domingo, 30 de marzo del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La máquina de Higgs-Kibble! El Vacío superconductor

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

“El Premio de la Sociedad de Física Americana (APS) para contribuciones a la Física de Partículas Teórica (J. J. Sakurai Prize for Theoretical Particle Physics) de 2010 le fue concedido a Carl R. Hagen (University of Rochester), Francois Englert (Universite Libre de Bruxelles), Gerald S. Guralnik (Brown University), Peter W. Higgs (University of Edinburgh), Robert Brout (Universite Libre de Bruxelles), y T.W.B. Kibble (Imperial College) por sus contribuciones al mecanismo de Higgs–Brout–Englert–Guralnik–Hagen–Kibble para explicar la ruptura espontánea de la simetría electrodébil, mecanismo normalmente abreviado a mecanismo de Higgs.”

(Brout fallecido en 2.011, también era acreedor al Nobel de Física de 2.013)

Como complemento del trabajo que se presenta hoy referido a la concesión del Nobel de Física de 2.013, aquí he recuperado éste trabajo que viene a explicar un poco, lo que antes de todo este jaleo del Higgs, habián hecho los físicos que ahora son premiados. Perdonad que lo expuesto sea algo complejo de comprender para algunos pero, hay veces que no se pueden evitar los guarismos, ecuaciones y signos que, en Física, es el lenguaje que suple a las palabras.

 

Investigación experimental

 

 

 

Resultado de imagen de El Bosón de ><a href=Higgs” />

 

En aquella fecha, el bosón de Higgs no ha sido observado experimentalmente, a pesar de los esfuerzos de los grandes laboratorios de investigación como el CERN o el Fermilab. La no observación de pruebas claras permite estimar un valor mínimo experimental de masa 114.4 GeV para el bosón de Higgs del modelo estándar, con un nivel de confianza del 95%.[6] Experimentalmente se ha registrado un pequeño número de eventos no concluyentes en el colisionador LEP en el CERN. Éstos han podido ser interpretados como resultados de los bosones de Higgs, pero la evidencia no es concluyente.[7] Se espera que el Gran Colisionador de Hadrones, ya construido en el CERN, pueda confirmar o desmentir la existencia de este bosón. El anillo de 27 km de circunferencia (llamado Large Hadron Collider) fue encendido el 10 de septiembre de 2008, como estaba previsto, pero un fallo en el sistema de enfriamiento que debe mantener los imanes a una temperatura aproximada de -271,3 °C detuvo el experimento, hasta el 20 de noviembre del 2009, fecha en que volvió a ser encendido, desde 450 GeV a 2.23 TeV. Pero fue apagado para realizar ajustes, y el 30 de marzo volvió a ser encendido, aunque a potencia de 7 TeV. Eso si, no será hasta 2016 cuando funcione a pleno rendimiento.

La búsqueda del bosón de Higgs es también el objetivo de ciertos experimentos del Tevatrón en el Fermilab

 

 

Resultado de imagen de experimentos del Tevatrón en el Fermilab

                       Los cuatro experimentos implicados en el resultado: CDF y DZero (Tevatron

Alternativas al mecanismo de Higgs para la ruptura espontánea de simetría electrodébil

Desde los años en los que fue propuesto el bosón de Higgs, han existido muchos mecanismos alternativos. Todas las otras alternativas usan una dinámica que interactúa fuertemente para producir un valor esperado del vacío que rompa la simetría electrodébil. Una lista parcial de esos mecanismos alternativos es:

Technicolor es la clase de modelo que intenta imitar la dinámica de la fuerza fuerte como camino para romper la simetría electrodébil.

El modelo de Abbott-Farhi de composición de los bosones de vectores W y Z.

 

Campo de Higgs

 

 

Resultado de imagen de El Campo de Higgs es un campo cuántico, que, de acuerdo con una hipótesis del modelo estándar de física de partículas expuesta por el físico Peter Higgs

 

 

El Campo de Higgs es un campo cuántico, que, de acuerdo con una hipótesis del modelo estándar de física de partículas expuesta por el físico Peter Higgs, permearía el universo entero, y cuyo efecto sería que las partículas se comportaran como dotadas de masa, debido a la interacción asociada de partículas elementales, con el bosón de Higgs, cuya existencia aún no ha sido probada directamente y que por la interacción consigo mismo también “adquiriría” masa. Se espera que el Gran Colisionador de Hadrones sirva para probar las hipótesis de Higgs.

 

 

Mecanismo de Higgs

 

Resultado de imagen de El mecanismo de Higgs, ideado por Peter Higgs entre otros, es uno de los mecanismos posibles para producir la ruptura espontánea de simetría electrodébil en una Teoría Gauge invariante.

 

Dobletes de Higgs. Potencial de doble pozo en una teoría de campos con ruptura espontánea de simetría.

 

 

El mecanismo de Higgs, ideado por Peter Higgs entre otros, es uno de los mecanismos posibles para producir la ruptura espontánea de simetría electrodébil en una Teoría Gauge invariante. Permitió establecer, la unificación entre la teoría electromagnética y la teoría nuclear débil, que se denominó Teoría del campo unificado dando premio Nobel en año 1979 a Steven Weinberg, Sheldon Lee Glashow y Abdus Salam

Este mecanismo también es conocido como mecanismo de Brout–Englert–Higgs, mecanismo de Higgs–Brout–Englert–Guralnik–Hagen–Kibble, o mecanismo de Anderson–Higgs. En 1964, fue inicialmente propuesto por Robert Brout y François Englert, e independientemente por Peter Higgs y por Gerald Guralnik, C. R. Hagen, y Tom Kibble.Fue inspirado en la Teoría BCS de rompimiento de simetría en superconductividad basado en Teoría Ginzburg-Landau, los trabajos de la estructura del vacío de Yoichiro Nambu, y las ideas de Philip Anderson según las cuales la superconductividad podía ser relevante en la relatividad, el electromagnetismo y otros fenomenos clásicos. El nombre de mecanismo de Higgs fue dado por Gerardus ‘t Hooft en 1971. Los tres artículos originales de Guralnik, Hagen, Kibble, Higgs, Brout, y Englert en donde se propone este mecanismo fueron reconocidos como fundamentales en la celebración del aniversario 50 de la revista Physical Review Letters

 

 

Campos y partículas

 

 

 

 

 

La segunda mitad del siglo XX fue un tiempo de descubrimiento de nuevas partículas elementales, nuevas fuerzas y, sobre todo, nuevos campos. El espacio puede llenarse con una amplia variedad de influencias invisibles que tienen todo tipo de efectos sobre la materia ordinaria. De todos los nuevos campos que se descubrieron, el que tiene más que enseñarnos sobre el paisaje es el campo de Higgs. Existe una relación general entre partículas y campos. Por cada tipo de partícula de la naturaleza hay un campo y por cada tipo de campo hay una partícula. Así campos y partículas llevan el mismo nombre. El campo electromagnético podría denominarse campo de fotones. El electrón tiene un campo, también lo tienen el qua.rk, el gluón y cada miembro del reparto de personajes del modelo Standard, incluida la partícula de Higgs.

