Sep
23
Mundos inalcanzables (por el momento)
por Emilio Silvera ~ Clasificado en General ~ Comments (10)
“Kepler-452b es una exoplaneta que orbita a la estrella Kepler-452, una enana amarilla de tipo G2 (como nuestro Sol), identificado por el telescopio Kepler y confirmado oficialmente por la NASA el 23 de julio de 2015, tras registrar varios tránsitos entre el planeta y su estrella. Es el primer cuerpo planetario cuya existencia ha podido ser confirmada que cuenta con unas dimensiones similares a las de la Tierra y que orbita dentro de la zona habitable de una estrella semejante al Sol.
Situado a 1400 años luz del Sistema solar, años luz del una de las sondas más rápidas lanzadas por la humanidad, la NEW Horizons, tardaría aproximadamente 24,8 millones de años en llegar al planeta.”
¿El futuro de Marte? Hasta podría ser nuestra nueva casa.
Los primeros intentos humanos por aquel planeta instalando una pequeña colonia que sería el principio de algo mucho mayor. Más temprano que tarde, estaremos en esa fase de exploración del planeta Marte, bastante estudiado hasta la fecha por los ingenios espaciales allí enviados y, pronto, llegara el momento de intentar el “salto” humano que, desde luego, necesitará del apoyo de la tecnología más avanzada que la actual.
Desde los confines del Tiempo, cuando aún no entendíamos lo que todo aquello podría ser, los seres de nuestra especie han mirado al cielo y, asombrados, contemplaban las miríadas de estrellas brillantes que, con sus guiños, parecía quererles decir alguna cosa, enviarles un mensaje que, por aquel entonces, no sabían comprender. No ha sido sino hasta tiempos muy recientes cuando al fín, comprendimos la fusión nuclear que se produce en el corazón de las estrellas, donde se forjan los materiales necesarios para la vida.
Uno de los hallazgos más notables en astronomía fue el descubrimiento de que el universo ya era viejo cuando apareció el Sol y la familia de planetas que lo acompañan en nuestro Sistema Solar. Más de la mitad de las estrellas del Universo son miles de millones de años más viejas que nuestra estrella madre que, se podría decir, si la comparamos a una bella mujer, que estaría en la mitad esplendorosa de su vida.
Planetas parecidos a la Tierra giran alrededor de muchas de esas viejas estrellas. Seres inteligentes pueden haber hecho su aparición en alguno de esos mundos similares al nuestro y estar allí desde mil millones de años antes que nosotros en la Tierra. Es decir, antes de que la Humanidad hiciera acto de presencia en este mundo “nuestro”. Los caminos seguidos en ambos mundos, aunque similares en las formas, no lo fueron en el tiempo y, en aquel, brotó la vida antes que en este. Una posible civilización avanzada que nos podría llevar algunos miles de años de ventaja, tiempo que para una especie parecida a la nuestra… ¡no sería poca ventaja!
Gliese 581 f es un planeta en la constelación de Libra, ubicado a 20 años luz de la Tierra, en el sistema Gliese 581. Su descubrimiento fue anunciado el 29 de septiembre de 2010. El planeta fue detectado mediante mediciones de la velocidad radial combinando los datos del instrumento HIRES del telescopio Keck y el instrumento HARPS del telescopio de 3,6 metros dE ESO en el Observatorio de La Silla.
Muchos son los Sistemas solares que sólo en nuestra Galaxia podremos encontrar, en realidad, cientos de miles de millones y, aunque no todos esten habitados, la posibilidad, la lógica, la estadística nos dice que, muchos de esos mundos, cobijan a criaturas de diversa condición y, alguna -o varias- de las especies allí presentes, podrían ser inteligentes como nosotros…, o más.
Como nos preocupa saber que existe a nuestro alrededor, qué hay en nuestro entorno, en los planetas y lunas vecinas, no cejamos en el empeño de enviar ingenios hacia aquellos objetos y, el de arriba se llama JEO (Jupiter Europa Orbiter) que, debía estudiar Europa durante la próxima década para determinar de una vez por todas si existe un océano (o lagos) bajo la corteza de hielo y, con suerte, aclarar si puede existir o no alguna forma de vida. Sin embargo, la crisis que nos invade, no parece que posibilite, al menos de momento, tal misión.
¿La Vida? ¿Quién puede pararla?
Los elementos se mezclan en estructuras complejas que pudieron llegar a constituirse en células vivas que dieron lugar al comienzo de la aventura de la vida en nuestro planeta. No parece prudente negar que la vida ande en nuestro Universo… ¡Por todas partes!
Conociendo el Universo
Una de las cuestiones más controvertidas de la cosmología es por qué, las constantes universales de la Naturaleza parecen tan ajustadas a la vida. Sabemos que el cambio en alguna de esas constantes haría imposible la presencia de seres vivos.
Pudimos llegar hasta lo más profundo de la materia para saber de qué estaba hecha, descubrimos átomos con su complejo núcleo. Todo ello en el “universo de lo muy pequeño, allí donde el ojo no ve, y, de la misma manera supimos llegar hasta el inmenso mundo de las galaxias.
Me parece al caso traer aquí este trabajo que puse hace algún tiempo ya, toda vez que el reciente hallazgo de las Ondas gravitacionales lo ha renovado y su contenido puede resultar interesante al filo de la noticia. Decía por aquel entonces:
Kip Stephen Thorne
Lo que nos cuentan Kip S. Thorne y otros especialistas en Agujeros negros nos posibilitan para entender algo mejor los mecanismos de estos extraños objetos que aún esconden misterios que no hemos sabido resolver. Está claro que muchas de las cosas que sobre agujeros negros podemos leer, son en realidad, especulaciones de cosas que se deducen por señales obervadas pero que, de ninguna manera, se pueden tomar como irrefutables verdades, más bien, las tomaremos como probables o muy probables de acuerdo a los resultados obtenidos de muchos experimentos y, ¿por qué no? de muchas horas de prácticas teóricas y pizarras llenas de ecuaciones que tratan de llegar al fondo de un saber que, desde luego, nos daría la clave de muchas cuestiones que en nuestro Universo son aún desconocidas.
En el corazón de una galaxia lejana, a más de 1.000 millones de años-luz de la Tierra y hace 1.000 millones de años, se acumuló un denso aglomerado de gas y cientos de millones de estrellas. El aglomerado se contrajo gradualmente, a medida que algunas estrellas escapaban y los 100 millones de estrellas restantes se hundían más hacia el centro. Al cabo de 100 millones de años, el aglomerado se había contraído hasta un tamaño de varios años-luz, y pequeñas estrellas empezaron, ocasionalmente, a colisionar y fusionarse, formando estrellas mayores. Las estrellas mayores consumieron su combustible y luego implosionaron para formar agujeros negros; y, en ocasiones, cuando dos de estos agujeros pasaban uno cerca del otro, quedaban ligados formando pares en los que cada agujero giraba en órbita alrededor del otro.
