Nov
19
Las escalas del Universo no son Humanas
por Emilio Silvera ~ Clasificado en El Universo misterioso ~ Comments (1)
Ciudades Inteligentes
Smart City Nansha, en Guangzhou, China.
Las ciudades modernas, basadas en infraestructuras eficientes y durables de agua, electricidad, telecomunicaciones, gas, transportes, servicios de urgencia y seguridad, equipamientos públicos, edificaciones inteligentes de oficinas y de residencias, etc., deben orientarse a mejorar el confort de los ciudadanos, siendo cada vez más eficaces y brindando nuevos servicios de calidad, mientras que se respetan al máximo los aspectos ambientales y el uso prudente de los recursos naturales no renovables.
La simetría bilateral se mantiene en el interior del cuerpo, en en los músculos y en el esqueleto, pero queda rota por la disposición fuertemente asimétrica de algunos órganos. El corazón, el estómago y el páncreas están desviados hacia la izquierda; el hígado y el apéndice, hacia la derecha. El pulmón derecho es mayor que el izquierdo. Los retorcimientos y vueltas de los intestinos son completamente asimétricos. El cordón umbilical humano, una magnifica hélice triple formada por dos arterias y una vena, puede enrollarse en cualquiera de los dos sentidos.
El pensamiento asombroso: ¡Las ideas!
Ludwig Boltzmann
Hay ecuaciones que son aparentemente insignificantes por su reducido número de exponentes que, sin embargo, ¡dicen tántas cosas…! En la mente de todos están las sencillas ecuaciones de Einsteiny de Planck sobre la energía-masa y la radiación de cuerpo negro. Esa es la belleza de la que hablan los físicos cuando se refieren a “ecuaciones bellas”. ¿Qué decir de la maravillosa fórmula de la entropía de Boltzman?
S = k log W
Somos polvo de estrellas, allí está nuestro origen y, allí queremos volver
¿La Química? Algo más que Alquimia
Antoine-Laurent Lavoisier (1743-1794) fue un financiero. Estableció un sistema de pesos y medidas que condujo al sistema métrico, vivió los primeros momentos turbulentos de la Revolución Francesa y fue pionero en la agricultura científica. Se casó con una jovencita de catorce años y fue decapitado durante el Terror. Se le ha llamado padre de la química moderna y, a lo largo de su atareada vida, sacó a Europa de las épocas oscuras de esta ciencia.
A nuestro alrededor pasan muchas cosas a las que no prestamos atención
Inmersos en los problemas cotidianos prestamos poca atención a lo que pasa a nuestro alrededor, en la Naturaleza y, sólo cuando son fenómenos muy llamativos, inusuales, o, que nos ponen en peligro, ponemos nuestros cinco sentidos en el acontecimiento. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos estado más atentos, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la Naturaleza que, en definitiva, es la que nos enseña el camino a seguir.
La edad actual del universo visible ≈ 1060 tiempos de Planck
Tamaño actual del Universo visible ≈ 1060 longitudes de Planck
La masa actual del Universo visible ≈ 1060 masas de Planck
Vemos así que la baja densidad de materia en el universo es un reflejo del hecho de que:
Densidad actual del universo visible ≈10-120 de la densidad de Planck
Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto
Temperatura actual del Universo visible ≈ 10-30 de la T. de Planck
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.
Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.
Pero, pese a la enorme edad del universo en “tics” del Tiempo de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.
¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio inter-galáctico donde no pueden enfriarse y fundirse en nuevas estrellas.
Un cielo negro y pocas estrellas en unas regiones y, en otras, cielo azul abarrotado de estrellas
Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
La vida (creo), estará presente en muchos mundos que, al igual que la Tierra, ofrece las condiciones adecuadas para ello. No sabemos como podrán ser los seres de otros mundos. Sin embargo, estoy “casi” seguro de que, como la que existe en la Tierra, estará basada en el Carbono. El Universo tiene sus reglas y son las mismas en todas partes.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución que tantos miles de millones de años le costó al Universo para poder plasmarla en una realidad que llamamos vida.
El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.
Parece que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.
Algunos dicen que son mitos pero, no se han parado a pensar o… ¡Les falta información!
Una atmósfera planetaria adecuada dará la opción de que evolucione la vida y se creen sociedades
La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual. Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.
Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.
A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.
“Las historias de ciencia ficción en las cuales se sugiere la existencia de seres vivos construidos de silicio en vez de carbono han proliferado desde hace varias décadas, por ejemplo, en los argumentos de muchas películas y series de TV. La idea no es nueva, pues esta se originó en 1891 (¡!), cuando Julio Sheiner escribió sobre la posibilidad de vida extraterrestre fundada en el Silicio.”
Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.
emilio silvera
Nov
19
Estrellas de neutrones pulsantes a velocidades increíbles
por Emilio Silvera ~ Clasificado en Estrellas de neutrones y Púlsares ~ Comments (0)
En el verano de 1967 Anthony Hewish y sus colaboradores de la Universidad de Cambridge detectaron, por accidente, emisiones de radio en los cielos que en nada se parecían a las que se habían detectado hasta entonces. Llegaban en impulsos muy regulares a intervalos de sólo 1 1/3 segundos. Para ser exactos, a intervalos de 1,33730109 segundos. La fuente emisora recibió el nombre de “estrella pulsante” o “pulsar”.
Esta es la imagen que de un púlsar tenemos pero…
¿QUE SON LOS PÚLSARES?
Un púlsar es una fuente de radio desde la que se recibe un tren de pulsos altamente regular. Han sido catalogados cerca de un millar de púlsares desde que se descubriera el primero en 1967. Los Púlsares son Estrellas de Neutrones en rápida rotación, con un diámetro de 20-30 Km. Las estrellas se hallan altamente magnetizadas (alrededor de 10 exp.8 tesla), con el eje magnético inclinado con respecto al eje de rotación.
La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a la luz de un faro. Los períodos de los pulsos son típicamente de 1 s pero varían desde los 1,56 ms (púlsares de milisegundo) hasta los 4’3 s
Los períodos de los pulsos se alargan gradualmente a medida que las estrellas de neutrones pierden energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas. Las medidas precisas de tiempos en los púlsares han revelado la presencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado por objetos de masa planetaria. Han sido detectados destellos ópticos procedentes de unos pocos púlsares, notablemente los Púlsares del Cangrejo y Vela.
La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigante, aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrellas de neutronesdespués de una acreción de masa de una estrella compañera. (Púlsar reciclado).
El nombre del objeto capturado es Vela y es un pulsar que lanza un chorro de partículas cargadas que corren a lo largo del eje de rotación del astro- Muchos son los púlsares descubiertos por el Telescopio Espacial Hubble que, desde hace 25 años está observando el Espacio Interetelar para desvelar los secretos del Universo.
La gran mayoría de los púlsares conocidos se encuentran en la Vía Láctea y están concentrados en el plano galáctico. Se estima que hay unos 100.000 púlsares en la Galaxia. Las observaciones de la dispersión interestelar y del efecto Faraday en los púlsares suministran información sobre la distribución de electrones libres y de los campos magnéticos de la Vía Láctea.
Cuando un púlsar está en órbita con otra estrella, estamos hablando de un púlsar binario, cuya existencia es revelada por un cambio cíclico en el período de pulsación a medida que las dos estrellas orbitan la una en torno a la otra. Se conocen alrededor de 50 púlsares binarios, con períodos orbitales que varían entre menos de 1 hora y varios años, y períodos de pulsión entre 1,6 ms y más de 1 s.
Imagen más aclaratoria del PSR 1913+16
El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.
El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.
Otro púlsar binario destacable es PSR 1957 + 20, llamado en ocasiones púlsar de la viuda negra, en el que la intensa radiación procedente del pulsar está evaporando su pequeña estrella compañera. Algunos púlsares binarios se saben ahora que son púlsares reciclados que han adquirido altas velocidades de rotación debido a la acreción de gas procedente del compañero.
PSR 1937 + 21
El púlsar del milisegundo brilla cada pocas milésimas de segundo. El primero en ser descubierto, PSR 1937 + 21, tiene un período de 1,56 ms, siendo aún el del período más corto conocido y próximo al mínimo teórico para una estrella de neutrones en rotación. Han sido descubiertos más de 60 púlsares con períodos de menos de 20 milisegundos, muchos de ellos en cúmulos globulares. Los púlsares de milisegundo poseen una rotación extremadamente estable y mantiene una regularidad mayor que la de los relojes atómicos.
También está el púlsar de rayos X. Aquí estamos hablando de una binaria de rayos X que tiene una variabilidad regular, en la que la pulsación está asociada al período de rotación de la compañera compacta, una estrella de neutrones magnetizada.
Los períodos varían desde unos pocos segundos hasta unos pocos minutos. Estas pulsaciones se piensa que están provocadas por el campo magnético que canaliza el gas en acreción hacia los polos de la estrella produciendo “manchas calientes” localizadas que se hacen visibles o no a medida que rota la estrella. Un ejemplo de dicho sistema es Hércules X-1.
La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigante, aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrellas de neutronesdespués de una acreción de masa de una estrella compañera. (Púlsar reciclado).
Otro tipo de púlsar es el llamado óptico que sufre pulsaciones en la parte visible del espectro, además de en longitudes de onda de radio y de otros tipos. El primer púlsar cuyas pulsaciones ópticas fueron descubiertas fue el Púlsar del Cangrejo, en 1969, seguido del Púlsar Vela en 1977.
