miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Sobre nuestro Sistema solar

Autor por Emilio Silvera    ~    Archivo Clasificado en El Sistema Solar    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La más bonita imagen del Sistema solar

Que pocas veces pensamos en el hecho cierto de que, nuestro planeta, la Tierra, cual “nave espacial” va girando alrededor del Sol a 107.000 Km/h, y, en la rotación sobre su “eje” (inclinado 23º), lleva una velocidad de 1.700 Km/h. No percibimos esos movimientos por el simple hecho de que son constantes.

Resultado de imagen de La más bonita imagen del Sistema solar

Tampoco prestamos mucha atención al hecho de que, el Sol, posea más del 99% de toda la masa del Sistema solar. Los 150 millones de Km., que nos separan de él, hace posible la Vida en el Planeta situado en la zona habitable (ni mucho frío ni mucho calor), la radiación necesaria para que sea posible el ciclo de la vida, la fotosíntesis…

Resultado de imagen de Salimos en una Nave del Sistema solar para tomar su imagen

BUeno, la sonda Parker estudiará el Sol de cerca… ¡Ya es algo!

Aun no hemos podido tomar una instantánea de nuestro Sistema Planetario y, nos tenemos que conformar con alguna concepción artística del mismo que nunca podrá reflejar la realidad, sino que tan sólo será una triste aproximación de lo que realmente es complejo conjunto de mundos girando alrededor del Sol en complejo equilibrio que llamamos sistema solar.

¿Quiém de ustedes no ha sentido curiosidad alguna vez por cómo se formó? ¿Qué estrella sería la que al final de su vida, sembró toda la región con una Nebulosa de la que surgieron todos los cuerpos que hoy podemos estudiar, desde el Sol hasta el último de los planetas y sus lunas acompañantes?

Nosotros, hemos venido a caer en un planeta de extraordinaria riqueza de materiales y posibilidades. Precisamente por eso, ha sido posible que tras un largo período de tiempo evolutivo, surgiera la vida inteligente que ha llegado a saber de su situación en el Cosmos, en una Galaxia espiral con doscientos mil millones de estrellas repartidas en una inmensa superficie de cien mil años-luz de diámetro, dónde el sistema solar ocupa una mínima fracción de espacio situado en el interior del Brazo de Orión, a unos 30.000 años-luz del Centro Galáctico.

File:Protoplanetary disk.jpg

La formación del Sol y de los planetas fue lenta, lo que marcaba el ritmo del Universo que se rige por un “Tiempo” muy distinto al nuestro de es de corto recorrido. Lo que para nosotros es toda una vida, para el Universo es menos que el pestañear de nuestros párpados. Todo en el inmenso Universo se hace a lo grande y, en esa dinámica celeste, el Sistema Solar tardó mucho en fraguar a partir de aquella Nebulosa molecular, hace ahora de ello 4.600 millones de años,

Resultado de imagen de Descubren otros sistemas planetarios

Es la primera vez que se descubren siete planetas girando alrededor de una estrella enana. ¿Tendrá alguno de ellos la posibilidad de alojar la Vida?

Hemos podido a saber de todo esto y conocemos que, nuestra sistema planetario, es simplemente uno más entre un sin fín de ellos que pululan por la Galaxia Vía Láctea y por otras muchas que, como la nuestra, atesoran maravillas como la propia Tierra y, lo más seguro será que también, especies inteligentes que observen y traten de descubrir el origen de su existencia como nos pasa a nosotros.

En nuestro caso, las teorías son muchas y, de entre todas ellas, prevalece la más probable de que una  gran Nube Molecular de gas y polvo y rica en todo tipo de materiales, surgió de una explosión supernova y tras mucho tiempo de gestación, hace ahora unos 5.000 millones de años, surgió la protoestrella que más tarde sería nuestro Sol y se formaron los planetas y demás cuerpos que alrededor de él orbitan.

http://apod.nasa.gov/apod/image/0912/orionproplyds_hst_big.jpg

Esta imagen nos viene como anillo al dedo para representar el tema del que comentamos. Imagen del Telescopio Espacial Hubble (HST) de los discos protoplanetarios en la Nebulosa de Orión, un “criadero de estrellas” probablemente parecido a la nebulosa en la que se formó nuestro Sol.

Lástima que nosotros, los ocupantes “inteligentes” de la Tierra,  pese a poseer potentes y magníficos telescopios, no podemos ver en todo su conjunto, la maravillosa Imagen del Sistema Solar al completo y en toda su plenitud, y,  simplemente,  nos tenemos que conformar con ver partes fraccionarias del mismo y que corresponden a las regiones más cercanas que nos circundan en espacios más cercanos que nos permiten captar con nitidez, los objetos y cuerpos que nos son tan familiares de nuestro entorno. Sin embargo, al ritmo que marcha la Ciencia y las Tecnologías, no se tardará mucho en el tiempo futuro para que podamos articular sofisticados aparatos que dotados de otras técnicas nuevas, se desplazarán hasta las distancias necesarias para que, la perspectiva completa de nuestro Sistema Solar esté a nuestro alcance.