 

El campo de Higgs

 

 

 

 

En la concepción del Modelo estándar de física de partículas, el boson de Higgs así como otros bosones (encontrados ya experimentalmente) y ligados en esta teoría, se interpretan desde el Bosón de Goldstone donde cada parte del rompimiento de simetría genera un campo, para el cual los elementos que viven en este campo son sus respectivos bosones. Existen teorías creadas a partir del miedo de la no existencia del boson de Higgs donde no es necesaria su aparición. El campo de Higgs es el ente matemático donde existe, su interpretación con la teoría es el producto de él con los otros campos que sale por el mecanismo de ruptura, este producto nos da el acople y la interacción de él, con esta interacción con los otros campos legamos la caracteristica de generador de masa.

Me resistía pero…Formulación matemática

Introducimos un campo adicional ? que rompa la simetría SU(2)L × U(1)Y ? U(1)em. Debido a las condiciones que se exigen a la teoría será un doblete (de SU(2)L) de campos escalares complejos (doblete de Higgs):

 

 

 

 

Dobletes de Higgs

 

 

Resultado de imagen de Dobletes de Higgs

 

El número total de entradas (número dimensional del vector) de Higgs no está determinado por la teoría y podría ser cualquiera. No obstante la versión mínima del SM posee uno solo de estos dobletes.

El sistema vendrá entonces descrito por un Lagrangiano de la forma:

 

 

tal que:

 

 

donde V(phi) es el potencial renormalizable (y por tanto que mantiene la invarianza gauge) más sencillo. Para que se produzca ruptura espontánea de simetría es necesario que el valor esperado del campo de Higgs en el vacío sea no nulo. Para lambda mayor que 0, si mu 2 menor que 0, el potencial posee infinitas soluciones no nulas (ver figura 1), en las cuales sólo la norma del campo de Higgs está definida:

 

 

 

Estado fundamental

 

El estado fundamental está, por consiguiente, degenerado y no respeta la simetría del grupo SU(2)L × U(1)Y. Sin embargo, sí conserva la simetría del grupo U(1)em. El valor de cup ? indica la escala de energía a la que se produce la ruptura de la simetría electrodébil. La ruptura SU(2)L × U(1)Y Phi  U(1)em se produce cuando se selecciona un estado del vacío concreto. La elección habitual es aquella que hace que Phi 3 sea no nulo:

 

 

Espectro de partículas

 

 

Resultado de imagen de El espectro de partículas físicas resultantes se construye realizando pequeñas oscilaciones en torno al vacío, que pueden ser parametrizadas en la forma:

 

Enormes energías para poder profundizar tanto en el conocimiento de lo muy pequeño

El espectro de partículas físicas resultantes se construye realizando pequeñas oscilaciones en torno al vacío, que pueden ser parametrizadas en la forma:

 

 

 

 

donde el vector \vec{\xi}(x) y el escalar h(x) son campos pequeños correspondientes a los cuatro grados de libertad reales del campo . Los tres campos \vec{\xi}(x) son los bosones de Goldstone, de masa nula, que aparecen cuando una simetría continua es rota por el estado fundamental (teorema de Goldstone).

En este punto aún tenemos 4 bosones gauge (Wi?(x) y B?(x)) y 4 escalares (\vec{\xi}(x) y h(x)), todos ellos sin masa, lo que equivale a 12 grados de libertad (Conviene notar que un bosón vectorial de masa nula posee dos grados de libertad, mientras que un bosón vectorial masivo adquiere un nuevo grado de libertad debido a la posibilidad de tener polarización longitudinal: 12 = 4[bosones vectoriales sin masa] × 2 + 4[escalares sin masa]). P. W. Higgs fue el primero en darse cuenta de que el teorema de Goldstone no es aplicable a teorías gauge, o al menos puede ser soslayado mediante una conveniente selección de la representación. Así, basta con escoger una transformación:

 

 

de forma que:

con lo cual desaparecen los tres campos de Higgs no físicos \vec{\xi}(x). Debemos aplicar estas transformaciones sobre la suma de las Lagrangianas para bosones y fermiones:

 

 

Al final del proceso, tres de los cuatro bosones gauge adquieren masa al absorber cada uno de los tres grados de libertad eliminados del campo de Higgs, gracias a los acoplamientos entre los bosones gauge y el campo Phi presentes en la componente cinética de la Lagrangiana SBS:

 

 

 

Por otro lado, el vacío de la teoría debe ser eléctricamente neutro, razón por la que no existe ningún acoplamiento entre el fotón y el campo de Higgs, h(x), de forma que aquél mantiene una masa nula. Al final, obtenemos tres bosones gauge masivos (W±?, Zµ), un bosón gauge sin masa (A?) y un escalar con masa (h), por lo que seguimos teniendo 12 grados de libertad (del mismo modo que antes: 12 = 3[bosones vectoriales masivos] × 3 + 1[bosón vectorial sin masa] × 2 + 1[escalar]). Los estados físicos de los bosones gauge se expresan entonces en función de los estados originales y del ángulo de mezcla electrodébil ?W:

 

 

 

 

Ángulo de mezcla

 

El ángulo de mezcla ?W, se define en función de las constantes de acoplamiento débil, g, y electromagnética, , según:

Las predicciones de las masas de los bosones a nivel de árbol son:

donde (e es la carga eléctrica del electrón):

 

 Masa del bosón de Higgs

 

Resultado de imagen de Masa del Bosón de Higgs

 

No creo que Homer Simpson predijera la masa del Higgs

 

La masa del bosón de Higgs se expresa en función de ? y del valor de la escala de ruptura de simetría, ?, como:

La medida de la anchura parcial de la desintegración:

a bajas energías en el SM permite calcular la constante de Fermi, GF, con gran precisión. Y puesto que:

se obtiene un valor de ? = 246 GeV. No obstante el valor de ? es desconocido y por tanto la masa del bosón de Higgs en el SM es un parámetro libre de la teoría.