El púlsar denominado “reciclado” es un púlsar con un campo magnético inusualmente bajo (1-100 tesla), un ritmo de frenado pequeño y un período de pulsos frecuentemente muy bajo, encontrándose a menudo en sistemas binarios.
Púlsares de milisegundo y la teoría del reciclaje
Se cree que los púlsares reciclados son púlsares ordinarios que han perdido energía y se han debilitado, y que luego se han puesto a girar de nuevo por acreción del gas de la estrella compañera. Existe una alta proporción de púlsares reciclados en los núcleos de los cúmulos globulares, donde la alta densidad de estrellas hace más probable la captura de una vieja estrella de neutrones en un sistema binario. Los primeros púlsares reciclados en ser descubiertos tenían períodos de pulsos muy cortos y se conocen como “púlsares de milisegundo”, aunque más tarde se descubrieron otros con períodos mucho más largo.
“El remanente de supernova de SN 1054, constituido por los desechos expulsados durante la explosión, se llama Nebulosa del Cangrejo. Está situada en una zona cercana a la estrella ζ Tauri. Alberga en su interior los residuos compactos de la estrella que explotó, un púlsar, llamado pulsar del Cangrejo (o PSR B0531+21). Esta nebulosa y el pulsar que contiene forman la estructura astronómica más estudiada fuera del sistema solar, entre otras cosas porque es una de las raras supernovas en las que la fecha de la explosión es perfectamente conocida.”
Para poder llegar a estrella de neutrones, la estrella original que implosiona es más masiva que nuestro Sol. La estrella de Neutrones es muy densa, tan densa como el núcleo de un átomo y, cuando colapsa se convierte en un púlsar giratorio que es el resultado de una explosión de supernova como la presenciada en 1054.
emilio silvera
Nov
19
Caminando hacia el saber del “mundo”
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Confinados en nuestro pequeño planeta, sin poder escapar hacia el Espacio profundo, donde residen otras estrellas y otros mundos, hemos sido capaces de llegar, en el “universo” de lo muy pequeño, hasta las entrañas de la materia utilizando para ello grandes aceleradores y microscopios electrónicos. Hemos inventado lo que llamamos Mecánica cuántica para describir ese fantástico lugar en el que residen los objetos más pequeños invisibles al ojo desnudo, ¡las partículas elementales! (unas más elementales que otras). Ahora sabemos de sus interacciones y de las fuerzas de la naturaleza.
Estas máquinas “monstruosas” empleando inmensas energías han podido llegar hasta el mismo corazón de la materia para refrendar lo que ya sospechábamos: Que en ese profundo y extraño lugar en el que “viven” los objetos más pequeños del Universo, hemos encontrado fantásticas respuestas a preguntas planteadas que, hasta entonces, nadie sabía contestar. Muchas de esas respuestas fueron imaginadas por los físicos teóricos y, más tarde, refrendadas por la avanzada tecnología de la que ahora podemos disponer.
Unas pocas “familias” de partículas que se combinan para conformar los átomos, éstos las moléculas y, a su vez, las moléculas se juntan para conformar objetos. Todo lo grande está hecho de cosas pequeñas.
Quarks, Leptones y Bosones, esas son las tres familias que hacen posible que nuestro Universo sea el que podemos observar. Los Quarks y los Leptones son Fermiones sometidos al Principio de exclusión de Pauli, es decir, no “quieren” estar juntos, mientras que los Bosones se pueden juntar sin el menor problema.
En el Modelo estándar de partículas y fuerzas, todo queda bien explicado y cada familia de Quarks, Leptónica o Bosónica, tiene su función bien determinada, unas forman átomos y otras son emisarias de las fuerzas fundamentales.
En la física de partículas los Quarks son fermiones elementales masivos que interactúan fuertemente formando la materia nuclear y cierto tipo de partículas llamadas hadrones. Junto con los Leptones, son los constituyentes fundamentales de la materia bariónica (la que emite radiación y genera fuerza gravitatoria). Varias especies de Quarks se combinan en tripletes para formar bariones, las part´ñiculas subatómicas llamadas protones y los neutrones, otros, Quark y anti.Quark forman los hadrones denominados mesones.
En el pequeño núcleo (que contiene el 99% de la materia del átomo, se producen extrañas actividades: La fuerza nuclear fuerte es una de las cuatro fuerzas fundamentales que el modelo estándar de la física de partículas establece para explicar las fuerzas entre las partículas conocidas. Esta fuerza es la responsable de mantener unidos a los nucleones (protones y neutrones) que coexisten en el núcleo atómico, …. La fuerza que hace que los constituyentes del núcleo de un átomo estén unidas y, para conseguirlo mantiene confinados a los Quarks. Esta fuerza funciona como un muelle de acero, al contrario de las otras fuerzas, cuando más se alejan los Quarks más potente es, es decir, aumenta con la distancia. El muelle cuantro más se estira más resistencia opone.