Cuando se forma un par de agujeros negros binarios semejantes, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal) en la superficie insertada y, a medida que los agujeros giran uno en torno al otro, los pozos en órbita producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Las ondulaciones forman una espiral en el tejido del espacio-tiempo en torno al sistema binario, muy semejante a la estructura espiral del agua que procede de un aspersor de cesped que gira rápidamente. Los fragmentos de curvatura forman un conjunto de crestas y valles en espiral en el tejido espacio-temporal.
Pero, a todo ésto… ¿Qué pasaría en aquellos primeros momentos en el que nació el Tiempo y el Espacio?
¡El Universo!
La primera interacción que puede ser considerada era la constante aniquilación y producción de electrones y positrones. Uno de los descubrimientos más famosos del siglo XX es la equivalencia entre la masa y la energía (E= m c2): bajo condiciones adecuadas, la energía se puede convertir en materia y viceversa. La conversión de energía en materia no se observa comúnmente en nuestro entorno porque éste es demasiado frío y no hay presión suficiente. Pero con las densidades y temperaturas que reinaban en el universo primitivo, esta conversión era el pan de cada día. Los fotones (g) se convertían en electrones (e–) y positrones (e+) (proceso conocido como producción de pares). Estos fotones no podían producir partículas más pesadas (como nucleones por ejemplo) por no poseer suficiente energía. Los electrones y positrones terminarían por colisionar con sus respectivas antipartículas y convertirse de nuevo en fotones (a lo que nos referiremos como aniquilación)
La segunda interacción fue la conversión de protones en neutrones y viceversa. Esas partículas atómicas pesadas estaban ya presentes “en el principio” y estaban continuamente transmutándose una en otra mediante las siguientes reacciones:
“En el principio”, debido a la alta densidad de energía, las colisiones entre las partículas ocurrían de forma tan rápida que las reacciones de conversión de protones en neutrones y viceversa se equilibraban de tal manera, que su número, aunque pequeño, era muy aproximadamente el mismo. Pero esa igualdad se rompió casi inmediatamente debido a que los neutrones son ligeramente más pesados que los protones. Por tanto, se necesita un poco más de energía para cambiar de un protón a un neutrón que viceversa. Al principio esto no tenía ninguna influencia porque había gran cantidad de energía en los alrededores. Pero como esta densidad de energía decrecía continuamente con la expansión, cada vez había menos energía disponible para cada colisión. Este hecho empezó a inclinar la balanza hacia la formación de protones, por lo que en número de protones empezó a ser mayor que el de neutrones y a medida que bajaba la temperatura la diferencia fue cada vez más notable.
Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo, no hay núcleos atómicos estables. El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de rápidamente.
Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos. Aunque en esa época el Universo es más denso que las orcas (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos. Puesto que los neutrinossólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.
Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias
Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor de la materia como sino existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase. Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).
En menos de un siglo, el neutrino pasó de ser una partícula fantasma propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958), a explicar el balance de energía en una forma de radioactividad, el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.
Protocúmulos galácticos en el universo primitivo captados por los telescopios Planck y Herschel
De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.
Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.
A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de estructura que puede existir se hace cada vez más rudimentario.
Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones. El Universo es un océano de quarks libres y otras partículas elementales.
Si nos tomamos el de contarlos, hallaremos que por cada mil millones de antiquarks existen mil millones y un quark. asimetría es importante. Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-antiquark formaran todos los átomos de materia del Universo del último día. Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.
Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.
La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil. hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de bosones w y z.
Estas partículas – las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil – son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles. En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.
Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia. Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido. Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.
En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las cósmicas son aún menos conocidas. Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes. Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.
En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interacioban, producían calor y formaron las primeras estrellas.
Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.
Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé. Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.
Del otro lado de esa puerta está la época de Planck, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.
La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos
Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.
emilio silvera
Sep
23
Necesitamos una teoría unificada del Cosmos
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Hace mucho tiempo ya que el hombre mira al cielo y observa los objetos celestes. Muy lejos queda ya la teoría geocéntrica de Ptolomeo con una Tierra ocupando el centro del universo. En Babilonia ya tenían aquella visión de una Tierra en el centro de todo y en su obra El Almagesto, Claudio Ptolomeo continuó reflejando esa teoría alla por el siglo II y estuvo en vigor hasta el siglo XVI, cuando fue reemplazada por la teoría heliocéntrica. Fueron muchos los que discrepaban de la teoría que ponía a la Tierra en el centro de todo y, ya en el siglo II a. C., Aristarco de Samos fue el que defendió la idea con más fuerza e incluso llegó a escribir un libro que no ha llegado a nuestros días.
El tiempo transcurría y las ideas se hicieron más claras y, fue Copérnico el que al fín, en un libro publicado en 1543, De Revolutionibus Orbium Coelestium, dejó fijado el punto de partida que situaba al Sol en el centro y los planetas a su alrededor. Todo aquello, no fue suficiente para que el antiguo modelo de la Tierra central continuara durante algún tiempo, toda vez que Copérnico, no explicaba de manera suficiente algunos fenómenos y, además, se alejaba de la educación religiosa del momento.
Kepler en un retrato de 1610
Kepler con la herramienta de las muchas observaciones realizadas por Tycho Brahe que estudió a fondo, pudo formular sus Tres Leyes en 1609 y 1619, en las que dejó sentado que las planetas se movían en trayectorias elípticas. Galileo con sus observaciones despejó el camino hacia la comprensión de dónde nos encontrábamos. Más tarde llegaría Newton con su Ley de la Gravedad y no fue hasta 1915 que la entrada en escena de Einstien nos trajo un Modelo más moderno y coherente con su Teoría de la Relatividad General.
La Teoría hilocéntrica llegó con fuerza hasta los principios del siglo XX, el Sol estaba situado en el centro sobre el cual giraba todo el universo con los objetos del espacio profundo que contenían “nebulosas espirales”.
Harlow Shapley
La llegada de Shapley al “mundo” de las estrellas le dieron otro giro a la visión que del universo se tenía. Sus observaciones iniciaron el estudio de las estrellas variables que llevó a descubrir un tipo especial de ellas que se caracterizaban por el hecho de que los cambios de brillo estaban relacionados con su liuminosidad intrínseca y, como la estrella prototipo se encontró en la Constelación de Cefeo, se las llamó Cefeidas.
