pero esta dimensión no fue afectada por la expansión y continua compactada en Lp=√(Għ/c3),cuyo valor es del orden de 10-35 metros, distancia que no podemos ni tenemos medios de alcanzar, es 20 ordenes de magnitud menor que el protón que está en 10 con exponente -15 metro.

Pues las dimensiones que nos faltan en la teoría decadimensional, como en la de Kaluza – Klein, también están compactada en una recta o en un círculo en esa distancia o límite de Planck que, al menos por el momento, no tenemos medios de comprobar dada su enorme pequeñez menor que un protón.

¿Cómo pueden estar enrolladas unas dimensiones?

Bueno, igual que para explicar de manera sencilla la gravedad mediante el ejemplo de una sábana estirada por los 4 extremos, en la que ponemos un enorme peso en su centro y se forma una especie de hondonada que distorsiona la superficie antes lisa de la sábana, al igual que un planeta distorsiona el espacio a su alrededor, de manera tal que cualquier objeto que se acerca a la masa del objeto pesado, se ve atraído hacia él.Pues bien, en las dimensiones de espacio enrolladas, utilizamos el símil de la sábana con bandas elásticas en las esquinas.

La sábana que tenemos es pequeña y la cama es grande.Con esfuerzo logramos encajar las cuatro esquinas, pero la tensión es demasiado grande; una de las bandas elásticas salta de una esquina, y la sábana se enrolla. Este proceso se llama ruptura de simetría.La sábana uniformemente estirada posee un alto grado de simetría.La sábana se enrolla.Se puede girar la cama 180º alrededor de cualquier eje y la sábana permanece igual.Este estado altamente simétrico se denomina falso vacío.Aunque el falso vacío aparece muy simétrico, no es estable. La sábana no quiere estar en esta condición estirada. Hay demasiada tensión y la energía es demasiado alta.Pero, la sábana elástica salta y se enrolla.La simetría se rompe, y la sábana pasa a un estado de energía más baja con menor simetría. Si notamos la sábana enrollada 180º alrededor de un eje ya no volvemos a tener la misma sábana.

Resultado de imagen de Espacio decadimensional

Reemplacemos ahora la sábana por el espacio-tiempo decadimensional, es espacio-tiempo de simetría definitiva.En el comienzo del tiempo, el universo era perfectamente simétrico.Si alguien hubiera estado allí en ese instante, podría moverse libremente y sin problemas por cualquiera de las diez dimensiones. En esa época la Gravedad y las fuerzas débiles y fuertes y electromagnéticas estaban todas ellas unificadas por la supercuerda.Sin embargo, esta simetría no podía durar.El Universo decadimensional, aunque perfectamente simétrico, era inestable, la energía existente muy alta, exactamente igual que la sábana, estaba en un falso vacío. Por lo tanto, el paso por efecto túnel hacia un estado de menor energía era inevitable. Cuando finalmente ocurrió el efecto túnel, tuvo lugar una transición de fase y se perdió la simetría.

                                                   La imaginación no tiene límites y, la Naturaleza tampoco

Puesto que el Universo empezó a dividirse en un Universo de cuatro y otro de seis dimensiones, el universo ya no era simétrico. Seis dimensiones se habían enrollado (como la sábana elástica).Pero nótese que la sábana puede enrollarse de cuatro maneras, dependiendo de qué esquina haya saltado.Para el universo decadimensional, sin embargo, existen aparentemente millones de modos de enrollarse.Para calcular que estado prefiere el Universo decadimensional, necesitamos resolver la teoría de campos de cuerdas utilizando la teoría de transiciones de fase, el problema más difícil en la teoría cuántica.

Las transiciones de fase no son nada nuevo. Trasladémoslo a nuestras propias vidas.En un libro llamado PASAJES, el autor, Gail Sheehy destaca que la vida no es un flujo continuo de experiencias, como parece, sino que realmente pasa por varios estadios, caracterizados por conflictos específicos que debemos resolver y por objetivos que debemos cumplir.