Urano, el séptimo planeta desde el Sol con su color azul verdoso es inconfundible que es debido a la absorsión de la luz roja por el metano de su atmósfera superior que es del 2%, mientras que el resto está formada por el 83% de hidrógeno y el 15% de helio.

Una carta celeste nos dirá, por ejemplo, la situación exacta de Urano, que se desplaza lentamente entre las estrellas más débiles que podemos observar a simple vista. Estando situado a una distancia de unas veinte veces la de la Tierra al Sol, fue más que suficiente para que, en la antigüedad no fuese conocido, su distancia lo impedía en aquella época de rudimentarios telescopios y, ahora, a nosotros nos pasa igual en relación al conjunto del Sistema Solar.

El Sol liberó una gran cantidad de calor que provocó la aglomeración de la materia; algunos cúmulos de materia medían varios kilómetros. Cuando la nebulosa protosolar colapsó hizo que el disco girara más rápido y el material se condensó, de modo que los átomos comenzaron a colisionar. El centro de la nebulosa se volvió cada vez más caliente que el círculo de su alrededor. La forma de disco se hizo más pronunciada, también conocida como disco protoplanetario, con un diámetro de unas 200 Unidades Astronómicas y una protoestrella en el centro: el Sol.

Pasados 100 millones de años, aumentó mucho la temperatura y la presión en el núcleo del Sol, y su hidrógeno empezó a fundirse. Se creó una fuente de energía interna que contrarrestó la fuerza de contracción gravitacional, hasta alcanzar el equilibrio hidrostático. Los planetas se formaron a partir de una nube de gas y polvo, conocida como nebulosa solar, gracias a la aglomeración de granos de polvo en órbita alrededor del Sol. Primero se formaron cuerpos  que incrementaron gradualmente su masa por colisiones constantes durante los siguientes millones de años.

Resultado de imagen de La formación de los planetas rocosos y gaseosos

En el exterior se formaron cuatro grandes masas que dieron origen a los planetas gigantes gaseosos. La fuerza de la gravedad de Júpiter hizo imposible que se unieran los objetos protoplanetarios, hoy conocidos por el nombre de cinturón de asteroides. Júpiter y Saturno pudieron juntar mucho material y se convirtieron en gigantes gaseosos, mientras que Urano y Neptuno capturaron mucho menos material, y son conocidos como gigantes de hielo porque sus núcleos están hechos principalmente de hielo.

File:Kuiper oort es.png

El conjunto de lo que llamamos sistema solar y que contiene a todos los planetas más sus 61 (¿o eran más) satélites conocidos, además de incontables asteroides, cometas y meteoritos conforma todo “nuestro barrio” local. El afelio de la órbita de Plutón, a más de 7 300 millones de kilómetros del Sol, determina el límite exterior del sistema planetario conocido, aunque muchos objetos del Cinturón de Kuiper se encuentran más allá de  límite y algunos cometas de período largo viajan quizá hasta una distancia igual a la mitad de la distancia de la estrella más próxima.

Eros, captado por la sonda NEAR. | NASA

    Objetos como éste nos amenazan. Es el asteroide Eros y ya se ha paseado cerca de la Tierra

Los asteroides son nuestros vecinos más cercanos, están de una u otra forma, vinculados a nuestro destino. Los que cruzan nuestra órbita son llamados los geocruceros.  Los Astrónomos han  consideraron las trayectorias de los asteroides susceptibles de poner fin a millones de vidas humanas sobre nuestro planeta. Acordaos del ya famoso Apophis, un asteroide de pequeño tamaño, unos 250 metros de anchura que, sin embargo,  podría representar una amenaza.  Estimamos actualmente a una entre 45 000 la probabilidad que esta piedra venga para estrellarse en el océano Pacífico el 13 de abril de 2036.

El amenazador asteroide Apofis se aproxima el jueves a la Tierra

La famosa roca del diámetro de tres campos de fútbol, considerada un riesgo para 2036, se acercará en esta ocasión a 37 distancias lunares. Finalmente, los científicos han determinado que no será una amenaza cierto, pero… ¿Y otros?

Gracias a que en 1608 se inventó (por casualidad) el Telescopio, pudo Galileo hacer su inmenso trabajo que abriría el campo hacia un nuevo horizonte mucho más lejano que el que hasta entonces temíamos de la concepción del Universo y de las estrellas que lo pueblan. Galileo podríamos decir (sin olvidar a Newton) que fue el primero que señaló el camino a seguir. Más tarde, vendrían muchos más que como Tycho Brahe y Kepler,  o William Herschel… nos dijeron lo que en el espacio ocurría.

Resultado de imagen de Sumeria y sus inventos

Resultado de imagen de Sumeria y sus inventos

La rueda y el carro

El sistema matemático sexagesimal

Ladrillos de adobe

El arco en la construcción

La primera ciudad del mundo, URUK

El trueque, el comercio inicial del mundo

La escritura cuneiforme en tablillas

La agricultura y los primeros canales de riego

La domesticación de animales para aprovechar los alimentos que facilitaban y su fuerza para los duros trabajos. Todo ello hicieron los sumerios

Resultado de imagen de Sumeria y sus inventos

En Mesopotamía, una histórica región del Oriente Medio, en las planicies aluviales de de los ríos Éufrates y Tigris, los sumerios construyeron la primera ciudad (varios miles de años a. C.) y la llamaron Uruk.