 Bosones gauge y fermiones

 

 

Resultado de imagen de Bosones gauge y fermiones

 

 

 

Análogamente al caso de los bosones gauge, los fermiones adquieren masa mediante los denominados acoplamientos de Yukawa, que se introducen a través de una serie de nuevos términos en la Lagrangiana:

 

donde:

 

 

 

 

Del mismo modo que antes, se aplica la transformación sobre la parte levógira de los fermiones, mientras que la parte dextrógira no se transforma:

 

 

 

Y finalmente se obtienen las masas de los fermiones según:

 

 

 

Es conveniente hacer notar en este punto, que la determinación de la masa del bosón de Higgs, no explica directamente las masas fermiónicas ya que dependen de las nuevas constantes ?e, ?u, ?d, … Por otro lado, se deduce también el valor de los acoplamientos del bosón de Higgs con los distintos fermiones y bosones, los cuales son proporcionales a las constantes de acoplamiento gauge y a la masa de cada partícula.

Ya tendremos más sobre el tema

Si el Sol desaparece… la Vida se iría con él

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Y si el Sol desapareciera de repente?

Esta es la cascada de consecuencias para nuestro planeta y cómo se sucederían en el tiempo

¿Y si el Sol desapareciera de repente?

 

 Reportaje de prensa

No hace falta ser un astrónomo experimentado para saber que dependemos completamente del Sol. Nuestra estrella particular, en efecto, ocupa el centro de nuestro sistema planetario, mantiene los mundos en su sitio e irradia la energía necesaria para que aquí, en la Tierra, sea posible la vida. Gracias al Sol tenemos luz, calor, atmósfera, fotosíntesis, océanos… Sabemos también, sin embargo, que nada, ni siquiera el Sol, dura eternamente. Durará mucho tiempo, sí, aunque no para siempre. ¿Pero qué sucedería si un buen día el Sol desapareciera de repente? ¿Cuáles serían las consecuencias para nosotros y cómo se sucederían en el tiempo?

Un gráfico recién publicado por la web SolarCentre ha recopilado mucha de la información disponible para resolver la cuestión. Y el panorama, como era de suponer, no resulta nada esperanzador…

Se acabó la gravedad

El mundo sería muy distinto si de pronto desapareciera la fuerza de Gravedad que genera el Sol

En una secuencia cronológica, lo primero que desaparecería con el Sol es su atracción gravitatoria. Todos los planetas están “ligados” gravitatoriamente al Sol, y su súbita desaparición los dejaría sin un centro alrededor del que orbitar. De modo que empezarían a viajar, más o menos, en línea recta, hasta que se toparan con otro cuerpo lo suficientemente grande como para atraerlos. La estrella más cercana, Alpha Centauri, está a 4,2 años luz de distancia, así que esta situación de “vagabundeo espacial”, suponiendo que algún mundo se dirigiera hacia allí, duraría muchos miles de años.

Por supuesto, al perder su orden establecido es muy probable que algunos planetas chocaran entre sí, o que muchas lunas acabaran precipitándose sobre los mundos a los que orbitan. Júpiter y Saturno, los dos gigantes del Sistema Solar, lograrían quizá atraer a algunos de los planetas que nos rodean, para devorarlos sin contemplaciones.

Oscuridad eterna si el Sol desapareciera

Resultado de imagen de Resultado de imagen de Un mundo a oscuras, sin Sol

 Bueno, no sólo oscuridad eterna…. ¡Sería mucho más!

Aquí, en la Tierra, tardaríamos 8 minutos en darnos cuenta de que el Sol ya no está en su sitio. Ese es, en efecto, el tiempo que un rayo de sol tarda en recorrer, a la velocidad de la luz, los 150 millones de km. que nos separan del astro rey. Pasado ese tiempo, nos veríamos sumidos de repente en una total oscuridad. Y sería para siempre. Ni siquiera seríamos capaces de volver a contemplar la Luna, ya que su brillo no es más que un reflejo de la luz que recibe del Sol. Sí que veríamos las estrellas, que disponen de sus propias fuentes de luz, pero nuestras vidas se convertirían en una larga e interminable noche. Sin luz, además, las plantas ya no podrían seguir haciendo la fotosíntesis, con lo que la aportación de oxígeno a la atmósfera se interrumpiría casi por completo. Las reservas planetarias del gas que nos permite respirar apenas si durarían un par de semanas.

Se acabó el calor

Resultado de imagen de Desaparece el Sol y la Tierra se congela

Pero la oscuridad no sería lo más grave. De hecho, la temperatura media de la Tierra, que actualmente es de 29,6 grados, descendería rápidamente hasta los -123 grados en apenas dos meses. Cuatro meses después de la desaparición del Sol, la temperatura media de nuestro planeta sería de -198 grados, casi doscientas veces más fría que el interior de una nevera doméstica. En estas condiciones, la inmensa mayoría de la vida desaparecería de nuestro mundo. Solo quedarían algunos microorgansmos extremófilos que viven en medio de las rocas de la corteza terrestre, a varios km. de profundidad, y que no dependen de la luz solar. Los animales subterráneos y los carroñeros lograrían sobrevivir, quizá, durante un breve tiempo adicional, alimentándose de los cadáveres del resto. Pero terminarían desapareciendo en pocas semanas, junto a los demás. Sorprendentemente, los árboles más grandes lograrían, quizá, sobrevivir más tiempo, incluso durante algunas décadas, a pesar del frío y sin fotosíntesis.

Resultado de imagen de Inmensos submarinos nucleares

                         No creo que la idea de los submarinos sea ningún remedio a la catástrofe

Para los humanos, la única opción sería embarcar en submarinos y sumergirse con ellos hasta lo más profundo de los océanos, para aprovechar el calor interno del planeta a medida que surge a través de las fuentes hidrotermales. Con los océanos congelados, ese sería, probablemente, uno de los últimos reductos para la vida terrestre. Otra solución temporal sería la de construir módulos habitables totalmente aislados de las condiciones externas, aunque habría muy poco tiempo para hacerlo (menos de un mes desde el “apagón”) y, de conseguirlo, solo se salvarían unos pocos y durante un tiempo limitado.