El psicólogo Eric Ericsson llegó a proponer una teoría de estadios psicológicos del desarrollo.Un conflicto fundamental caracteriza cada fase.Si este conflicto no queda resuelto, puede enconarse e incluso provocar una regresión a un periodo anterior.Análogamente, el psicólogo Jean Piaget demostró que el desarrollo mental de la primera infancia tampoco es un desarrollo continuo de aprendizaje, sino que está realmente caracterizado por estadios discontinuos en la capacidad de conceptualización de un niño.Con un mes de edad, un niño puede dejar de buscar una pelota una vez que ha rodado fuera de su campo de visión.Sin comprender que la pelota existe aunque no la vea.Al mes siguiente, esto resultará obvio para el niño.

http://1.bp.blogspot.com/-1Cu7_plq8Cg/TcMxjF7Hm7I/AAAAAAAAAgg/lQaeFfnR1AE/s1600/dejame%2Bser%2Bni%25C3%25B1o%2Buan%2Bvez%2Bm%25C3%25A1s.jpg

    ¡Siempre aprendiendo! Jugando comenzamos a conocer cómo es el mundo.

Esta es la esencia de la dialéctica.Según esta filosofía, todos los objetos (personas, gases, estrellas, el propio Universo) pasan por una serie de estadios.Cada estadio está caracterizado por un conflicto entre dos fuerzas opuestas.La naturaleza de dicho conflicto determina, de hecho, la naturaleza del estadio.Cuando el conflicto se resuelve, el objeto pasa a un objetivo o estadio superior, llamado síntesis, donde empieza una nueva contradicción, y el proceso pasa de nuevo a un nivel superior.

Los filósofos llaman a esto transición de la “cantidad” a la “cualidad”.Pequeños cambios cuantitativos se acumulan hasta que, eventualmente, se produce una ruptura cualitativa con el pasado.Esta teoría se aplica también a las sociedades o culturas.Las tensiones en una sociedad pueden crecer espectacularmente, como la hicieron en Francia a finales del siglo XVIII.Los campesinos se enfrenaban al hambre, se produjeron motines espontáneos y la aristocracia se retiró a sus fortalezas.Cuando las tensiones alcanzaron su punto de ruptura, ocurrió una transición de fase de lo cuantitativo a los cualitativo: los campesinos tomaron las armas, tomaron Paris y asaltaron la Bastilla.

 

            Parece que el “vacio” está bastante lleno de cosas…que no llegamos a comprender.

Las transiciones de fases pueden ser también asuntos bastante explosivos.Por ejemplo, pensemos en un río que ha sido represado.Tras la presa se forma rápidamente un embalse con agua a enorme presión Puesto que es inestable, el embalse está en el falso vacío.El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado de menor energía.Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.

También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico.De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente.Esto se denomina desintegración radiactiva.Sin embargo, disparando neutrones contra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de EinsteinE=mc2, por supuesto, dicha liberación, es una explosión atómica ¡menuda transición de fase!

http://4.bp.blogspot.com/_Fu_Yym_Znbg/TTx0v6fodHI/AAAAAAAAAHY/3HiSooefiN0/s1600/COSMOS.jpg

Una transición de fase que perseguimos, es dominar la Galaxia, poder moldearla con nuestras manos, y, si eso llega a ser posible alguna vez, seremos los señores del Hiperespacio.Para entonces, los misteriosos agujeros negros no tendrán secretos para nosotros, las energías perdidas tampoco y…los viajes en el tiempo, serán cosa cotidiana. ¿Será realidad algún día ese pensamiento?

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría.Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado.Aquí existe simetría.Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado.Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.

Resultado de imagen de Comensales a un banquete, sentados en una mesa redonda toman la copa de champan con la mano derecho

Rompamos ahora la simetría.Supongamos ahora que el primer comensal toma la copa que hay a su derecha.Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha. Si la imagen es vista en el espejo produce la situación opuesta.El  comensal ha tomado la copa izquierda.De este modo, la simetría izquierda-derecha se ha roto.

Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.

Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones.Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

 

Al principio, cuando el Universo era simétrico, solo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo.Más tarde, cuando el Universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron las primeras quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.Doscientos millones de años más tarde, se formaron las primeras estrellas y Galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol.Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

Resultado de imagen de Evolución de las estrellas

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar Hidrógeno en Helio, de los elementos más ligeros a los más pesados.Avanza creando en el Horno termonuclear, cada vez, metales y elementos más pesados.Cuando llega al hierro y explosiona en la forma explosiva deuna super nova.Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienzo de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Puesto que el peso promedio de los protones en los productos de fisión, como el cesio y el kripton, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante E=mc2.Esta es la fuente de energía que subyace en la bomba atómica.

                                       Restos de Hipernova que produce cambios hacia el futuro del Universo

Así pues, la curva de energía de enlace no solo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años – luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del Universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente (lo sé por experiencia), no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución.

Sin embargo, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol.

 

                          El Sol que nos da la vida con su luz y su calor

Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar (hay que eliminar a Plutón de la lista, ya que, en el último Congreso Internacional, han decidido, después de más de 20 años, que no tiene categoría para ser un planeta), la estrella más cercana a la Tierra (150 millones de km=UA), con un diámetro de 1.392.530 km, tiene una edad de 4.500 millones de años.

Es tal su densidad, es tal su enormidad que, como se explicó en otro ensayo anterior de este mismo trabajo, cada segundo, transforma por medio de fusión nuclear, 4.654.000 Toneladas de Hidrógeno en 4.650.000 Toneladas de Helio, las 4.000 toneladas restantes, son lanzadas al espacio exterior en forma de luz y calor de la que, una parte nos llega a la Tierra y hace posible la vida. Se calcula que al Sol le queda material de fusión para otros 4.500 millones de años.Cuando transcurra dicho periodo de tiempo, se convertirá en una gigante roja, eyectará sus materiales exteriores al espacioy se transformará finalmente en una estrella enana blanca.Para entonces, ya no podremos estar aquí.

Cuándo mentalmente me sumerjo en las profundidades inmensas del Universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos, en realidad, en relación al universo, como una colonia de bacterias que habitan en una manzana, allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno.

Resultado de imagen de salamanca ciudad patrimonio de la humanidad Salamanca, Ciudad Patrimonio de la Humanidad

      Sólo somos importantes a nivel local, pretendemos serlo a otros niveles pero, ¿será posible eso?

Igualmente, nosotros nos creemos importantes dentro de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados.Podemos decir que hemos dado los primeros pasos para dar el salto hacia otros mundos, pero aún nos queda un largo recorrido por delante.

Tendremos que dominar la energía del Sol, ser capaces de fabricar naves espaciales que sean impenetrables a las partículas que a cientos de miles de trillones circulan por el espacio a la velocidad de la luz, poder inventar una manera de imitar la gravedad terrestre dentro de las naves para poder hacer la vida diaria y cotidiana dentro de la nave sin estar flotando todo el tiempo, y, desde luego, buscar un combustible que procure velocidades relativistas, cercanas a c, ya que, de otra manera, el traslado por los mundos cercanos se haría interminable.Finalmente, y para escapar del sistema solar, habría que buscar la manera de romper la barrera de la velocidad de la luz.

Resultado de imagen de Viajar en el Tiempo

             ¿Viajar en el tiempo? Otro sueño de la Humanidad… ¿Será inalcanzable en el futuro?

Nuestra imaginación sólo es comparable a la inmensidad del Universo. Ahí radica nuestra verdadera riqueza. La curiosidad del SER humano le empuja de manera irremediable hacia su destino en las estrellas.

emilio silvera

¡Las estrellas! ¿Qué haríamos sin ellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia estelar    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://es.globedia.com/imagenes/noticias/2010/12/30/541531_1.jpg

 

Las estrellas enanas rojas son las más abundantes en el Universo y, desde luego, las que tienen la vida más larga. Algunas son casi tan viejas como el universo mismo, el poco material de fusión que sonsumen las llevan hasta esas edades matusalénicas de miles de millones de años, más de diez mil millones tienen algunas que, nos podrían contar muchas, muchas cosas de las que fueron testigos. Otras como nuestro Sol, estrellas GV2 enana amarilla es también del tipo más abundante. Luego están una prléyade de estrellas de mayor envergadura y grandes masas que van desde las 10 hasta las casi 150 masas solares.