No sería justo adjudicar el mérito de los comienzos a todos ellos. Civilizaciones del pasado remoto como la Sumeria, los Babilónios, los Chinos, Egipcios o Hindúes, también tuvieron mucho que decir al señalar el camino celeste de las estrellas. Más tarde vendrían los Griegos, Mayas…y otros pueblos que, cada uno a su manera de ver las cosas, dejaron su impronta del Cosmos que, como una guía inicial en el estudio de una disciplina, más tarde seguimos nosotros para profundizar más y perfeccionarla. Hoy, podemos decir con orgullo que tenemos unos profundos conocimientos del Universo sólo limitados por nuestras propias limitaciones en el saber que no hemos podido alcanzar todavía. Y, no sabría decir qué medidas podríamos tomar para salvar la grave situación que se nos presentará el día que se nos venga encima un cuerpo de grandes proporciones.

Resultado de imagen de La caída de un gran meteorito

La NASA monitorea cerca de 95% de los objetos más grandes que vuelan cerca de la Tierra. 

El administrador de la NASA, Charles Bolden, tiene una recomendación sobre cómo manejar una emergencia como un enorme asteroide que se dirija hacia la ciudad de Nueva York: Recen.

Eso es todo lo que Estados Unidos -o cualquier otro país- podría hacer en este momento sobre asteroides y meteoritos desconocidos que podrían viajar en rumbo de colisión con la Tierra, dijo el martes Bolden en una audiencia ante legisladores del Comité de Ciencias de la Cámara de Representantes.

Resultado de imagen de El meteorito de Armagedon

            Poco podríamos hacer si uno de éstos “bichos” se acercan a nosotros

Hasta ahora, hemos tenido mucha suerte los miembros de la especie Humana.  Probablemente un acontecimiento como el que arriba podemos ver podría estar a la “vuelta de la esquina” y, con los medios actuales, poco podríamos hacer. La realidad es muy diferente a esas películas de Hollywood que todos hemos visto, en las que, el protagonista y su equipo, se sacrifican y salvan la Tierra.

Millones de asteroides frecuentan la región del espacio y tenemos el escudo protector de Júpiter que, al ser una planeta de inemnsa masa, atrae a muchos de los “excursionistas que se nos acercan a nuestras inmediaciones. Pero la suerte no dura para siempre. El cinturón de Kuiper contiene más de mil mil millones de cometas y por lo menos tanto en la nube de Oort. Todos estos objetos sufren las leyes de la mecánica celeste y su ballet alrededor del Sol es caótico por naturaleza.  La menor perturbación bastaría para desviar su órbita. Simplemente con que un asteroide sufriera una perturbación mínima pasando cerca de un satélite de Júpiter para que su trayectoria sea desviada peligrosamente con destino a la Tierra.

http://l.yimg.com/bt/api/res/1.2/kPn1yaNeiSRWrMcr6ulHxQ--/YXBwaWQ9eW5ld3M7cT04NQ--/http://media.zenfs.com/es-ES/blogs/cultura/Untitled.jpg

    Sistema solar de Kepler-22b en comparación con el nuestro

Claro que todo, absolutamente todo en nuestras vidas, debe ser tomado con cierto humor y, los científicos, esos señores con bata tan serios, de vez en cuando tienen algún destello de humor unido a alguna excentricidad. Por ejemplo, llamar “Goldilock” a la zona de habitabilidad de un sistema solar. Seguro que todos recuerdan el cuento de Ricitos de oro (Goldilock) en el que una niña entraba en la cabaña de unos osos y encontraba unos cuencos de sopa. Uno era demasiado grande; el otro, demasiado pequeño; en uno la sopa estaba demasiado caliente; en el otro, demasiado fría…

Resultado de imagen de La NASA busca planetas habitables

Estos siete mundos, que orbitan a una distancia relativamente cercana a la Tierra alrededor de la estrella Trappist-1, tienen el potencial de albergar agua líquida en su superficie dependiendo de sus condiciones.

En la búsqueda de planetas habitables en el universo, los científicos se encuentran en una situación similar a la de la niña del cuento. En ocasiones, los planetas descubiertos se encuentran demasiado cerca de su estrella solar, lo que los convierte en planetas demasiado calientes y abrasadores para albergar alguna posibilidad de vida. En otras, en cambio, están demasiado lejos de la fuente de calor, lo que los hace gélidos y helados. La mayor parte de los exoplanetas encontrados son gigantes gaseosos, varias veces mayores que Júpiter, y se encuentran dispersos y alejados de esa confortable zona de habitabilidad en la que la temperatura es aceptable para que se pueda encontrar agua líquida, o incluso la posibilidad de albergar algún tipo de organismo vivo.