A partir de aquel momento, y, conociendo la luminosidad de un objeto celeste bastaba aplicar la ley del cuadrado inverso que nos dice que el brillo disminuye de acuerdo al cuadrado de la distancia y se pudo calcular la distancia a la que se encontraba el objeto estudiado. Así Shapley siguió con su impresionante trabajo y pudo observar cúmulos globulares, grupos de millones de estrellas que estaban “juntas” en un cúmulo compacto y redondo girando alrededor de los centros galácticos. Se pudo apreciar que el Sol, debería estar situado en la periferia del Universo y muy lejos del centro de la Galaxia.
Los cúmulos globulares pueden contener hasta miles de millones de estrellas
Todos aquellos nuevos descubrimientos llamaron la atención de muchos y, hasta el filósofo Immanuel Kant contribuyó al conocimiento del universo con sus obra Historia general de la naturaleza y teoría del cielo, en la que exponía la hipótesis de que a partir a una nebulosa de gas surgió el Sistema solar y sugirió la idea de que existían otras muchas galaxias que eran como “universos islas”, es decir, una especie de universos en miniatura cuajado de estrellas y de mundos.
Su idea de los universos islas llegaron hasta principios del siglo XX y “las nebulosas espirales”, eran en realidad otros universos islas como la Vía Láctea pero separados de ella y, esa teoría fue firmemente apoyada por Herschel aunque no se tenían pruebas contundentes de ello. Pero como el avance del conocimiento no se para, aquellas pruebas llegaron de la mano de las observaciones de Hubble, realizadas en el Observatorio de Monte Wilson.
Como inmensas pompas de jabón que reflejan el brillo multicolor de las estrellas
El Universo dejó de ser algo estático para convertirse en un universo en expansión. El descubrimiento de varios supercúmulos galácticos en 1978, como el de Perseo-Pegaso (que, se extiende por el cielo a través de mil millones de años-luz), es la mayor de las estructuras que se han podido constar hasta la fecha en el universo. Otro hallazgo importante ocurrió en 1981, cuando se halló el primer “vacío” en la Constelación de Boötes. El vacío, o “Burbuja de Hubble”, una gran región del espacio en la que no existen galaxias -o muy pocas- y cuya extensión puede alcanzar los 250 millones de años-luz de diámetro. En 1985 se descubrieron nuevos vacíos que vinieron a configurar una nueva imagen de nuestro universo que está lleno de burbujas.
Hubble, el 19 de febrero de 1924, escribió a Shapley, quien defendía la existencia de una sola galaxia:
«Seguramente le interesará saber que he hallado una variable cefeida en la nebulosa de Andrómeda». De esta manera se reveló que las nebulosas espirales no eran simples cúmulos de gas dentro de la vía láctea sino verdaderas galaxias independientes o como Kant describió «universos isla».
Pero la historia de las variables Cefeidas tiene otra protagonista que no quiero dejar aquí oculta en el olvido y que es de justicia destacar para que los méritos sean repartidos conforme a quién los ganó. No siempre se han otorgado los premios a los que lo merecieron. Claro que todo aquello no era nada fácil toda vez que…
El ojo humano solo es capaz de percibir la pequeña porción que corresponde a la luz visible, situada entre los 3900 Å y 7500 Å, donde la menor se encuentra cerca del violeta y la mayor del rojo. El Sol emite en todas las longitudes de onda, pero solo llegan a la superficie una pequeña porción de estas, las demás son frenadas por la atmósfera: el ozono absorbe las mas altas longitudes de onda hasta el ultravioleta, y el vapor de agua absorbe gran parte de las infrarrojas. Fueron los telescopios los que nos permitieron llegar más lejos y ver más.
En el Observatorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostaban los colores y espectros de decenas de miles de estrellas se apilaban ante “calculadoras”, mujeres empleadas como miembros del personal de una facultad que les impedía asistir a clases u obtener un título pero que, desarrollaban una labor importante de infinita paciencia
Una de esas mujeres, Henrietta Leavitt (arriba), fue la investigadora pionera de las estrellas variables cefeidas que tan útiles serían a Shapley y Hubble, ella fue una de esas “calculadoras” de Harvard que, se encargaban de examinar las placas y registrar los datos en una pulcra escritura victoriana para su compilación en volúmenes como el Henry Draper Catalog, así llamado en honor al primer astrofotógrafo y físico que tomó las primeras fotografías del espectro de una estrella. Como presos que marcan el paso de los días en los muros de su celda, señalaban su progreso en totales de estrellas catalogadas. Antonia Maury, sobrina de Draper, contaba que había clasificado los espectros de más de quinientas mil estrellas. Su labor era auténticamente baconiana, del tipo que Newton y Darwin instaban a hacer pero raramente hicieron ellos, y las mujeres se enorgullecían de ella. Como afirmaba la “calculadora” de Harvard Annie Jump Cannon: “Cada dato es un facto valioso en la imponente totalidad”.
“Las estrellas, hacedoras de vida, esas imposibles esferas de gas que son el ejemplo perfecto de equilibrio en la naturaleza entre fuerzas encontradas, también tienen sus momentos. Y al igual que en todo hay excepciones, las estrellas no son menos. Existen estrellas que se niegan a seguir los cánones establecidos y se muestran como faros entre la calma. Son las estrellas rebeldes del universo, la excepción que lo embellece, las indecisas variables.
A día de hoy hemos llegado a catalogar un buen número de tipos de estrellas variables, pero no deja de ser una incógnita por qué existen estrellas que no están en perfecto equilibrio, matizando, claro está, que en el fondo sí pretenden conservarlo, ya que de no ser así, no serían estrellas.”
Precisamente fue Cannon quien, en 1915, empezó a discernir la forma de esa totalidad, cuando descubrió que la mayoría de las estrellas pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación (ahora generalizado en la astronomía estelar), ordena los espectros por color, desde las estrellas O blancoazuladas, pasando por las estrellas G amarillas como el Sol, hasta las estrellas rojas M. Era un rasgo de simplicidad debajo de la asombrosa variedad de las estrellas.
Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacto danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, Las Híades y las Pléyades. Los cúmulos como estos son genuínos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiamado cuando recorre con el telescopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta el amarillo apagado.
Las Pléyades
Las Híades
Puesto que puede suponerse que todas las estrellas de un cúmulo están a la misma distancia de la Tierra, toda diferencia observada en sus magnitudes aparentes pueden atribuirse, no a una diferencia en las distancias, sino en las magnitudes absolutas. Hertzsprung aprovechó este hecho para utilizar los cúmulos como muestras de laboratorio con las que podía buscar una realción entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado Diagrama de Hertzsprung-Russell. Claro, como cabía esperar, la aplicabilidad del método pronto se amplió también a estrellas no pertenecientes a cúmulos.