Según se estima, las estrellas cuando tienen unas 120 masas solares han llegado a un límite en el que, su propia radiación las puede destruir. Sin embargo, se han descubierto estrellas que llegan hasta las 150 masas solares. ¿Por qué se mantienen “vivas” y no explotan. Bueno, todos los indicios apiuntan al hecho de que, para desahogar y esquivar los efectos de la inmensa radiación que produce la fusión nuclear, eyectan de manera periódica, material al espacio interestelar y se tranquiliza. Ahí tenenos el ejemplo de Eta Carinae.

Existen estrellas hipergigantes que son las que sobrepasan las 30 masas solares, así fueron denominadas cuando se observaron los objetos más brillantes en las Nubes de Magallanes, aunque en realidad, lo que vieron eran cúmulos de estrellas y no estrellas individuales. Sin embargo de estrellas supermasivas existen múltiples ejemplos y, hemos podido comprobar que, la enorme cantidad de material de fusión que consumen las lleva a una vida corta. Las estrellas supermasivas sólo viven unos pocos millones de años, mientras que estrellas como el Sol, llegan a los diez mil millones de años de vida.

Hay muchas clases de estrellas: Estrellas capullos envueltas en una nube de gas y polvo, estrellas de baja o de alta velocidad, con envoltura, con exceso de ultravioleta, de baja luminosidad, de baja masa, de Bario, de manganeso, de Carbono, de Litio, de Bariones, de campo, de Circonio, de estroncio, estrellas de Helio, de la rama gigante asintótica, de manganeso-mercurio, de metales pesados, de neutrones, (¿de Quarks?), estrellas de referencia, de Silicio, de Tecnecio, de tipo tardío, de tipo temprano, estrella del Polo, estrella doble, estrella enana, estrella estándar, evolucionada, estrella Flash, estrella fulgurante, magnética, estrella guía, hipergigante, estrella invitada, múltiple, peculiar, pobre en metales, estrella reloj, simbiótica, rica en metales, supermasiva, fijas, gigantes…, cada una de ellas tiene su propia personalidad, su propio color y temperatura y también, una media de vida que depende de manera directa de su masa.

Los elementos químicos se fraguan dentro de ellas, y, también al final de sus vidas, en las explosiones Supernovas, se crean los materiales más complejos de la Tabla Periódica. Estos materiales, van formar parte de las grandes Nebulosas de las que vuelven a surgir nuevas estrellas y nuevos mundos que estarán hechos de todos esos eslementos creados en las estrellas y, como nosotros mismos provenimos de ahí, es fácil oir la expresión: “Somos polvo de estrellas”.

Las estrellas no son ninguna excepción y como todo en nuestro Universo, con el paso del tiempo evolucionan y, a medida que van consumiento su combustibles nuclerar de fusión, van acortando sus vidas que, en funsión de la masa, será más corta o más duradera y también, sus finales serán distintos por la misma causa: Estrellas como el Sol = Enanas Blancas. Estrellas de varias masas solres = Estrella de Neutrones. Estrellas masivas y supermasivas = Agujeros Negros.

Esas transmutaciones que se producen durante un largo período de tiempo, conllevan fenómenos que se producen de distintastas maneras en cada una de esas estrellas. En unas, se alcanza la estabilidad al degenerarse los electrones (que son fermiones), que siguen la Ley de Pauli del Principio de esclusión. Ahí aparecen las enanas blancas.  De la misma manera sucede en estrellas más masivas que el Sol pero, al tener más masa, no es suficiente que los electrones se degeneren y, entonces, electrones y protones se fusionan para convertirse en Neutrones que son (al ser fermiones), los que se degeneran y estabiliza a la estrella como de Neutrones. Cuando ya la masa es muy grande, nada puede frenar a mla Gravedad y lo que nos queda es un Agujero Negro.