Resultado de imagen de La Vía Láctea

Situados en la periferia de la Galaxia, a 30.000 a.l. del centro galáctico, estamos relativamente seguros

Claro que, sobre todo, debemos ser humildes y ser conscientes de que, nuestro Sistema Solar, es tan sólo una fracción pequeña, muy pequeña comparada con el contexto de nuestra Galaxia en la que, además del Sol y de la Tierra y de  nuestros planetas vecinos, están presentes muchímas más estrellas y sistemas solares que, como el nuestro, tendrán la misma opción de contener, en alguno de sus planetas situados en la zona adecuada, formas de vida que, como la nuestra, esté también, observando el Universo y planteándose las mismas o parecidas preguntas que nosotros nos hacemos y estarán también, preocupados por los mismos problemas que nosotros. Fijaos en la representación de arriba, el pequeño “mundo nuestro” comparado con la totalidad de la Galaxia.

Cierto es que la Tierra y la Luna son (junto con el Sol) y el resto de planetas de la vecindad,  lo único que tenemos para que nuestras vidas estén “garantizadas” hasta donde puedan realmente estarlo, y, es lógico que sintamos un poco de preocupación por lo que en nuestro entorno pudiera pasar. Simplemente por el hecho de que la Luna no estuviera ahí, las cosas se nos pondrían muy mal: Años de 1.000 días, días de 8 horas, holas de 30 metros en los océanos del planeta…Y un sin fín de problemas más que no quiero ni pensar.

Resultado de imagen de Otros planetas habitables

                        Aunque sean algo diferentes a la Tierra… ¡Nos tendremos que adaptar!

Saber y conocer nuestro Sistema Solar, nuestra vecindad más próxima, nos dará la opción de poder paliar más adelante, cualquier acontecimiento no deseado que se nos pudiera venir encima y, si la cosa es de extrema gravedad, debemos prepararnos para cuando eso llegue (que llegará) poder escapar hacia otros planetas que, como la Tierra, nos pueda dar alojamiento. Y, si hacemos eso antes de que llegue el fatídico momento… ¡Mucho mejor!

emilio silvera

¿Sin la luz? ¡Sería otro Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nuestro Universo es de Luz, todo lo que podemos observar es posible gracias a la luz que incide en los objetos y se refleja en nuestras retinas, así podemos contemplar los planetas y las estrellas del cielo y cualquier cosa hecha de materia, es decir, materia radiante, conformada por átomos se deja ver por nosotros. Decía  Leonard Susskind que, para comprender la realidad en sus niveles más elementales, basta con conocer el comportamiento de dos elementos: el electrón y el fotón.

Todo el argumento de la electrodinámica cuántica (QED) gira en torno a un proceso fundamental: la emisión de un único fotón por un único electrón.


Cuando el movimiento de un electrón es alterado súbitamente, puede responder desprendiendo un fotón. La emisión de un fotón es el suceso básico de la mecánica cuántica:

Toda la luz visible que vemos, así como las ondas de radio, la radiación infrarroja y los rayos X, está compuesta de fotones que han sido emitidos por electrones, ya sea en el Sol, el filamento de una bombilla, una antena de radio o un aparato de rayos.

Resultado de imagen de La luz visible hecha de fotones

Resultado de imagen de Los fotones saltarines en el átomo que procuran su estabilidad

Los electrones no son las únicas partículas que pueden emitir fotones. Cualquier partícula eléctricamente cargada puede hacerlo, incluido el protón. Esto significa que los fotones pueden saltar entre dos protones o incluso entre un protón y un electrón. Este hecho es de enorme importancia para toda la ciencia y la vida en general. El intercambio continuo de fotones entre el núcleo y los electrones atómicos proporciona la fuerza que mantiene unido al átomo. Sin estos fotones saltarines, el átomo se desharía y toda la materia dejaría de existir.

Resultado de imagen de Los electrones son fermiones y los fotones bosones

Mientras que un electrón pertenece al grupo de partículas llamadas fermiones, los fotones pertenecen a la familia de los bosones. Intentemos comprender esta película que es la existencia…

…protagonizada por bosones

Los fermiones hacen posible la materia “al estilo tradicional”, mientras que los bosones son elementos muy raros desde la forma de pensar a que estamos acostumbrados el común de los mortales. Para no complicarnos, la tabla periódica de elementos existe porque los fermiones no pueden “ser iguales”: no pueden solaparse uno sobre otro y se repelen si los obligamos. Es lo que damos por hecho cuando hablamos de materia, que cada pedazo de ésta ocupa su lugar y tiene sus propias cualidades.

En cambio, los bosones carecen de este sentido de la individualidad, digamos que poseen “alma grupal” y, en su estado más puro, todos forman una misma “superpartícula”.

Para entenderlo mejor, conviene recordar que las partículas no son bolitas como nos siguen enseñando en la escuela, sino que más allá de esta imagen existen como ondas o, al menos, sus funciones se equiparan al comportamiento de una onda.