Resultado de imagen de 9 Imágenes asombrosas de lagos, océanos y estanques congelados

Imagen relacionada

Al final, unos pocos cientos de años tras la desaparición del Sol, incluso las profundidades oceánicas se congelarían. La atmósfera se colapsará y la gélida superficie de lo que fue un mundo lleno de vida quedaría indefensa del bombardeo radiactivo de los rayos cósmicos.

Un panorama, pues totalmente desolador. Por fortuna, el Sol es una estrella de mediana edad, que lleva brillando unos 5.000 millones de años y todo parece indicar que lo seguirá haciendo durante otros 5.000 millones de años más. Aunque ningún ser humano llegará a verlo. Dentro de “solo” unos 1.000 millones de años, en efecto, el Sol se habrá vuelto tan caliente que hará hervir los océanos, que se evaporarán y harán de la Tierra un mundo inhabitable. Ojalá que para entonces ya estemos instalados en otros lugares, muy lejos de aquí…

Queremos saber más sobre el planeta Marte

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ilustración del módulo de aterrizaje InSight investigando las profundidades de Marte.

La sonda InSight aterriza en Marte para explorar sus profundidades

E.E. / Agencias
 
 
 
Resultado de imagen de La sonda InSight de la NASA
 
 
 

La sonda InSight de la NASA, la primera misión que estudiará con un detalle sin precedentes el interior de Marte, ha aterrizado con éxito sobre el suelo marciano. Tras cubrir unos 300 millones de kilómetros, la misión instalará un sismómetro y un sensor térmico para descifrar las profundidades del llamado planeta rojo.

Este módulo estacionario, que despegó el pasado 5 de mayo desde la Base Aérea Vandenberg, en California (EEUU), usará una excavadora mecánica para perforar hasta unos cinco metros de profundidad y medir su temperatura interna, además de cualquier movimiento con ayuda de un sismógrafo.

Resultado de imagen de La sonda InSight de la NASA

“Es la primera misión que va a estudiar el interior profundo de Marte”, asegrua a Efe el español Fernando Abilleira, subdirector de diseño y navegación del InSight y parte del equipo multidisciplinar e internacional que conforma la misión. “Al estudiar la propagación de las ondas bajo la superficie de Marte, a través de su sismómetro, vamos a tener más información sobre como el planeta ha evolucionado” en los últimos 3.000 millones de años.

Abilleira, con 17 años de servicio en proyectos espaciales de NASA, es parte de los ingenieros y científicos que desde el lunes estudiarán en el Laboratorio de Propulsión de esta agencia (JPL-NASA), en Pasadena (California), los “signos vitales” del vecino planeta, como sus “pulsaciones, temperatura”. Ahonda el español que a través de un “seguimiento de precisión” observarán “hasta los reflejos” durante los dos años de “experimentos primarios” que implicará la misión.

Para ampliar el conocimiento sobre la formación de Marte y de otros planetas rocosos, como la Tierra, se usará el Experimento Sísmico para la Estructura Interior (SEIS), un sismómetro fabricado por el Centro Nacional de Estudios Aeroespaciales de Francia (CNES) y que detectará “cualquier movimiento en la superficie de Marte”, explicó Abilleira.

Resultado de imagen de La sonda InSight de la NASA

Las vibraciones que serán registradas por el SEIS podrían ser ocasionadas por el impacto de un meteorito o por un pequeño terremoto, si bien la actividad sísmica del planeta rojo es menor a la de la Tierra. “Al estudiar el movimiento de las ondas que se propagan bajo la superficie de Marte, podremos tener una mejor comprensión de la composición, la estructura del núcleo, el manto y la corteza del planeta”, agrega.

La otra herramienta que adquiere protagonismo es la Sonda de Propiedades Físicas y Flujo de Calor (HP3), construida por el Centro Aeroespacial de Alemania (DLR), que será implantado en suelo marciano a unos cinco metros de profundidad. “Este instrumento lleva unos sensores térmicos que van a recoger información sobre la actividad termal del planeta rojo”, señala Abilleira, quien destaca que España ha aportado a esta misión una estación ambiental (REMS, por sus siglas en inglés) dotada de sensores meteorológicos para el entorno marciano.

Resultado de imagen de La sonda InSight de la NASA

                                                     La sonda medirá el pulso de Marte

Este especialista en trayectoria de vehículos espaciales y que trazó la ruta del robot “Curiosity”, el cual llegó al planeta rojo en agosto de 2012, señala que “aterrizar en Marte es muy complicado”. “La velocidad de entrada atmosférica es de aproximadamente unos 20.000 kilómetros por hora y en menos de 7 minutos tenemos que reducir esa velocidad a 5 kilómetros por hora”, asegura Abilleira, graduado de la Saint Louis University, en Missouri.

Forman parte de la misión, dos vehículos Mars Cube One (MarCO), que por primera vez serán probadas en el “espacio profundo”, como asegura Abilleira, y que con el soporte de componentes miniatura probarán un nuevo método de retransmitir información a la Tierra. La misión InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) se abocará a una investigación inédita que se espera arroje pistas sobre cómo se originó el Sistema Solar hace aproximadamente 4.600 millones años, y de paso la vida.

¡La Entropía! con el paso del tiempo, todo lo destruye

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

 

Muchas veces he dejado aquí una reseña de lo que se entiende por entropía y así sabemos que la energía sólo puede ser convertida en  cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformadad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

 

 

 

 

En reralidad, la Entropía, no nos debe resultar tan extraña como esa imagen de arriba. Es algo que está presente en toda nuestra vida cotidiana. Sus efectos los podemos ver en todo lo que nos rodea y sentir en nosotros mismos. Nada permanece igual, todo cambia y se transforma: Es la Entropía destructora que hace estragos en connivencia con el tiempo.

 

 

 

 

 

Está claro que la madre ha sufrido más intensamente los efectos de la entropía que la graciosa niña que  está comenzando su andadura por la vida. ¡El Tiempo! Ese inexorable transcurrir de la fatídica flecha que nos lleva, desde el mismo instante  del nacimiento, hasta el inevitable final: Es la Entropía destructora, ese mecanismo del que se vale nuestro Universo para renovarlo todo, incluso la vida que, de otra manera, no podría evolucionar, y, de alguna manera, ese surgir de la vida nueva, y las nuevas estrellas y nuevos mundos que nacen en las galaxias, se podría considerar como entropía negativa, es decir, algo que está ocurriendo para que el Caos no sea total.