“Los quarks forman hadrones, que pueden ser bariones o mesones. Los bariones son partículas formadas por tres quarks de valencia rodeados de un océano de pares quark-antiquark y gluones virtuales. Los mesones están formados por un quark y un antiquark de valencia rodeados de un océano de pares quark-antiquark y gluones virtuales. Salvo el quark top (cuya vida media es demasiado corta para hadronizarse), todos los quarks pueden formar parte de los hadrones. LHCb es el detector de partículas del LHC especializado en los hadrones formados por quarks b (bottom o beauty) de valencia.”
En el Modelo estándar de partículas elementales, se han podido incluir a tres de las cuatro fuerzas fundamentales del Universo: las nucleares fuerte y débil y el electromagnetismo. La Gravedad se resiste a juntarse con las otras fuerzas y, los físicos, buscan desaforadamente una teoría cuántica de la Gravedad que reúna a las cuatro fuerzas.
“Ocho décadas han pasado desde que los físicos se dieron cuenta de que las teorías de la mecánica cuántica y la gravedad no encajaban entre sí, y el misterio de cómo combinarlas sigue sin resolverse. En las últimas décadas, los investigadores han trabajado en el problema en dos vertientes distintas — la teoría de cuerdas, y la gravedad cuántica de bucles — que se consideran incompatibles por aquellos que las estudian. Pero ahora, algunos científicos defienden que unir fuerzas es la forma de avanzar.”
Las dos principales candidatas a una “teoría del todo”, que durante mucho tiempo se pensó que eran incompatibles, podrían ser las dos caras de la misma moneda.
¿Dentro de la Teoría de cuerdas, subyace una teoría cuántica de la Gravedad?
“Entre los intentos de unificar la teoría cuántica y la gravedad, la teoría de cuerdas es la que ha atraído más atención. Su premisa es simple: todo está hecho de minúsculas cuerdas. Las cuerdas pueden ser cerradas o tener los extremos abiertos; pueden vibrar, estirarse, unirse o dividirse. Y en esta variedad de presentaciones yacen las explicaciones de todos los fenómenos que observamos, incluidos la materia y el espacio.”
Es posible que, en estas teorías de más dimensiones, la Gravedad tenga “sitio” para poder situarse y convivir, cómodamente, con las otras fuerzas a las que, no sólo no rechaza, sino que puede estar con ellas muy a gusto. Eso parece que nos quiere decir el hecho fantástico de que, cuando los físicos trabajan con las ecuaciones de la Teoría de cuerdas, como por arte de magia y sin que nadie las llame… ¡Allí aparecen las ecuaciones de campo de la Relatividad General del viejo Einstein!
“La cronología del Big Bang describe los eventos que han ocurrido y ocurrirán de acuerdo con dicha teoría. Las observaciones sugieren que el universo como lo conocemos empezó hace aproximadamente 13.810 millones de años. Desde entonces, la evolución del universo ha pasado por tres fases: el Universo muy primigenio, el Universo primigenio y la formación de estructuras.
El Universo muy primigenio, que sigue siendo comprendido pobremente, fue la fracción de segundo durante la cual el universo estaba tan caliente que las partículas tenían una energía muy alta. Conseguir este estado actualmente sólo es posible en la Tierra con un acelerador de partículas. Mientras las características básicas de esta época han sido resueltas con la teoría del Big Bang, los detalles están ampliamente basados en conjeturas.
Después de la formación de partículas y de la liberación de los fotones, se formaron las primeras estrellas, más tarde, se conformaron en galaxias y ahí, la dinámica del Universo desarrolló la constitución de todos los objetos que hoy conocemos, desde los mundos, las grandes nebulosas surgidas de las explosiones supernovas, y las estrellas de neutrones o los agujeros negros.
Siguiendo estas fases, en el Universo primigenio, la evolución del Universo procedió de acuerdo con la conocida física de alta energía. Fue entonces cuando se formaron los primeros protones, neutrones y electrones, después los núcleos y finalmente los átomos.
Con la formación de hidrógeno neutro, se emitió el fondo cósmico de microondas. Finalmente, la época de las formaciones estructurales que comenzó cuando la materia empezó a agregarse en las primeras estrellas y quásars y por último se formaron las galaxias, las agrupaciones de galaxias y los supercúmulos (aunque nadie sabe explicar, como se formaron las galaxias a pesar de la expansión de Hubble). El futuro del Universo no es firmemente conocido.”
Y, el comienzo, lo hemos podido construir a base de muchas conjeturas que, dicho sea de paso, no todas están confirmadas.
emilio silvera