Henry Norris Russell
Henry Norris Russell, un astrofísico de Princeton con un enciclopédico dominio de su campo, pronto se puso a trabajar justamente en eso. Sin conocer siquiera el trabajo de Hertzsprung, Russell diagramó las magnitudes absolutas en función de los colores, y halló que la mayoría están a lo largo de una estrecha zona inclinada: el trondo del árbol de estrellas. El árbol ha estado creciendo desde entonces y hoy, está firmemente grabado en la conciencia de todos los astrónomos estelares del mundo. Su tronco es la “serie principal”, una suave curva en forma de S a lo largo de la cual se sitúan entre el 80 y el 90 por 100 de todas las estrellas visibles. El Sol, una típica estrella amarilla, está en la serie principal a poco menos de la mitad del tronco hacia arriba. Una rama más fina sale del tronco y se extiende hacia arriba y a la derecha, donde florece en un ramillete de estrellas más brillantes y más rojas: las gigantes rojas. Debajo y a la izquierda hay una cantidad de mantillo de pálidas estrellas entre azules y blancas: las enanas.
El Diagrama de Hertzsprung-Russell resumido
Este diagrama proporcionó a los astrónomos un registro congelado de la evolución, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucionan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aun de estrellas de vida corta, se mide en millones de años. Hallar las respuestas exigirá conocer toda la física del funcionamiento estelar.
Todo esto nos lleva de nuevo a pensar que, sería conveniente que surgiera una teoría unificada del Cosmos, acorde con los primeros pasos del Big Bang y con la aún misteriosa formación de estructuras a gran escala: un modelo, en fin, que contendría en un todo coherente el origen, la evolución, la estructura actual y el destino último del Universo.
Me hubiera gustado contar de manera paralela que, a finales del s. XIX y principios del s. XX, el progreso de la Física, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la barrera de Coulomb, y por un tiempo frustó los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas… Pero eso, amigos, es otra historia que os contaré en otro momento.
emilio silvera
Sep
22
¿Vida en las nubes de estrellas fallidas?
por Emilio Silvera ~ Clasificado en Ciencia y Vida ~ Comments (0)
Una abundante nueva variedad de lugares que podrían servir de hogar para la vida… y las vistas son espectaculares. Flotando en la Vía Láctea hay tal vez mil millones de frías enanas marrones, objetos muchas veces tan masivos como Júpiter, pero no lo suficiente para encenderse como una estrella. Según un estudio reciente, las capas de sus atmósferas superiores presentan temperaturas y presiones similares a las de la Tierra, y podrían albergar microbios que naveguen en corrientes termales ascendientes.
La idea surge de la idea de una zona habitable que incluye una vasta cantidad de mundos que previamente no eran considerados. “No se necesita tener inevitablemente un planeta terrestre con una superficie”, dice Jack Yates, científico planetario de la Universidad de Edimburgo en Reino Unido, quien lideró el estudio.
Ni podemos imaginar lo que puede estar morando en las nubes Interestelares
La vida atmosférica no es solo para las aves. Durante décadas, los biólogos han conocido microbios que se dejan llevar por el viento a granes alturas sobre la superficie de nuestro planeta. Y en 1976, Carl Sagan imaginó la clase de ecosistema que podría evolucionar en las capas superiores de Júpiter, alimentados por la luz solar. Sería como plancton aéreo: pequeños organismos que Sagan llamó “hundidores” (“sinkers” en inglés). Otros organismos, denominados “flotadores” (“floaters” en inglés), podrían ser similares a globos y subir o bajar en la atmósfera manipulando la presión de sus cuerpos. En los años posteriores, los astrónomos también han considerado la idea de microbios en la atmósfera de dióxido de carbono sobre la superficie inhóspita de Venus.
El telescopio VLT (Very Large Telescope) de ESO ha sido el instrumento utilizado para crear el primer mapa del tiempo de la superficie de la enana marrón más cercana a la Tierra. Un equipo internacional ha hecho un mapa de las zonas claras y oscuras en WISE J104915.57-531906.1B, conocido comúnmente como Luhman 16B, una de las dos enanas marrones descubiertas recientemente que forman pareja y que se encuentra a tan solo seis años-luz del Sol
Yates y sus colegas aplicaron el mismo pensamiento a una clase de mundo que Sagan no conoció. Algunas enanas marrones frías, descubiertas en 2011, tienen superficies a temperaturas ambientes o menores; las capas más bajas serían realmente agradables. En marzo de 2013, los astrónomos descubrieron a WISE 0855-0714, una enana marrón a solo 7 años-luz de distancia que parece tener nubes de agua en su atmósfera. Yates y sus colegas actualizaron los cálculos de Sagan para identificar los tamaños, densidades, y estrategias de vida de los microbios que podrían arreglárselas para mantenerse en las alturas de la región habitable de una enorme atmósfera con hidrógeno gaseoso como predominante. Si se hunde demasiado se cocina o aplasta por la presión. Si se eleva demasiado alto se puede congelar.
En tal mundo, los pequeños hundidores como los microbios de la atmósfera de la Tierra, o incluso más pequeños, tendrían una mejor probabilidad que los flotadores de Sagan, informaron en el estudio. Pero mucho depende del clima: Si las marejadas de vientos son muy fuertes en las enanas marrones, como parece ser el caso en las bandas de los gigantes de gas como Júpiter y Saturno, las criaturas del cielo pueden forjar un nicho. En ausencia de luz estelar, podrían alimentarse de nutrientes químicos. Las observaciones de las atmósferas frías de enanas marrones revelan la mayoría de los ingredientes de los que la vida terrestre depende: carbono, hidrógeno, nitrógeno y oxígeno, aunque quizá no fósforo.
Ilustración artística de formas de vida en Júpiter. Crédito: Paul Calle.
La vida es especulativa, pero vale la pena considerarla, dice Duncan Forgan, astrobiólogo de la Universidad de St. Andrews en Reino Unido, quien no participó del estudio pero dice que es alguien cercano al equipo. “Realmente abre el campo en términos de la cantidad de objetos que podríamos entonces pensar, bien, estas son regiones habitables”, indica.