Lo cierto es que, la química de las estrellas está presente en los mundos para que pueda surgir la Vida

Decir eso de que los elementos estelares llegaron a la Tierra y pudo surgir la Vida, no es, en realidad, contar gran cosa de lo que pudo pasar para que nosotros ahora, podamos estar aquí contando sobre ello. Los actuales descubrimientos de la Paleontología, la más tradicional de las científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica. Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutíles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy. Nada surge de manera espontánea, todo se fragua durante un tiempo que tiene marcado por la Naturaleza y, nosotros, hemos tardada (como humanos verdaderos), más de 13.000 millones de años en porde llegar hasta aquí. El tiempo necesario para que las estrellas fabricaran la materia prima y después, el mundo pusiera su granito de arena para que ésta pudiera evolucionar, con la ayuda de la radiación del Sol, el agua corriente, una adecuada atmósfera, la presencia de océanos, las placas tectónicas que reciclan periódicamente el planeta… ¡No, no es nada fácil que la vida surja en un Mundo!

Pero en el Universo, son muchas las cosas que pueden pasar, muchos los objetos que están presentes, innumerables los fenómenos que de una u otra cuestión pueden estar pasando de manera continuada y que no siempre, sabemos comprender.

 Resultado de imagen de Imágenes del Blog de emilio silvera

 

 

               ¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas

 

 

Simplemente se trata del fenómeno que conocemos como “Halo atmosférico”, un anilo o arco de luz que parece rodear al Sol (también a la Luna), resultado de la refracción y la reflexión de la luz solar o lunar por los cristales de hielo de los cirros. Los halos solares y lunares más comunes un diámetro angular de 46º. Por lo general, el borde del halo muestra un efecto prismático, estandio la luz azul refractada hacia el borde exterior y la rpoja al interior. Como resultado de la refracción preferencial de la luz hacia el borde del halo , la zona del cielo interior a un halo es más oscura que la interior. Los halos lunares solo pueden ser vistos claramente cuando la Luna es brillante, típicamente en un intervalo de cinco días en torno a la Luna llena.

 

 

 

 

El Halo Galáctico está referido a cualquier material situado en una distribicón aproximadamente esférica de una galaxia, y que se extiende hasta más allá de las regiones visibles. Puede referirse a la población de estrellas viejas (Población II), incluyendo a los cúmulos globulares, con poca o ninguna rotación alrededor del centro galáctico; o gas tenue, altamente ionizado y de alta temperatura que envelve a toda la galaxia, incluso, muchas veces el halo galáctico está referido a una especie de neblina inconcreta que circunda toda la galaxia sin que termine de hacerse presente pero, ahí está.

File:Ngc604 hst.jpg

 

 

Alguna vez podemos contemplar una que nos parece más o menos atractiva pero, no sabemos discernir sobre lo que en realidad estamos contemplando. Por ejempo, arriba tenemos la conocida como NGC 604,  una región H II gigante en la galaxia del Triángulo. Una región H II es una de gas y plasma brillante que puede alcanzar un tamaño de cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de luz ultravioleta extrema (con longitudes de onda inferiores a 912 Ångstroms) que ionizan la Nebulosa a su alrededor.

 

 

File:Ssc2005-02a.jpg

 

Las regiones H II son muy abundantes en Galaxia

 

Cada de hidrógeno ionizado contribuye con dos partículas al gas, es decir, con un protón y un electrón. Las Regiones H II son calientes con temperaturas típicas de 10 000 K, y son entre 10 y 100 000 veces más densas que las regiones H I. Se encuentran normalmente alrededor de las estrellas O y B jóvenes y masivas, siendo el gas ionizado por su intensa luz ultraviloleta, haciendo que éste brille. La Nebulosa de orión es una famosa Región H II. Las Regiones H II pueden ser detectadas en la Galaxia por sus intensas emisiones en e infrarrojo. La radio-emisión es debidaal bremsstrahlung del gas ionizado, y la radiación infrarroja a la emisión térmica del polvo.