Resultado de imagen de El condensado de Bose-Einstein

Resultado de imagen de El condensado de Bose-Einstein

                   El caos cuántico en condensados de Bose-Einstein con acoplamiento espín-órbita

En la década de 1920, Albert Einstein y el hindú Satyendra Nath Bose pronosticaron un quinto estado de la materia: el condensado de Bose-Einstein (BEC), el cual fue conseguido en laboratorio en 1995, algo que le valió el premio Nobel de 2001 a los científicos que lo lograron.

Imagen relacionada

Imagínese una taza de té caliente, las partículas que contiene circulan por toda la taza. Sin embargo cuando se enfría y queda en reposo, las partículas tienden a ir en reposo hacia el fondo. Análogamente, las partículas a temperatura ambiente se encuentran a muchos niveles diferentes de energía. Sin embargo, a muy bajas temperaturas, una gran proporción de éstas alcanza a la vez el nivel más bajo de energía, el estado fundamental. (Fuente: wikipedia)

dibujo20161104-experimental-result-emergence-of-a-turbulent-cascade-in-a-quantum-gas-nature20114-f1
“Observación experimental de la cascada hacia la turbulencia en el BEC y su relajación posterior hacia el estado inicial. En el inciso aparecen los resultados numéricos según la ecuación de Gross–Pitaevskii. Fuente: Nature.”

“A priori, un condensado de Bose–Einstein (BEC) es el fluido cuántico menos turbulento que uno puede imaginar. Sin embargo se puede forzar una cascada de Kolmogorov–Obukhov en un condensado formado por unos cien mil átomos de rubidio en una trampa óptica cilíndrica de unos 30 micrómetros de longitud que están enfriados a unos 50 nanokelvin (milmillonésimas de grado sobre el cero absoluto). El método usa un campo magnético oscilatorio que inyecta energía en los modos de momento más bajo del condensado.”

Resultado de imagen de Bosones enfriados hasta el cero absoluto

Cuando ciertas formas de materia [bosones] se enfrían hasta casi el cero absoluto, sus átomos se ponen en el estado de energía más baja, de modo que todos sus átomos vibran al unísono y se hacen coherentes. Las funciones de onda de todos los átomos se solapan, de manera que, en cierto sentido, un BEC [condensado de Bose-Einstein] es como un “superátomo” gigante en donde todos los átomos individuales vibran al unísono.

Al enfriar los átomos, su velocidad disminuye hasta que las longitudes de onda de cada uno de ellos se vuelven casi planas, superponiéndose unas a otras para formar una única onda que los describe a todos.

Así que un BEC se forma cuando los átomos en un gas sufren la transición de comportarse como “bolas de billar” al estilo de la física clásica, a comportarse como una onda gigante de materia al estilo de mecánica cuántica:

Resultado de imagen de Bosones enfriados hasta el cero absoluto

               Un grupo de físicos experimentales afirman haber creado fluido con “masa negativa”

Resultado de imagen de Gráfico del condensado Bose-Einstein

En el primero (el de la izquierda) se encuentra un sistema con  átomos en diferentes estados vibratorios, es decir, con diferentes energías. Por eso tienen distintas ondas asociadas a diferentes velocidades. La cubeta de abajo representa el sistema, las franjas horizontales representan los diferentes estados energéticos y los puntos son los átomos situados en estos distintos estados.

El segundo sistema (el de la derecha) representa un conjunto de átomos que han sido enfriados hasta llegar a formar un condensado de Bose-Einstein. Todos los átomos tienen la energía más baja del sistema.

Dado que para alcanzar el estado de CBE es necesario enfriar muchísimo los átomos, su velocidad disminuye hasta que su longitud de onda se hace tan larga que su onda es casi plana. En este punto, las ondas de todos los átomos enfriados se superponen, formando una única onda y alcanzando el estado de condensado de Bose-Einstein.

Por eso se dice que los átomos se encuentran en el mismo lugar, porque todos son descritos por una única onda.

Resultado de imagen de Gráfico del condensado Bose-Einstein

Y la siguiente simulación computarizada nos dá una mejor perspectiva sobre la formación de los vórtices en un condensado Bose-Einstein conformado por 200 mil átomos de rubidio contenidos dentro de una trampa magnética

Un BEC es un grupo de unos cuantos millones de átomos que se unen para formar una sola onda de materia de aproximadamente un milímetro de diámetro.  Si creamos dos BECs y los colocamos juntos, no se mezclan como gases ordinarios ni rebotan como lo harían dos sólidos. Donde los dos BECs se superponen, ellos “interfieren” como las ondas: delgadas capas paralelas de materia son separadas por capas delgadas de espacio vacío. El patrón se forma porque las dos ondas se suman donde sus crestas coinciden, y se cancelan donde una cresta se encuentra con un valle — a lo cual llamamos interferencia “constructiva” y “destructiva” respectivamente. El efecto es similar al de dos ondas que se superponen cuando dos piedras son lanzadas a un lago.

(Fuente: ciencia NASA)

…ambientada en: el vacío…

El hecho de que se puedan intercambiar partículas virtuales modifica el vacío alrededor de los átomos, y esto lleva a una fuerza. De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.