Hasta ahora, solo unas pocas docenas de enanas marrones frías han sido descubiertas, aunque las estadísticas sugieren que debería haber unas 10 a menos de 30 años-luz de la Tierra. Estas enanas deberían ser objetivos para el Telescopio Espacial James Webb (JWST), que es sensible en el infrarrojo donde las enanas marrones más se destacan. Después que se lance en 2018, el JWST debería revelar el clima y composición de sus atmósferas, dice Jackie Faherty, astrónomo de la Institución Carnegie para la Ciencia en Washington, D.C. “Comenzaremos a obtener magníficos espectros de estos objetos”, dice ella. “Esto me hace pensar en ello”.
Probar la existencia de vida requeriría anticipar una fuerte huella espectral de subproductos de los microbios como metano u oxígeno, y luego diferenciarlos de otros procesos, dice Faherty. Otro problema sería explicar cómo podría surgir la vida en un ambiente que carece de interfaces agua-roca, como respiraderos hidrotermales, donde se piensa que la vida pudo haber comenzado en la Tierra. Quizá la vida podría desarrollarse gracias a reacciones químicas en las superficies de granos de polvo en la atmósfera de enanas marrones, o tal vez logró afianzarse apoyo después de llegar a bordo de un asteroide. “Tener pequeños microbios que flotan dentro y fuera de la atmósfera de una enana marrón es genial. Pero hay que llevarlos allí primero”, dice Forgan.
El estudio “Atmospheric Habitable Zones in Y Dwarf Atmospheres” fue publicado en la edición del 20 de febrero de 2017 de The Astrophysical Journal.
Fuente: Science
Sep
22
La importancia del Carbono para la Vida y otros temas
por Emilio Silvera ~ Clasificado en General ~ Comments (9)
El concepto de Gaia, considera a la Tierra como un Ente Vivo que evoluciona y se recicla
Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las condiciones que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida como seguramente estará presente en muchos otros mundos en el que se den las circunstancias adecuadas, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en Marte o en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.
Cuando Lovelock publicó la hipótesis de Gaia, provoco una sacudida en muchos científicos, sobre todo en aquellos con una mente más lógica que odiaban un concepto que sonaba tan místico. Les producía perplejidad, y lo más desconcertante de todo era que Lovelock era uno de ellos. Tenía fama de ser algo inconformista, pero sus credenciales científicas eran muy sólidas. Entre otros logros a Lovelock se le conocía por ser el científico que había diseñado los instrumentos de algunos de los experimentos para buscar vida que la nave estadounidense Viking había llevado a cabo en la superficie de Marte.
Ni la NASA, tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Pero recapacitaron y comenzaron a enviar al planeta Marte, una serie de ingenios en forma de pequeñas navez robotizadas como la Mars Phoenix que comenzó encontrando hielo de agua diluyendo porciones de la tierra marciana en agua y debidamente tratada, hallaron la presencia de magnesio, sodio, potasio y cloruros. Uno de los científicos responsables llegó a decir:
“Hay más que evidencia de agua porque las sales están ahí. Además hemos encontrado los compuestos químicos necesarios para la vida como la conocemos. y, lo sorprendente de Marte es que no es un mundo extraño, sino que, en muchos aspectos es igual que la Tierra.”
Se están analizando los gases y los compuestos químicos del suelo y del hielo allí encontrados, y, todo ello, debidamente procesado nos dará una respuesta de lo que allí existe.
Lo que para mí está muy claro es que, los mecanismos del Universo son los mismos en cualquier región del cielo, y, las estrellas y los planetas surgen en todas partes de la misma manera. Y, si eso es así, sería lógico pensar que la vida podría estar en cualquier parte, y, además, con muchas probabilidades de que sea más o menos tal como la conocemos, ya que, la nuestra, basada en el Carbono y el Nitrógeno (siempre en presencia de agua), es la más natural dadas las características de estos elementos para unirse.
La historia de la vida en el Universo es otro ejemplo de complejidad superficial construida sobre cimientos de una profunda sencillez. Actualmente la prueba de que el universo tal como lo conocemos surgió a partir de un estado denso y caliente (Big Bang) hace unos 14.000 millones de años, es poco discutida.
Con los elementos primordiales creados en las estrellas, miles de años más tarde, en los mundos situados en las zonas habitables de sus estrellas, se habrán podido conformar células replicantes que habrían dado comienzo a la aventura de la vida. En la Tierra, el único planeta con vida que conocemos (por el momento), las formas de vida y especies que han estado aquí y siguen estando ha sido de una rica variedad y de asombrosos metabolismos.
Los bloques de construcción básicos que emergieron del big bang fueron el hidrógeno y el helio, casi exactamente en una proporción de 3:1. Todos los demás elementos químicos (excepto unos leves vestigios de unos pocos elementos muy ligeros, como el litio) han sido fabricados en el interior de las estrellas y dispersados por el espacio cuando estas se dilataron y expulsaron materiales, o, al final de sus vidas, agotado el combustible nuclear de fusión, explotaron como Supernovas regando grandes regiones con Nebulosas creadoras de nuevas estrellas y nuevos mundos.
Una estrella como el Sol genera calor convirtiendo hidrógeno en helio dentro de su núcleo; en otras estrellas los procesos cruciales incluyen fusiones sucesivas de núcleos de helio. Dado que cada núcleo de helio es una unidad que contiene cuatro “nucleones” (dos protones y dos neutrones), y este elemento se denomina abreviadamente helio-4, esto significa que los elementos cuyos núcleos contienen un número de nucleones que es múltiplo de cuatro son relativamente comunes en el universo, excepto el berilio-8, que es inestable.
El carbono-12 es el más abundante de los dos isótopos estables del elemento Carbono, representando el 98,89% de todo el carbono terrestre. Está conformado por 6 protones, 6 neutrones y 6 electrones.
Adquiere particular importancia al usarse como patrón para el cálculo de la masa atómica de los distintos nucleidos existentes en la naturaleza; dado que la masa atómica del 12C es, por definición, 12 umas.
Concretamente, en las primeras etapas de este proceso se produce carbono-12 y oxígeno-16, y resulta que el nitrógeno-14, aunque no contiene un número entero de núcleos de helio-4, se obtiene como subproducto de una serie de interacciones en las que participan núcleos de oxígeno y de carbono que operan en estrellas de masa un poco mayor que la de nuestro Sol.
Como consecuencia, estos son, con gran diferencia, los elementos más comunes, aparte del hidrógeno y del helio. Dado que éste último es un gas inerte (noble) que no reacciona químicamente, se deduce que los cuatro elementos reactivos más comunes en el universo son el Carbono, el Hidrógeno, el Oxígeno y el Nitrógeno, conocidos en el conjunto por el acrónimo CHON.