 

Resultado de imagen de El manantial que mana en lo alto de la montaña

 

 

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y menos energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo  el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo hasta el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua puede realizar un . El agua sobre una superficie horizontal no puede realizar trabajo, aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

 

 

 

 

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un depósito de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849  representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión.

 

 

 

                  Rudolf J. E. Clausius

 

 

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío hasta que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados  sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera:

 

¡Que la entropía aumenta con el paso del Tiempo en cualquier sistema cerrado!

 

 

 

 

 

El estudio del flujo de energía desde puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y trabajo recibió el  de “termodinámica”, que en griego significa “movimiento de calor”.

La termodinámica (significa “calor” y  dinámico, que significa “fuerza”) es una rama de la física que estudia los fenómenos relacionados con el calor.

 

Resultado de imagen de termodinamica 001 Motor de combustión interna: transferencia de energía.

Motor de combustión interna: transferencia de energía.

Específicamente, la termodinámica se ocupa de las propiedades macroscópicas (grandes, en oposición a lo microscópico o pequeño) de la materia, especialmente las que son afectadas por el calor y la temperatura, así  de la transformación de unas formas de energía en otras.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada regla es tan fundamental que se la denomina “primer principio de la termodinámica”.

La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no  básica, y que denomina “segundo principio de la termodinámica.”

Según  segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.

¿Está degradándose el universo?

           El tiempo corre y las piezas se desgastan

Pensemos en un reloj. Los relojes funcionan gracias a una concentración de energía en su resorte o en su batería. A medida que el resorte se destensa o la reacción química de la batería avanza, se establece un flujo de energía  el punto de alta concentración al de baja concentración, y como resultado de este flujo anda el reloj. Cuando el resorte se ha destensado por completo o la batería ha finalizado su reacción química, el nivel de energía es uniforme en todo el reloj, no hay ya flujo de energía y la maquinaria se para. Podríamos decir que el reloj se ha “degradado”. Por analogía, decimos que el universo se “degradará” cuando toda la energía se haya igualado.

Si es cierto el segundo principio de la termodinámica, todas las concentraciones de energía en todos los lugares del universo se están igualando, y en ese sentido el universo se está degradando. La entropíaalcanzará un máximo cuando la energía del universo esté perfectamente igualada; a partir de entonces no ocurrirá nada porque, aunque la energía seguirá allí, no habrá ya ningún flujo que haga que las cosas ocurran.

La situación parece deprimente (si el segundo principio es cierto), pero no es para alarmarse , ya que el proceso tardará billones de años en llegar a su final y el universo, tal como hoy existe, no sólo sobrevivirá a nuestro tiempo, sino que con toda probabilidad también a la humanidad misma.

De todo esto podemos obtener una consecuencia clara y precisa; de acuerdo con el segundo principio de la termodinámica, la entropía del universo está en constante aumento, es decir, la energía que contiene tiende a igualarse en todas partes. Así que, como cualquier proceso que iguala las concentraciones de energía está aumentando el desorden en el sistema, nuestro universo  vez tiene un mayor desorden con los movimientos aleatorios libres de las partículas que lo componen, cuyo comportamiento no es más que una especie de medida del desorden que en el universo se produce de manera continuada.

Rostros de la abuela con hija adulta y nieto en línea  Foto de archivo - 7964959

Las tres generaciones de arriba nos habla del tiempo quen pasa, de la entropía que es su compañera inseparable y, de los estragos que, en nosotros y en todas las cosas puede causar ese principio de que nada desaparece pero todo cambia.

La entropía está presente en la vida cotidiana: objetos que se descolocan, cosas que se desordenan, vestidos que se ensucian, un vaso que se cae y se rompe, los muebles que se llenan de polvo, el suelo que recoge las marcas de los pies que lo pisan, todo eso es entropía y,  arreglarla, tenemos que disponer bien las cosas, recoger los objetos caídos, lavar la ropa y limpiar el suelo o quitar el polvo, con lo cual, la entropía continúa estando presente en el esfuerzo que todo ello conlleva y deteriora la , la aspiradora y nos causa a nosotros por el esfuerzo realizado (deterioro-entropía).

La entropía está ineludiblemente unida al tiempo, ambos caminan juntos. En procesos elementales en los que intervienen pocos objetos es imposible saber si el tiempo marcha  delante o hacia atrás. Las leyes de la naturaleza se cumplen igual en ambos casos. Y lo mismo ocurre con las partículas subatómicas.

La figura muestra, al 50% del tamaño real, la trayectoria de un electrón entrando por la izquierda en una cámara de burbujas.

Un electrón curvándose en determinada dirección con el tiempo marchando hacia delante podría ser igualmente un positrón curvándose en la misma dirección,  con el tiempo marchando hacia atrás. Si sólo consideramos esa partícula, es imposible determinar cuál de las dos posibilidades es la correcta.

En aquellos procesos elementales en que no se  decir en que dirección marcha el tiempo, no hay cambio de entropía (o es tan pequeña la variación que podríamos ignorarla). Pero en los procesos corrientes, en las que intervienen muchas partículas, la entropía siempre aumenta. Que es lo mismo que decir que el desorden siempre aumenta.

Un saltador de trampolín cae en la piscina y el agua salpica  arriba; cae un jarrón al suelo y se hace añicos; las hojas caen de los árboles y se desparraman por el suelo. El paso de los años nos transforman de jovenes en viejos, ¿quién puede remediar eso?

 

      En lugares como este nacen nuevas estrellas, nuevos mundos y, en ellos… ¡Nuevas formas de Vida!

El Universo no es infinito y se renueva cíclicamente a partir del Caos destructor para que surja lo . ¡Qué me gustaría saber de donde surgió, en realidad, el Universo! ¿Será una fluctuación del vació que expulsó este universo nuestro de otro mayor? ¿Será, acaso, el mismo universo que se renueva una y otra ves? No estamos seguros de nada. Lo cierto es que, sólo tenemos el Big bang, el Modelo que más se ajusta a las observaciones, y, sin la seguridad de que ese sea el comienzo cierto. Hay un “momento” que los científicos no han podido sobrepasar, se llama el “Tiempo de Planck” no se saber que pudo pasar más allá.