 

 

 

http://bitacoradegalileo.files.wordpress.com/2010/12/m42_hallasnr.jpg

 

 

Las Regiones H II aquí muy presentes y dada su gran extensión. La nebulosa de Orión es uno de los objetos astronómicos más fotografiados, examinados, e investigados.8 De ella se ha obtenido información determinante acerca de la de estrellas y planetas y a partir de nubes de polvo y gas en colisión. Los astrónomos han observado en sus entrañas discos protoplanetarios, enananas marrones, fuertes turbulencias en el movimiento de partículas de gas y efectos fotoionizantes cerca de estrellas muy masivas próximas a la nebulosa.

 

 

 

 

 

Una región H I es una nube formada por hidrógeno atómico frío, poco denso y no ionizado con temperaturas de alrededor de 100 K. Las regiones HI no emiten radiación en el rango visual, sólo en la región de radio. La notación H I se refiere al hecho de que los átomos de Hidrógeno no están ionizados como lo están en los que están presentes en la regiones H II (arriba). Cada átomo de Hidrógeno neutro contribuye al gas justo con una partícula. la Densidad de las regiones H I es demasiado como para que se formen moléculas de hidrógeno, y la luz estelar disociará cualquier molécula formada, de manera que el gas permanece en forma de átomo. El Hidrógeno neutro contribuye (aproximadamernte) a la mitad de toda la materia interestelar en masa y en volumen,  con una densidad media de 1 Átomo/ cm3. Las regiones H I son frías.

Del asomnbroso universo son muchas las cosas que desconocemos, y, poco a poco, vamos pudiendo descubrir muchos de sus misterios que nos acercan cada vez más, a saber dónde estamos y lo que podemos o no podemos esperar de lo que hay en nuestro entorno.

 

 

 

 
El Sol de desplaza por el de una tenue nube de gas interestelar conocida como Local Fluff.

La de que la Voyager 1 había dejado atrás la zona bajo influencia directa del viento solar y se encontraba ya surcando el interplantario se convirtió rápidamente en una de las grandes noticias astronómicas del año, en especial por toda la carga simbólica que representa que, por primera vez, un construido por la Humanidad había traspasado por primera vez esa frontera invisible que nos separa y aisla del océano estelar. Pero para los científicos de la misión la llegada a este nuevo reino con una sonda aún operativa y capaz de seguir enviado al menos hasta 2020 es un regalo del que esperan grandes resultados. Y es que más allá del límite solar se extiende una región tan amplia como desconocida, y mucho más compleja de lo que podamos imaginar.

 

 

El movimiento de esta estrella binaria fue un misterio durante más de 30años, e incluso se presentó como un posible fracaso de la Relatividad General de Einstein. Ahora un encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha resuleto el misterio. Se observan hechos que no siempre podemos explicar y, persistimos en la búsqueda de las respuestas hasta que las podemos encontrar.

En el efecto periastro se puede contemplar el brillo de una estrella binaria que tiene una órbita altamente excéntrica. Cuando la separación entre las componentes es mínima. Es de hecho, un aumento del efecto de reflexión en el instante del periastro, y surge por la misma causa: la irradiación de una estrrella por la otra.

 

 

Hemos llegado a saber de nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí estan presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Ésta es una situación en resulta especialmente apropiado utilizar las unidades “naturales” la , longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros , lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

 

 

 

 

 

Lo cierto es que, desde el comienzo del Tiempo, allá por los confines impenetrables de la lejanía del Big Bang (si es que fue así realmente como nació el Universo), se tuvieron que esperar algunos cientos de millones de años para que surgieran las primeras estrellas, pasar por las Eras de la Radiación, la Era Leptónica, la de la Materia, que se produjera la descongelación de los fotones para que el Universo se hiciera de luz… Después de miles de millones de años, el Universo tenía los elementos necesarios para que, la Vida, pudiera surgir en los mundos adecuados y… ¡Aquí estamos!

Aquí estamos tratando de saber lo mismo que quisieron saber nuestros ancestros filósofos: ¿De dónde venimos? ¿Qué hacemos aquí? ?Hacia Dónde vamos? ¿Tendremos algún destino predeterminado…

Y seguiremos, dentro de nuestra inmensa ignorancia, haciendo preguntas mientras estémos por aquí.

emilio silvera