No es casualidad que los cuatro elementos químicos que participan con una aplastante mayoría en la composición de los seres vivos de la Tierra sean el carbono, el hidrógeno, el oxígeno y el nitrógeno.
En estado puro y dependiendo de cómo estén dispuestos sus átomos, este elemento puede formar tanto el mineral más duro que ocurre en la naturaleza, el diamante, como uno de los más blandos, el grafito. Organizados en hexágonos y formando láminas, los átomos de carbono dan lugar al grafeno, un material del que habréis oído hablar estos últimos años por sus “increíbles” propiedades
Estructuras basadas en el Carbono
El Carbono desarrolla el papel clave en el desarrollo de la vida, porque un solo átomo de este elemento es capaz de combinarse químicamente nada menos que con otros cuatro átomos al mismo tiempo (incluídos otros átomos de carbono, que pueden estar unidos a su vez a más átomos de carbono, formando anillos y cadenas), de tal modo que este elemento tiene una química excepcionalmente rica. Así decimos con frecuencia que la vida en la Tierra está basada en el Carbono, el elemento más ductil y crucial en nuestra formación.
Claro que, tal comentario, no implica la negación de que pudieran existir otras clases de vida basadas en el Silicio o en cualquier otra combinación química, pero todas las pruebas que aporta la Astronomía sugieren que es mucho mayor la probabilidad de que la vida más allá de nuestras fronteras esté basada también en el CHON.
Es inadmisible lo poco que la gente común sabe del Universo al que pertenecen y también lo poco que se valora el trabajo de Astrónomos, Astrofísicos y Cosmólogos, ellos son los que realizan las pruebas y las comprobaciones que finalmente nos llevan al conocimiento que hoy tenemos del cielo y de los objetos que lo pueblan y de las fuerzas que allí actúan.
La Nebulosa de la Quilla, una de las regiones de nacimiento de estrellas más grandes del universo: pilares de 3 años luz de altura que parecen abultados como las velas de un barco por la fuerza tirante de los astros que, literalmente, da a luz en su interior.
Gran parte de estas pruebas proceden del análisis espectroscópico del material que está presente en las Nebulosas, esas inmensas nubes de gas y polvo que se encuentran en el espacio como resultado de explosiones de supernovas o de otros fenómenos que en el Universo son de lo más frecuente. A partir de esas nubes se forman los sistemas planetarios como nuestro sistema solar, allí, nacen nuevas estrellas que contienen los mismos materiales expulsados por estrellas de generaciones anteriores.
En estas nubes hay muchos compuestos construidos en torno a átomos de carbono, y este elemento es tan importante para la vida que sus compuestos reciben en general el nombre de compuestos “orgánicos”. Entre los compuestos detectados en nubes interestelares hay sustancias muy sencillas, como metano y dióxido de carbono, pero también materiales orgánicos mucho más complejos, entre los que cabe citar el formaldehído, el alcohol etílico, e incluso al menos un aminoácido, la glicina. Lo que constituye un descubrimiento muy esclarecedor, porque es muy probable que toso los materiales existentes en las nubes interestelares hayan estado presentes en la nube a partir de la cual se formó nuestro Sistema Solar, hace unos cinco mil millones de años.
En este cúmulo estelar llamado NGC 602, cerca de la Pequeña Nube de Magallanes, millones de estrellas jóvenes emiten radiación y energía en forma de ondas que erosionan el material que las rodea creando formaciones visualmente interesantes. El tamaño de lo que se ve en la foto abarca 200 años luz de lado a lado
A partir de estos datos, equipos científicos han llevado a cabo en la Tierra experimentos en los que unas materias primas, debidamente tratadas simulando las condiciones de densidad y energías de aquellas nubes interestelares (ahora en laboratorio), dieron como resultado el surgir expontáneo de tres aminoácidos (glicina, serina y alanina). Todos conocemos el experimento de Miller.
En otro experimento utilizando otra mezcla de ingredientes ligeramente distinta, se producian no menos de dieciseis aminoácidos y otros compuestos orgánicos diversos en unas condiciones que eran las existentes en el espacio interestelar.
Para hacernos una idea, las proteínas de todos los seres vivos de la Tierra están compuestas por diversas combinaciones de tan sólo veinte aminoácidos. Todas las evidencias sugieren que este tipo de materia habría caído sobre los jóvenes planetas durante las primeras etapas de formación del sistema planetario, deposita por cometas que habría sido barridos por la influencia gravitatoria de unos palnetas que estaban aumentando de tamaño.
En idénticas condiciones de temperatura y presión que el universo de hace 4.600 millones de años, Experimentos llevados a cabo en el laboratorio, han logrado originar ribosa, la molécula que luego acabó convirtiéndose en ADN.
Como hemos podido deducir, una sopa de aminoácidos posee la capacidad de organizarse por sí sóla, formando una red con todas las propiedades que ha de tener la vida. De esto se deduce que los aminoácidos que estuvieron formando durante largos períodos de tiempo en las profundidades del espacio (utilizando energias proporciona por la luz de las estrellas), serían transportados a la superficie de cualquier planeta joven, como la Tierra.
Algunos planetas pueden resultar demasiado calientes para que se desarrolle la vida, y otros demasiado fríos. Pero ciertos planetas como la propia Tierra (existentes a miles de millones), estarían justo a la temperatura adecuada. Allí, utilizando la expresión de Charles Darwin, en alguna “pequeña charca caliente” tendrían la oportunidad de organizarse en sistemas vivos.
Sopa primigenia de la que surgió la primera célula replicante precursora de la Vida
Claro que, por mi parte, como dijo aquel famoso Astrofísico inglés del que ahora no recuerdo el nombre: ” milagro no es que aparezca vida fuera de la Tierra, el verdadero milafro sería que no apareciera”.
Y, en cuanto a las condiciones para que haga posible la existencia de vida, conviene ser reservados y no emitir un juicio precipitado, ya que, todos sabemos de la existencia de vida en condiciones que se podrían comparar o denominar de infernales. Así que, estaremos a la espera de que, el Universo nos de una respuesta.
Veamos algunos conceptos: Nova.
Antiguamente, a una estrella que aparecía de golpe donde no había nada, se le llamaba nova o ” estrella nueva “. Pero este nombre no es correcto, …
En realidad es una estrella que durante el periodo de sólo unos pocos días, se vuelve 103-104 veces más brillantes de lo que era. Ocurren 10 ó 15 sucesos de ese tipo cada año en la Vía Láctea. Las novas se cree que son binarias próximas en las que, uno de sus componentes es usualmente una enana blanca y la otra una gigante roja.