Resultado de imagen de La Entrop´çia está presente en todo y en todos

Se  demostrar que todas estas cosas, y en general, todo cuanto ocurre normalmente a nuestro alrededor, lleva consigo un aumento de entropía. Estamos acostumbrados a ver que la entropía aumenta y aceptamos ese  como señal de que todo se desarrolla normalmente y de que nos movemos hacia delante en el tiempo. Si de pronto viésemos que la entropía disminuye, la única manera de explicarlo sería suponer que nos estamos moviendo hacia atrás en el tiempo: las salpicaduras de agua se juntan y el saltador saliendo del agua asciende al trampolín, los trozos del jarrón se juntan y ascienden  colocarse encima del mueble y las hojas desperdigadas por el suelo suben hacia el árbol y se vuelven a pegar en las ramas.  Todas estas cosas muestran una disminución de la entropía, y sabemos que esto está tan fuera del orden de las cosas que la película no  más remedio que estar marchando al revés.

En efecto, las cosas toman un giro extraño cuando el tiempo se invierte, que el verlo nos  reír. Por eso la entropía se denomina a veces “la flecha del Tiempo”, porque su constante aumento marca lo que nosotros consideramos el “avance del tiempo”.

Quizás, algún día, la imaginación de los seres humanos, tan poderosa, pueda idear la manera de detener el Tiempo y con él, eliminar la Entropía destructora. Por disparatada que pueda parecer la idea, yo no la descartaría…del todo. De hecho, ya se han hecho algunas pruebas y experimentos en tal dirección.

Todo esto me lleva a pensar que, si finalmente el universo en el que estamos es un universo con la densidad crítica necesaria  el universo curvo y cerrado que finaliza en un Big Crunch, en el que las galaxias se frenarán hasta parar por completo y comenzaran de  a desandar el camino hacia atrás, ¿no es eso volver atrás en la flecha del tiempo y reparar la entropía?

La galaxia NGC 3344, situada a 25 millones de años-luz de nosotros en la Constelación de Leo, presume de estrellas nuevas azuladas y llenas de energía que, nos habla del surgir de lo nuevo, de la entropía negativa que se produce continuamente en el universo, donde no todo se destruye con el paso del tiempo, sino que, a partir del Caos… ¡Surje lo nuevo!

En un comentario que les hacía, en respuesta a otros contertulios José Luis, Fandila y Kike -en el trabajo “Las galaxias y la Vida”-, hace algún tiempo,  les decía:

 

 

Cada nueva estrella que surge hace aumentar la entropía negativa

“Bueno, amigo Kike… ¡O quizás sí! Como bien dices, el simple hecho de replicarse significa Entropía negativa, es decir, es la manera que tenemos los de nuestra especie (otras también), de generar esa clase de entropía y, cuando en las galaxias nacen nuevas estrellas, también se está produciendo ese fenómeno que va contra la entropía y el Caos final, toda vez que, algo  surge para que todo siga igual.”

 

Lo cierto es que sí existe la entropía negativa y, continuamente la podemos contemplar a nuestro alrededor, hay procesos que son cíclicos y reversibles como, por ejemplo y  no ir más lejos… ¡el de la vida! ¿Que son otras vidas? Sí, cierto, otras vidas con los genes de la que se fue y, de esa manera, continúa la aventura que comenzó hace algunos cientos de miles de años en nuestra especie. Si eso no es entropía negativa…

Por otra parte, en cosas más simples y simplemente mecánicas, hay cosas que se repiten una y otra vez y, en nuestro entorno, la Naturaleza lo hace con las estaciones, las mareas y un sin fín de fenómenos naturales que,  que podamos recordar, están aquí con nosotros.

Por otra , no es cierto que la temperatura del universo esté siempre en aumento, el hecho de que las galaxias se estén alejando las unas de las otras como consecuencia de la expansión, hace que cada vez sea más frío y, de hecho, se cree que la muerte térmica del universo llegará cuando alcance el cero absoluto, es decir, -273,16º Celsius, a esa temperatura ni en los átomos habrá movimiento alguno.

Resultado de imagen de Principio de aumento de Entropía

Es cierto que cuanto mayor sea la entropía de un sistema mayor también será el desorden y la energía disponible disminuirá. El propio universo, considerado como un sistema cerrado se verá abocado a ese escenario final, ya que, de manera irremisible, su entropía aumenta más y más y lo está llevando ahacia su muerte térmica.

Existe una energía interna de la que habla la ciencia que estudia las leyes que gobiernan la conversión de una forma de energía en otra, la dirección en la que fluye el calor y la disponibilidad de energía para que siga produciéndose . Se basa en el principio de que en un sistema aislado en cualquier lugar del universo hay una cantidad medible de energía, llamada la energía interna (U) del sistema. Esta es la suma de la energía potencial y cinética total de los átomos y moléculas del sistema que pueden ser transferida directamente como calor; excluye, por tanto, la energía nuclear y química. El valor de U sólo puede cambiar si el sistema deja de estar aislado, toda vez que, si deja de estar aislado y se junta con otro, habrá transferencia de masa, energía, calor.

 En cada uno de estos escenarios de arriba, sin excepción, se crean nuevos escenarios y se producen nuevas energías

En ese caso, tenemos que pensar en cómo se fusionan las galaxias y, a menor escala, también nosotros, de alguna manera, lo hacemos para generar nueva sabia, nueva energía y nueva vida que, de alguna manera, viene a contrarrestar los efectos de la entropía destructora que no puede impedir que esa nueva vida surja, y, de la misma manera, en las galaxias, nacen nuevas estrellas y nuevos mundos.

Resultado de imagen de En el Universo como sistema cerrado que es, la Entropía aumenta

Todo esto nos puede llevar a pensar que, si nuestro universo es considerado un sistema cerrado, al final del camino, la entropía se saldrá con la suya pero… ¡Siempre hay un pero! ¿Y si nuestro universo no está sólo y se está acercando, de manera inexorable, a otro universo vecino para fusionarse con él? En ese caso, se producirán fenómenos termodinámicos que darán lugar a un escenario nuevo. No es ninguna tonteria pensar en esa posibilidad, de estudios recientes ha salido el resultado asombroso de que nuestro universo parece tener vecinos.