Y ahora, retrocedamos un poco más en este asunto del misterio que nos ocupa. Gracias a la tecnología láser, la física ha podido comprobar el extremo poder de la luz. Los láseres pueden hacer que las partículas virtuales se vuelvan reales. Pero, primero, aclaremos conceptos…

Imagen relacionada

Las “partículas virtuales” son partículas fundamentales que están constantemente surgiendo aparentemente de la nada y permanecen en el espacio-tiempo la friolera de una milésima de trillonésima de segundo –una cantidad que se forma poniendo una veintena de ceros a la derecha de la coma—. A pesar de denominarse “virtuales”, sus efectos son muy reales: la constante agitación de este burbujeo cuántico de partículas hace que el vacío tenga energía. Y esto es algo que afecta a la realidad, pues en ésta las fuerzas de atracción y repulsión dependen de la masa, y la masa no es sino energía expresada en unidades diferentes: E=mc².

En el uso corriente la palabra vacío significa espacio vacío, espacio del que se ha extraído todo el aire, vapor de agua u otro material. Eso es también lo que significa para un físico experimental que trabaja con tubos de vacío y bombas de vacío. Pero para un físico teórico, el término vacío tiene muchas más connotaciones. Significa una especie de fondo en el que tiene lugar el resto de la física. El vacío representa un potencial para todas las cosas que pueden suceder en ese fondo. Significa una lista de todas las partículas elementales tanto como de las constantes de la Naturaleza que se pondrían de manifiesto mediante experimentos en dicho vacío. En resumen, significa un ambiente en el que las leyes de la física toman una forma particular. […] Un vacío diferente significa leyes de la física diferentes; cada punto en el paisaje representa un conjunto de leyes que son, con toda probabilidad, muy diferentes de las nuestras pero que son, en cualquier caso, posibilidades consistentes. El modelo estándar es meramente un punto en el paisaje de posibilidades.

… la energía del vacío es tomada como la base para la constante cosmológica. A nivel experimental, la energía del punto cero genera el efecto Casimir, … Se dice que:


La energía del vacío es, por tanto, la suma total de las energías de todas las partículas posibles. Es la (hipotética) llamada “energía oscura” que hace que el universo se expanda, haciendo frente a la atracción de la gravedad, y que proporciona alrededor del 80% de la materia-energía al universo –un 26% es “materia oscura”, y sólo un 4% es la materia conocida hasta el momento—.

Pero, ¿cómo una partícula virtual se convierte en real? Es decir, ¿cómo queda “atrapada” en el espacio-tiempo de forma más estable?

La teoría de cuerdas, también llamada de supercuerdas, pues la supersimetría es necesaria para incluir los quarks y otros fermiones, es una teoría …

La teoría de la supersimetría establece que, por cada partícula de materia, nace una gemela de antimateria. La antimateria es igual que la materia, pero con carga opuesta. Por ejemplo, el electrón tiene carga negativa, y su partícula de antimateria, el positrón, positiva. Materia y antimateria se aniquilan mutuamente pero, por algún motivo aún no aclarado, la simetría se rompió en algún momento, surgiendo más materia que antimateria, de ahí que nuestro universo, materia, pueda existir.

Pero hay algo más en todo esto. Y para ello, la luz es la clave.

Si nos movemos en el espectro electromagnético, los fotones con longitud de onda ultravioleta pueden expulsar a los electrones de los átomos. Pero veámos.

…starring “light” as itself…

Ya en los años 30, los físicos predijeron que un campo eléctrico muy fuerte, que no es sino un espacio alterado por la actividad de un montón de fotones coordinados, podría impulsar a las partículas virtuales con carga opuesta en diferentes direcciones, impidiendo que la materia y la antimateria se aniquilen.

PairCreation.svg

Según el efecto de creación de pares, un fotón con energía suficiente, lo que equivale a tener el doble de la energía que posee un electrón en reposo, da lugar a una pareja de electrón y positrón. Aunque esto ya se consiguió en los años 90 a pequeña escala, gracias al desarrollo de la tecnología láser los científicos creen que estarán cerca de conseguir crear materia “en serie” mediante este proceso en unos pocos años. Por otra parte, una vez que existen las partículas, los fotones interactuan sin cesar con ellas, siendo absorbidos y emitidos por las mismas de manera ininterrumpida.Y de ello nace el movimiento gracias al cual todo existe en el espacio-tiempo. Sin movimiento, nuestra realidad desaparecería.

La creación de pares de antipartículas, se hace a partir de un fotón, donde con sólo un fotón, se obtiene un par de antipartículas.
No se diferencia básicamente la obtención de un electrón-positrón, a la obtención de un protón-antiprotón, sino solamente en la energía del fotón, significa que son esencialmente lo mismo.