La materia se transfiere de la gigante roja a la enana blanca, en cuya superficie se acumula, dando lugar a una explosión termonuclear, y, a veces se convierte en una estrella de neutrones al ver incrementada su masa.
Nucleones.
Protones y neutrones, los constituyentes de los núcleos atómicos que, a su vez, están conformados por tripletes de Quarks. Un protón está hecho por 2 Quarks up y 1 Quark Down, mientras que un Neutrón está conformado por 2 Quarks Down y 1 Quark up. Son retenidos en el núcleo por los Bosones llamados Gluones que son transmisores de la fuerza nuclear fuerte.
Núcleo.
Corazón central de un átomo que contiene la mayor parte de su masa. Está positivamente cargado y constituido por uno o más nucleones (protones y neutrones).
La carga positiva del núcleo está determinada por el número de protones que contiene (número atómico) y en el átomo neutro está compensada por un número igual de electrones, que se mueven alrededor del núcleo y cuya carga eléctrica negativa anula o compensa a la positiva de los (electro) protones.
El núcleo más simple es el núcleo de hidrógeno, consistente en un único protón. Todos los demás núcleos contienen además uno o más neutrones.
Los neutrones contribuyen a la masa atómica, pero no a la carga nuclear.
El núcleo más masivo que se encuentra en la Naturaleza es el Uranio-238, que contiene 92 protones y 146 neutrones.
Nucleosíntesis, nucleogénesis.
Fusión de nucleones para crear los núcleos de nuevos átomos más complejos. La nucleosíntesis tiene lugar en las estrellas y, a un ritmo más acelerado, en las supernovas.
La nucleosíntesis primordial tuvo lugar muy poco después del Big Bang, cuando el Universo era extremadamente caliente y, ese proceso fue el responsable de la abundancia de elementos ligeros, por todo el cosmos, como el Helio y el Hidrógeno que, en realidad es la materia primordial de nuestro Universo, a partir de estos elementos se obtienen todos los demás en los procesos estelares de fusión.
Omega.
Índice de densidad de materia del Universo, definida como la razón entre la actual densidad y la “Densidad crítica” requerida para “cerrar” el Universo y, con el tiempo, detener su expansión.
Para la materia oscura se dirá: “Omega Negro”.
Si Omega es mayor que 1, el Universo se detendrá finalmente y las galaxias recorrerán, a la inversa, el camino recorrido para colapsar en una gran Bola de fuego, el Big Crunch, estaríamos en un Universo cerrado.
Se dice que, un Universo con exactamente 1, la Densidad crítica ideal, estará alrededor de 10-29 g/cm3 de materia, lo que esta descrito por el modelo e Universo descrito por Einstein-de Setter.
En cualquier caso, sea cual fuere Omega, no parece muy atractivo el futuro de nuestro Universo que según todos los datos que tenemos acabará en el hielo o en el fuego y, en cualquier de estos casos.
¿Dónde nos meteremos?
Onda, función de.
Función, denotada por Y (w,y,z), que es solución de la ecuación de Schrödinger en la mecánica cuántica. La función de ondas es una expresión matemática que depende de las coordenadas de una partícula en el espacio.
Si la función de ondas (ecuación de Schrödinger) puede ser resuelta para una partícula en un sistema dado (por ejemplo, un electrón en un átomo), entonces, dependiendo de las colisiones en la frontera, la solución es un conjunto de soluciones, mejor de funciones de onda permitidas de la partícula (autofunciones), cada una correspondiente a un nivel de energía permitido.
El significado físico de la función de ondas es que el cuadrado de su valor absoluto en un punto, [Y]2, es proporcional a la probabilidad de encontrar la partícula en un pequeño elemento de volumen, dxdydz, en torno a ese punto. Para un electrón de un átomo, esto da lugar a la idea de orbitales atómicos moleculares.
elimino ecuación para no confundir al lector no versado.
Ondas.
La velocidad de una estrella puede generar enormes onda
Propagación de la energía mediante una vibración coherente.
Está referido a la perturbación periódica en un medio o en el espacio. En una onda viajera (u onda progresiva) la energía es transferida de un lugar a otro por las vibraciones. En el Espacio puede estar causada por el movimiento de las estrellas.
En una onda que atraviesa la superficie del agua, por ejemplo, el agua sube y baja al pasar la onda, pero las partículas del agua en promedio no se mueven. Este tipo de onda se denomina onda transversal, porque las perturbaciones están en ángulo recto con respecto a la dirección de propagación. La superficie del agua se mueve hacia arriba y abajo mientras que la onda viaja a lo largo de la superficie del agua.
Las ondas electromagnéticas son de este tipo, con los campos eléctricos y, magnéticos variando de forma periódica en ángulo recto entre sí y a la dirección de propagación.
En las ondas de sonido, el aire es alternativamente comprimido y rarificado por desplazamiento en la dirección de propagación. Dichas ondas se llaman longitudinales.
Las principales características de una onda es su velocidad de propagación, su frecuencia, su longitud de onda y su amplitud. La velocidad de propagación y la distancia cubierta por la onda en la unidad de tiempo. La frecuencia es el número de perturbaciones completas (ciclos) en la unidad de tiempo, usualmente expresada en hertzios. La longitud de onda es la distancia en metros entre puntos sucesivos de igual fase de onda es la distancia en metros entre puntos sucesivos de igual fase de onda. La amplitud es la diferencia máxima de la cantidad perturbada medida con referencia a su valor medio.
Recuerdo cuando allá por el año 2009 publiqué: “Pronto oiremos que Kip SThorne ha detectado y medido las ondas gravitacionales de los Agujeros Negros.” Y, en el presente es noticias pasada. Y Thorne tiene su premio Nobel.
Las ondas gravitacionales son aquellas que se propagan a través de un campo gravitacional. Cuando eso suceda, tendremos nuevos conocimientos sobre el Universo, ya que, el que ahora conocemos sólo está dado por las lecturas de las ondas electromagnéticas, no de las gravitatorias.
La predicción de que una masa acelerada radia ondas gravitacionales (y pierde energía) proviene de la teoría general de la relatividad. Por ejemplo cuando dos agujeros negros chocan y se fusionan.
Ahora, gracias al proyecto LIGO sabemos más de esas ondas que viajan por espacio y producidas por el violento encuentro de estrellas de neutrones o agujeros negros.
El Experimento LIGO se afanó en localizar y medir estas ondas y, a la cabeza del proyecto, como he dicho, está el experto en agujeros negros, el físico y cosmólogo norteamericano, amigo de Stephen Hawking, kip S.Thorne, que está buscando las pulsaciones de estos monstruos del espacio, cuya energía infinita (según él), algún día podrá ser aprovechada por la humanidad cuando la tecnología lo permita.