Es cierto que los procesos naturales obeden a la primera ley de la termodinámica (el principio de conservación de la energía). Sin embarego, aunque todos los procesos naturales obedecen a esta ley, no todos los procesos que la obedecen pueden ocurrir en la naturaleza. La mayoría de los procesos son irreversibles, es decir, solo pueden ocurrir en una dirección y la dirección que un proceso natural puede tomar es el objeto del segundo principio de la termodinámica al que antes Kike se refería y que puede ser formulado en una gran variedad de formas:

Resultado de imagen de Transmisión de calor de un cuerpo a otro

“El calor no puede ser transferido  un cuerpo a un segundo cuerpo a temperatura mayor sin producirse ningún efecto, y, la entropía de un sistema sistema cerrado aumenta con el tiempo. LO lógico es que del cuerpo caliente se transfiera calor al frío hasta igualar las temperaturas”

 

Esos conceptos introducen la Temperatura y la Entropía, los parámetros que determinan la dirección en la que un proceso irreversible  ocurrir. Como decíamos antes, si se llega al cero absoluto, el valor de la entrop´çia sería cero, es decir, el cambio de la entroìa sería nulo, como se cree que pasaría si el universo llega a ese final que algunos vaticinan de su muerte térmica.

Claro que, yo no soy tan agorero y parto de una base muy cierta: No lo sabemos todo y, lo poco que sabemos está sujeto a cambios (como nuestras teorías) a medida que vamos evolucionando y adquiriendo nuevos conocimientos. , podemos tener la impresión de que estamos a merced de esa Entropía que nos lleva al Caos y hacia la destrucción pero… (de nuevo un pero), ¿son inamovibles nuestros conocimientos actuales?

Creo en la generación de entropía negativa (por llamarla de alguna manera), y, el ejemplo de las estrellas nuevas que nacen continuamente y también, de nuestra propia descendencia… ¡Es una prueba irrefutable! De todas las maneras y,  siempre digo:

“Sabemos tan poco”

emilio silvera

Entrevista científica

Autor por Emilio Silvera    ~    Archivo Clasificado en Entrevista científica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Reportaje de prensa: Entrevista en el País a  Viatcheslav Mukhanov | Físico teórico
Resultado de imagen de Caer en un agujero negro
            “Si caes en un agujero negro no sientes nada”

El cosmólogo ruso explica por qué los humanos le debemos la vida a las fluctuaciones cuánticas

 

 

Viatcheslav Mukhanov, después de la entrevista.

                      Viatcheslav Mukhanov

A finales de los años setenta, en la Unión Soviética, Vitali Guínzburg, uno de los creadores de la bomba atómica, le sugirió a uno de sus estudiantes que se dedicase a la cosmología. Era un campo emergente que intentaba responder algunas de las preguntas más importantes para la humanidad, por ejemplo, cómo se originó el universo. Era solo un “bla, bla, bla, no había ninguna observación experimental”, ni visos de conseguirla, recuerda el físico teórico Viatcheslav Mukhanov, quien, a pesar de ello, decidió seguir el consejo de su superior.

Resultado de imagen de Instituto de Física y Tecnología de Moscú,

En 1981, cuando aún era un estudiante de doctorado en el Instituto de Física y Tecnología de Moscú, Mukhanov publicó junto a su compañero Gennady Chibisov su teoría de que las galaxias se originaron por fluctuaciones cuánticas. Esas irregularidades de densidad a escala microscópica surgieron poco después del Big Bang, se amplificaron durante los primeros momentos de expansión del universo y evolucionaron durante 13.700 millones de años hasta transformarse en los cientos de miles de millones de galaxias agrupadas en cúmulos y supercúmulos que en la actualidad conforman el universo.

En 2013, el satélite Planck realizó el mapa más detallado del fondo cósmico de microondas, la luz más antigua del universo. En sus imágenes se apreciaban pequeñas diferencias de temperatura cuya explicación más plausible eran las fluctuaciones cuánticas que Mukhanov había predicho tres décadas antes.

Resultado de imagen de Tratando de recibir un mensaje extraterrestre

Si nos enviasen un mensaje extraterrestre de vuelta, el retardo sería de 48.000 años. Es imposible comunicarse

 

Mukhanov (Kanash, extinta URSS, 1952) emigró a Europa tras la caída de la URSS y actualmente es catedrático de cosmología en la Universidad Ludwig-Maximilians de Múnich (Alemania). Ha ganado algunos de los galardones más importantes en su área y en 2016 recibió, junto a Stephen Hawking, el Premio Fronteras del Conocimiento. De visita en España para ofrecer una conferencia en la Fundación BBVA, Mukhanov explica en esta entrevista por qué confirmar su nueva teoría puede estar más allá de nuestras capacidades como especie.

Pregunta. ¿Cuándo surgió su interés por la ciencia?

Respuesta. Cuando estaba en el colegio. Mis padres eran los dos de clase trabajadora y mi educación fue primordialmente autodidacta. Compraba libros. En la Unión Soviética, todos los libros se publicaban en grandes tiradas. Los había hasta en las ciudades provinciales, porque nadie quería comprarlos. Había libros de teoría cuántica de campos o gravitación con una tirada mucho mayor que los best sellersactuales. Después me mudé a Moscú para estudiar en el internado de Andréi Kolmogorov [un famoso matemático ruso], donde preparábamos el examen de acceso a la universidad.

P. ¿Cómo era formarse como científico en la URSS?

R. La URSS era un país horrible. Por ejemplo, necesitabas permiso para vivir en Moscú y sin él no podías trabajar en la ciudad. Era como conseguir un título aristocrático en la Edad Media. Hasta tener un teléfono era complicado. Tenías que ponerte a la cola y esperar 10 años. En 1992 me mudé a Suiza. Pensé que serían solo dos años. Pero, después, en Rusia, las cosas tomaron un cariz no muy bueno, especialmente para la ciencia. Fue el latrocinio de todo. Y continúa ahora.

Resultado de imagen de Las semillas de la vida vinieron del espacio

… pruebas de que los meteoritos contienen ciertos bloques de construcción del ADN, la molécula que porta las instrucciones genéticas para la vida.

 

 Resultado de imagen de Ingredientes para la vida en el Espacio Interestelar

Descubrimos las semillas de las que surgen las galaxias, los planetas, las estrellas y, finalmente, nuestra vida

 

P. ¿Cómo formuló su teoría de las fluctuaciones cuánticas?

En 1978 mi supervisor decidió emigrar fuera de la URSS. Necesitaba un nuevo supervisor y ese fue Guínzburg. En 1979 no tenía ni idea de qué hacer. Se me acercó Chibisov y empezamos a trabajar. Pensamos en cómo usar la mecánica cuántica en el universo temprano. Nos dimos cuenta de que, si tomas el modelo de expansión acelerada [del universo], que fue llamado inflación dos años después, puedes emplear las fluctuaciones cuánticas, amplificarlas y tener, más o menos, una explicación válida para el origen de la estructura del universo. El origen de las semillas de las que surgen las galaxias, los planetas, las estrellas y, finalmente, nuestra vida.