 Así, si el fotón tiene suficiente energía, el par será electrón-positrón, caso contrario será un par virtual (absorción), si la energía del fotón fuere mayor, la diferencia estará dada por la velocidad opuesta de las antipartículas (masa de las antipartículas), correspondiente a la energía “sobrante” de acuerdo a E=mc2. Si la energía del fotón fuere suficiente, como para llegar al umbral mínimo, se creará un protón-antiprotón, y si fuere mayor, se manifestará en velocidad opuesta (masa de las antipartículas). La energía del fotón (cantidad de movimiento, efecto Compton) será la energía correspondiente al total de las dos antipartículas (masa, E=mc2)

La carencia de masa de un fotón está ligada a su movimiento. Para que un cuerpo alcance la velocidad de la luz, su masa ha de ser cero. Y, como Einstein explicó en su día, la luz se mueve siempre a la velocidad de la luz. Si pretendemos que un fotón se pare, en lugar de ralentizarse observaremos que desaparece. Y, como se ha dicho al principio, si estos “fotones saltarines”  desaparecieran, toda la materia dejaría de existir.

Imagen relacionadaResultado de imagen de Los fotones son la rueda de la existenciaResultado de imagen de Los fotones son la rueda de la existencia

Su esencia es el movimiento y su misión, según parece, hacer girar la rueda de la existencia. Sin la existencia de los fotones estaríamos hablando de otro Universo.

Ello es así debido al impacto de los fotones sobre las partículas elementales. La energía transmitida por un fotón es inversamente proporcional a su longitud de onda. Cuanto menos longitud de onda, más energía. Así, un fotón de luz visible tiene la energía suficiente para hacer reaccionar a un bastón de la retina. Si nos movemos en el espectro electromagnético, los fotones con longitud de onda ultravioleta pueden expulsar a los electrones de los átomos. Más allá, los rayos gamma pueden romper protones y neutrones

Cuando la tensión llega a un punto insostenible la corteza de neutrones revienta en un temblor estelar, dejando escapar rayos gamma y rayos X. En una potencia descomunal capaz de destruir otras particulas cuando interaccionan.

Y ahora, vayamos al meollo de la cuestión e indaguemos en la cita con que se iniciaba este artículo: ¿qué hace que los electrones absorban y emitan fotones? Esto, en otros términos, vendría a ser lo mismo que preguntarnos: ¿por qué existe nuestro Universo?

…con un misterio: el 137…

Resultado de imagen de Richard FEynman

“Por ejemplo, Richard Feynman, uno de los físicos más importantes del siglo 20, escribió lo siguiente sobre el número 137: “Ha sido un misterio desde su descubrimiento hace más de cincuenta años, y todo físico teórico competente coloca este número en su pared y se preocupa por éste.  Es uno de los  malditos misterios más grandes: un número mágico que nos llega sin el entendimiento del hombre.”

Resultado de imagen de Un electrón emite un fotón

¿Qué determina el momento exacto en que un electrón emite un fotón? La física cuántica dice que nada lo hace, pues la Naturaleza es caprichosa en sus niveles más elementales. Aunque no es caótica en extremo, sólo probabilística.

A diferencia de la física newtoniana, la mecánica cuántica nunca predice el futuro en función del pasado. En su lugar, ofrece reglas muy precisas para computar la probabilidad de varios resultados alternativos de un experimento.

La constante de estructura fina fue introducida en la física en 1916 por Arnol Sommerfeld, como una medida relativista de las desviaciones en las lineas espectrales atómicas de las predicciones hechas por el modelo de Bohr.


Históricamente, la primera interpretación física de la constante de estructura fina,  \alpha , fue el cociente de la velocidad del electrón en la primera órbita circular del átomo de Bohr relativista con la velocidad de la luz  en el vacío. De igual forma, era el cociente entre el momento angular mínimo permitido por la relatividad para una órbita cerrada bajo fuerza electromagnética y el momento angular mínimo permitido por la mecánica cuántica. Aparece de forma natural en el análisis de Sommerfeld y determina el tamaño de la separación o  estructura fina de las lineas espectrales del hidrógeno.

Resultado de imagen de La QED predice una relación entre el momento magnético  sin dimensiones del electrón (o el g-factor de Lande, g) y la constante de estructura fina \alpha.

La QED predice una relación entre el momento magnético  sin dimensiones del electrón (o el g-factor de Lande, g) y la constante de estructura fina \alpha. Una nueva medida de g usando un ciclotrón cuántico de un electrón, junto con un cálculo QED que involucra 891diagrama de Feynman, determina el valor actual más preciso de \alpha:

 Resultado de imagen de involucra 891diagrama de Feynman

   \alpha^{-1} =   137.035 999 710 (96)

 

esto es, una medida con una precisión de 0.70 partes por mil millones. Las incertidumbres son 10 veces más pequeñas que aquellas de los métodos rivales más próximos. Las comparaciones de los valores medidos y los calculados de g suponen un test muy fuerte de QED, y ponen un límite para cualquier estructura interna del electrón posible.

En 2010, el científico John Webb publicó un estudio en el que revelaba datos que afirmaban que la constante no era igual en todo el universo y que se observaban cambios graduales en torno a un eje concreto de éste.