Aunque podríamos continuar hablando sobre onda continua, onda cósmica, onda cuadrada, onda de choque, onda de espín (magnón), onda de tierra, onda estacionaria, onda ionosférica, onda portadora, onda sinuosidad, onda viajera, onda sísmica, onda submilimétrica, onda de ecuación, etc., sería salirse del objeto perseguido aquí.
Oort, nube de ; Constante de.
La nube de Oort está referida a un halo aproximadamente esférico de núcleos cometarios que rodea al Sol hasta quizás unas 100.000 UA (más de un tercio de la distancia a la estrella más próxima). Su existencia fue propuesta en 1950 por J.H.Oort (1900-1992) astrónomo holandés, para explicar el hecho de que estén continuamente acercándose al Sol nuevos cometas con órbitas altamente elípticas y con todas las inclinaciones.
La nube Oort sigue siendo una propuesta teórica, ya que no podemos en la actualidad detectar cometas inertes a tan grandes distancias. Se estima que la nube contiene unos 1012 cometas restantes de la formación del Sistema Solar. Los miembros más distantes se hallan bastante poco ligados por la gravedad solar.
Puede existir una mayor concentración de cometas relativamente cerca de la eclíptica, a 10.000-20.000 UA del Sol, extendiéndose hacia adentro para unirse al Cinturón de Kuiper. Los comentas de la Nube de Oort se ven afectados por la fuerza gravitatoria de los estrellas cercanas, siendo perturbadas ocasionalmente poniéndoles en órbitas que los llevan hacia el Sistema Solar interior.
La constante de Oort está referida a dos parámetros definidos por J.H.Oort para describir las características más importantes de la rotación diferencial de nuestra Galaxia en la vecindad del Sol. Son usualmente expresadas en unidades de kilómetros por segundo por kiloparsec. Los dos parámetros están dados por los símbolos A y B. Restando B de A se obtiene la velocidad angular del estándar local de repaso alrededor del centro de la Galaxia, que corresponde al periodo de unos 200 millones de años.
Órbita.
En astronomía es el camino a través del espacio de un cuerpo celeste alrededor de otro. Para un cuerpo pequeño que se mueve en el campo gravitacional de otro, la órbita es una cónica. La mayoría de esas órbitas son elípticas y la mayoría de las órbitas planetarias en el sistema solar son casi circulares. La forma y tamaño de una órbita elíptica se determina por su excentricidad, e, y la longitud de su semieje mayor, a.
En física, la órbita esta referida al camino de un electrón al viajar alrededor del núcleo del átomo (ver orbitales).
emilio silvera
Sep
22
¿La luz? ¡Una maravilla de la Naturaleza!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Espectros atómicos
En el siglo XVII, Isaac Newton demostró que la luz blanca visible procedente del sol puede descomponerse en sus diferentes colores mediante un prisma. Es un proceso denominado dispersión, tal y como puedes observar en la siguiente animación en la que se simula la descomposición de la luz blanca:
El espectro que se obtiene es continuo; contiene todas las longitudes de onda desde el rojo al violeta, es decir, entre unos 400 y 700 nm (1 nm -nanómetro- = 10-9 m).
Espectros continuos y discontinuos, de emisión y de absorción
Cuando se irradia la materia con radiación electromagnética, la materia puede absorber, y posteriormente emitir, ciertas longitudes de onda, o frecuencias, en relación con su estructura interna. Cuando los cuerpos sólidos, líquidos o gases a alta presión son excitados convenientemente por medio de calor o electricidad, se observan sus colores característicos. Estos colores constituyen un todo continuo, lo que se traduce en el color rojo de la resistencia de un calentador o en el blanco característico de una bombilla. Esto sucede porque existen muchos átomos excitados que emiten ondas de luz cuyas coloraciones parciales se solapan produciendo un espejismo luminoso de continuidad.
Si realizamos la misma experiencia con gases a bajas presiones, es decir con pocos átomos, es posible observar cómo la luz emitida por ellos y dispersada luego por un prisma consta de una serie de líneas, sin que exista una banda continua de colores; se observa que la luminosidad emitida así es discontinua.
Por tanto trabajaremos con elementos químicos en estado gaseoso.
A este tipo de espectros se los conoce como espectros de emisión, y tienen la característica fundamental que cada elemento químico presenta un espectro característico propio, específico y diferente de los del resto de elementos, que sirve como “huella digital” permitiendo identificarlo fácilmente. En la imagen se muestra el espectro de emisión del hidrógeno.
Es posible también obtener el espectro de un gas de una forma complementaria, iluminando con luz blanca (que presenta todas las frecuencias posibles) una muestra del gas en cuestión, de forma que se observan unas líneas oscuras sobre el fondo iluminado, correspondientes a las longitudes de onda en las que el elemento absorbe la energía.
Espectro continuo de la luz blanca | |
Espectro de emisión del H | |
Espectro de absorción del H |
A este espectro se le conoce como espectro de absorción y es complementario al de emisión, puesto que las líneas de ambos coinciden para un mismo elemento, tal y como puedes observar en el espectro de absorción del hidrógeno y compararlo con el de emisión.
El espectro de emisión de un elemento es el negativo del espectro de absorción: a la frecuencia a la que en el espectro de absorción hay una línea negra, en el de emisión hay una línea emitida ,de un color, y viceversa
Cada elemento tiene un espectro característico; por tanto, un modelo atómico debería ser capaz de justificar el espectro de cada elemento.
¿Por qué aparecen los espectros?
Cuando irradia una sustancia con luz blanca (radiación electromagnética continua) los electrones escogen las radiaciones de este espectro continuo para producir saltos a niveles superiores (estado excitado).
Cuando un electrón salta desde su estado fundamental a niveles de mayor energía (estado excitado) y cae de nuevo a niveles de menor energía se produce la emisión de un fotón de una longitud de onda definida que aparece como una raya o línea concreta en el espectro de emisión. La radiación electromagnética proveniente de la luz blanca después de pasar por la sustancia vemos que le faltan una serie de líneas que corresponden con saltos electrónicos desde el estado fundamental al estado excitado. Es lo que se denomina un espectro de absorción. Lógicamente las líneas del espectro de emisión son las que faltan en el de absorción pues la energía para pasar de un nivel a otro es la misma suba o baje el electrón.
“En física y óptica, las líneas de Fraunhofer son un conjunto de líneas espectralesnombradas en honor al físico alemán Joseph von Fraunhofer (1787–1826) que fue el primero que las estudió. Las líneas se observaron originalmente como bandas oscuras en el espectro solar.”