P. ¿Cómo pueden unas fluctuaciones a escala cuántica generar todas las galaxias?

Resultado de imagen de Las fluctuaciones cuanticas formaron las galaxias

R. La mecánica cuántica impide conocer simultáneamente la posición y la velocidad de un fragmento determinado de materia. Esto hace que sea imposible que haya un reparto perfectamente homogéneo de la materia, hay pequeñas anomalías inevitables. Las fluctuaciones cuánticas permiten explicar cómo una pequeña burbuja de milésimas de gramo puede expandirse aceleradamente hasta generar materia suficiente para crear 100.000 millones de galaxias.

P. Si es tan fácil que aparezcan universos, ¿es posible que existan muchos más?

R. Puede que haya muchos. Pero no hay forma de confirmar la teoría cosmológica del multiverso. Al menos en los próximos 10.000 millones de años. El campo de los multiversos no es física, la física supone predecir y después medir. Este campo está en los límites de la metafísica, es imposible falsar sus predicciones.

Resultado de imagen de Trapitt 1 y sus siete planetas

La NASA anunció el descubrimiento de 7 nuevos planetas del tamaño de la Tierra y tres de ellos podrían ser habitables.

Encontrar un sistema solar con siete “tierras” es un descubrimiento menor

 

P. Solo sabemos de qué está hecho el 4% del universo, el resto es materia y energía desconocidas. ¿Cuándo cree que romperemos esta barrera?

R. No se puede decir eso. Es una afirmación un poco exagerada. Hay que diferenciar entre lo cuantitativo y lo cualitativo. Si digo que casi el 100% del universo es hidrógeno y helio, podrías pensar: ¿en qué lugar quedamos todos nosotros? Somos una fracción de un uno por ciento. Pero esa fracción, en la que están los elementos pesados de los que estamos hechos, es mucho más importante que el resto. Por eso no se puede decir que no entendemos solo el 4% del universo. El 96% restante, compuesto por materia oscura y energía oscura, son una trivialidad.

P. ¿En qué trabaja ahora mismo?

Resultado de imagen de La singularidad de un agujero negro

R. En las singularidades. Por ejemplo, los agujeros negros. Ya unificamos la mecánica cuántica con la relatividad general con las perturbaciones cuánticas a nivel cosmológico. Pero ahora, si caes en un agujero negro, debes unificarlo usando métodos diferentes y nadie sabe cómo. Es la teoría del todo. Intentamos entender la estructura que hay dentro de un agujero negro. De acuerdo con la relatividad general, el interior de un agujero negro es enorme. Si cayeras en un agujero negro no sentirías nada, más allá de perder la comunicación con el amigo que dejaste en el exterior. O, mejor dicho, seguirías recibiendo información suya pero él no podría escucharte. Una vez cruzas el horizonte del agujero negro, si es lo suficientemente grande, te encontrarás en otro universo que evoluciona de forma separada al nuestro.

P. ¿Seguirías vivo?

R. Por algún tiempo, sí. Si se trata de un agujero negro muy grande podrías seguir vivo mucho tiempo, incluso 100 años, si el agujero tiene un diámetro de 100 años luz. Pero si caes en un agujero negro del tipo que formaría nuestro Sol, con apenas tres kilómetros de diámetro, morirías en una fracción de segundo. La mayoría de la gente piensa que los agujeros negros son como una caja negra donde hay un centro. Pero un agujero negro no tiene centro. Más allá del horizonte es como un universo en contracción. En el centro, el tiempo termina. Gracias a la energía oscura, podrías entrar en otro universo. Por ejemplo, si hay energía oscura, puedes hacer que la contracción se detenga y podrías ser expulsado en otro universo. Pero perderías toda comunicación. Por el momento, esto es especulación, no hechos.

P. ¿Podremos explorar algún día este tipo de cuerpos para conocer su estructura?

Resultado de imagen de La singularidad de un agujero negro

R. No. Solo si tienes el coraje suficiente para dejarte caer en uno. Un agujero negro es una puerta en una única dirección. No puedo imaginarme cómo comunicarse desde dentro de un agujero negro hacia afuera. De alguna forma estos objetos son la frontera de nuestra fantasía.

P. ¿Qué le parece el descubrimiento reciente de un sistema solar con siete tierras?

R. Es un descubrimiento menor. ¿Qué hay de especial en la vida? No debemos pensar que somos excepcionales. Nuestro planeta es como una pequeña partícula de suciedad que llamamos Tierra, y hay una pequeña cubierta sobre ella que llamamos gente. No hay nada inusual. El descubrimiento de los exoplanetas es fantástico, pero no es sorprendente. Lo chocante sería que no existiesen.

Resultado de imagen de Inmigrantes hacinados en campamentos en toda Europa

 

Lo que está sucediendo con los inmigrantes en Europa y EE UU es peor que volver a la Edad Media.

 

Resultado de imagen de Vida extraterrestre en otros mundos

 

P. ¿Cree que encontraremos vida inteligente en el universo?

R. Cuando era pequeño me interesaban muchos estos temas. En 1974 mandaron unas señales de radio a un cúmulo globular. Si nos enviasen un mensaje de vuelta, el retardo sería de 48.000 años. Es imposible comunicarse. En este sentido, deberíamos ser más modestos.

P. Usted trabaja en Alemania desde hace décadas, ¿qué le parecen los movimientos contrarios a la inmigración en este país y en otros?

R. Es como una vuelta a la mentalidad de la Edad Media. [Ángela] Merkel hizo un buen movimiento al acoger inmigrantes, pero lo que falta es una política. Deben ser incorporados en la sociedad. No puedes tenerlos en campos. Cuando este tipo de cosas ocurrieron en Oriente Medio desataron una guerra civil. Recordemos el final del Imperio Romano. Los godos cruzaron el Danubio y empezaron a reclamar lo que les prometieron los romanos, pero no se lo dieron debido a la corrupción. No puedes cerrar el país a los inmigrantes. No puedes hacer este tipo de estupideces. Sobre todo señalar a seis o siete países, como en el caso de EE UU. Ni siquiera es una mentalidad de la Edad Media, es anterior. Es horrible.