Algunos científicos sostienen que las constantes de la naturaleza no sean en realidad constantes, y la constante de estructura fina no escapa a estas afirmaciones.

unsw_white_dwarf

Físicos de la University of New Wales (UNSW) tienen una teoría cuando menos controvertida, y es la de que la constante de estructura fina, α (alpha), en realidad no es constante. Y estudian los alrededores de una enana blanca lejana, con una gravedad más de 30.000 veces mayor que la de la tierra, para comprobar su hipótesis.

Recientemente, la detección de los mapas de enlace-dimensional de la constante de estructura fina

Y la probabilidad de que un electrón emita o absorba un fotón es la constante de estructura fina. El valor de esa constante es 1/137.

En otras palabras, sólo un afortunado electrón de cada 137 emite un fotón. Este es el significado de alfa: es la probabilidad de que un electrón, cuando se mueve a lo largo de su trayectoria, emita caprichosamente un fotón.

El inverso de la constante de estructura fina es 137. Desde su descubrimiento, éste número ha traído de cabeza a los grandes científicos.

LA MAGIA DEL 137

El 137 es el mayor misterio y el número más importante en toda la ciencia. Sin duda.

Resultado de imagen de El misterioso 137 numero sin dimensiones

¿Qué mensaje nos transmite ese número puro y adimensional?

No recuerdo si fue  Richard Feynman o León Lederman, el que  sugirió que todos los físicos pusiesen un cartel en sus despachos o en sus casas que les recordara cuánto es lo que no sabemos. En el cartel no pondría nada más que esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina. Este número guarda relación con la probabilidad de que un electrón emita o absorba un fotón. La constante de estructura fina responde también al nombre de alfa, y sale de dividir el cuadrado de la carga del electrón por el producto de la velocidad de la luz y la constante de Planck. Tanta palabra no significa otra cosa sino que ese solo número, 137, encierra los meollos del electromagnetismo (el electrón), la relatividad (la velocidad de la luz) y la teoría cuántica (la constante de Planck). Menos perturbador sería que la relación entre todos estos importantes conceptos hubiera resultado ser un uno o un tres o quizás un múltiplo de pi. Pero ¿137?

Resultado de imagen de El misterioso 137 numero sin dimensiones

“Lo más notable de este notable número es su adimensionalidad. La velocidad de la luz es de unos 300.000 kilómetros por segundo. Abraham Lincoln medía 1,98 metros. La mayoría de los números vienen con dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa, ¡se borran todas las unidades! El 137 está solo: se exhibe desnudo a donde va. Esto quiere decir que a los científicos de Marte, o a los del decimocuarto planeta de la estrella Sirio, aunque usen Dios sabe qué unidades para la carga y la velocidad y qué versión de la constante de Planck, también les saldrá 137. Es un número puro.”

(Leon Ledderman, La partícula divina)

Uno de los padres de la mecánica cuántica, Wolfgang Pauli, se obsesionó tanto con este número que dijo que, de poder hacerle una pregunta a Dios, sería esta: “¿Por qué 137?”

Gracias a su gran amistad con Carl G. Jung, Pauli conoció el mundo “alternativo” de los estudios sobre la psique y accedió a la tradición esotérica que ha acompañado al hombre desde el principio de los tiempos. Es así como supo que 137 se aproxima al valor correspondiente al ángulo áureo. Esto es, la versión circular del número áureo o φ (phi).

En realidad, el ángulo de oro es, más o menos, 137, 5º, y está presente en todo proceso natural donde se dé una combinación de espirales. Así, por ejemplo, las hojas de una planta surgen a lo largo del tallo cada 137,5º, pues así se logra la mayor eficiencia de espacio y de captación de la luz solar, ya que únicamente con éste ángulo es posible evitar que ninguna hoja obstaculice a las demás en la toma de luz sin que existan espacios muertos o vacíos.

Esta semejanza entre los valores de la constante de estructura fina y el ángulo áureo llevó a la doctora Raji Heyrovska a buscar el ángulo áureo en el universo atómico (véase versión en español de su estudio).

Que esto sea así no debería extrañarnos, pues si el número áureo es una constante en toda la Naturaleza, su versión angular es la apropiada para estar presente en el universo cuántico, donde, recordemos, los elementos básicos de la realidad se reducen a funciones de onda.

…y un final místico.

Los fotones no tienen masa ni carga eléctrica. Sin embargo, pueden “extraer” del vacío partículas con masa y carga, tanto negativa como positiva.

Más allá de la matería y la energía, del tiempo y del espacio, el concepto de función de onda nos introduce en una realidad abstracta de donde surge todo. Y si, como hemos dicho, a menor longitud de onda mayor energía, también es posible afirmar que, en eso que David Bohm llamaba “orden implicado”, cuanto menor es la longitud de una onda cuántica, mayor es la presencia de masa en el espacio-tiempo.

Para la física, las matemáticas se han mostrado como la realidad que subyace a la materia. Todo se puede reducir a números, entidades que forman y organizan el espacio-tiempo. En este nivel de realidad, ni la materia ni la energía existen como tales, sino que demuestran ser el resultado de la interacción de entidades abstractas.

Fuentes diversas y algunos pasajes propios