domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Física! Los Caminos de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (38)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Cien mil millones de neuronas y conexiones sin fin

“Esta claro que la mayoría de lo que entendemos como nuestra vida mental implica la actividad del sistema nervioso, especialmente el cerebro. Este sistema nervioso está compuesto por miles de millones de células, las más simple de las cuales son las células nerviosas o neuronas. ¡Se estima que debe haber cien mil millones de neuronas en nuestro sistema nervioso! Hay tanto por descubrir.”

Resultado de imagen de Las aguas claras y cantarinas del río y las piedras pulidas de su lecho
                                                              ¡Todas las cosas son!
El Tiempo, aunque a ciencia cierta no sabemos lo que es, sí sabemos que nos permite contar historias de hechos pasados, buscar las huellas que dejaron en nuestro mundo los pobladores de otras civilizaciones, los cambios habidos en la Naturaleza, y, durante su inexorable transcurrir, van pasando cosas, se están produciendo cambios, y, la Entropía convierte lo nuevo en viejo, mientras que, esa otra clase de Entropía negativa, crea nuevas estrellas, nuevos mundos y nuevas criaturas.
Pero esas son otras historias y, el día de hoy hablaremos del…

¡Preludio a la relatividad! -Las ecuaciones de Lorentz-Fitzgerald- Éste último pensaba y decía cosas comos estas:

 

 

              George FitzGerald

 

“… la telegrafía debe mucho a Euclides y otros geómetras puros, al griego y al árabe que fueron matemáticos magistrales que inventaron nuestra escala de numeración y el álgebra, de Galileo Newton, que fundaron la dinámica, para que Newton y Leibniz inventaran el cálculo, para que Volta descubriera la galvánica bobina, a Oersted quien descubrió la acción magnética de las corrientes, que a Ampère descubriera las leyes de su acción, a Ohm que descubrió la ley de la resistencia de los cables, a Wheatstone, de Faraday, a Lord Kelvin, a Clerk Maxwell, Hertz a… Sin los descubrimientos, invenciones, y las teorías científicas resumen de estos hombres la telegrafía y otras maravillas y conocimientos…  ¡serían imposibles ahora!”

Hendrik Antoon Lorentz.jpg

    Hendrik Antoon Lorentz

 

Se le deben importantes aportaciones en los campos de la termodinámica, la radiación, el magnetismo, la electricidad y la refracción de la luz.  Formuló conjuntamente con George Francis FitzGerald una teoría sobre el cambio de forma de un cuerpo como resultado de su movimiento; este efecto, conocido como “contracción de Lorentz-FitzGerald”, cuya representación matemática de ella es conocida con el de transformación de Lorentz,  fue una más de las numerosas contribuciones realizadas por Lorentz al desarrollo de la teoría de la relatividad.

Fue, al igual que Henri Poincaré,  uno de los primeros en formular las bases de la teoría de la relatividad(frecuentemente atribuida primaria o solamente a Albert Einstein).  Fue ganador del Premio Nobel de Física en 1902, junto con su pupilo Pieter Zeeman,  por su investigación conjunta sobre la influencia del magnetismo en la radiación, originando la radiación electromagnética.  fue premiado con la Medalla Rumford en 1908 y la Medalla Coplay en 1918. Lorentz era hombre humilde y sencillo y le gustaba resaltar los logros de los demás:

 

 

 

Michael Faraday

 

“Como es probable que sepas, gran parte de nuestro conocimiento sobre la electricidad y el magnetismo se basa en los experimentos ingeniosísimos realizados por Michael Faraday en la primera parte del siglo XIX. Faraday era un experimentador genial, y descubrió numerosos fenómenos desconocidos hasta entonces, como la mutua. Estableció diversas leyes, pero no pudo elaborar una teoría global acerca del electromagnetismo porque sus conocimientos matemáticos no iban más allá de la trigonometría: hacía falta un teórico capaz de amalgamar el conocimiento adquirido por Faraday y otros experimentadores, como Hans Christian Ørsted, en una teoría general”.

Ese teórico era otro genio, James Clerk Maxwell, que estableció un conjunto de cuatro ecuaciones diferenciales bellísimas que describían de una manera extraordinariamente precisa los resultados de casi todos los experimentos de Faraday, Ørsted y compañía. Lo más sorprendente, el propio Maxwell y sus contemporáneos, fue una de las consecuencias inevitables de sus ecuaciones: la existencia de perturbaciones del campo eléctrico y el magnético que se propagaban por el espacio.”

 

 

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

 

 

Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

 

 

 

AetherWind.svg

                                                                                 experimento conocido de Michelson-Morley

Todo aquello fue posible gracia a que en 1893, el físico irlandés George Francis FitzGerald emitió una hipótesis explicar los resultados negativos del experimento conocido de Michelson-Morley.  Adujo que toda materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso.  Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

Parecía como si la explicación de FitzGerald insinuara que la Naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el de “contracción de FitzGerald”, y su autor formuló una ecuación para el mismo que, referido a la contracción de un cuerpo móvil, fue predicha igualmente, y de manera independiente, por H.A.Lorentz (1853-1928) de manera que, finalmente, se quedaron unidas como “Contracción de Lorentz-Fitz Gerald”.

 

 

 

 

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

 

 

 

 

 

 

La dilatación del tiempo es el fenómeno predicho por la teorçia de la relatividad,  por el cual un observador observa que el reloj de otro (un reloj físicamente idéntico al suyo) está marcando el tiempo a un ritmo menor que el que mide su reloj. Esto se suele interpretar normalmente como que el tiempo se ha ralentizado para el otro reloj, pero eso es cierto solamente en el contexto del sistema de referencia del observador. Localmente, el tiempo siempre está pasando al mismo ritmo. El fenómeno de la dilatación del tiempo se aplica a cualquier proceso que manifieste cambios a través del tiempo.

fórmula para determinar la dilatación del tiempo en la relatividad especial es:

 \Delta t = \gamma \ \Delta t_0 = \frac{\Delta t_0}{ \sqrt{1-\frac{v^2}{c^2}}} \,

 

Donde:

 

 \Delta t_0 \, es el intervalo temporal entre dos eventos co-locales para un observador en algún sistema de referencia inercial. (por ejemplo el número de tic tacs que ha hecho su reloj)
 \Delta t \, es el intervalo temporal entre los dos mismos eventos, tal y como lo mediría otro observador moviéndose inercialmente con velocidad v, respecto al primer observador
 v \, es la velocidad relativa entre los dos observadores
 c \, la velocidad de la luz y
 \gamma = \frac{1}{\sqrt{1-v^2/c^2}} \, es el también conocido como factor de Lorentz

De esta manera la duración del un ciclo de reloj del reloj que se mueve se ha incrementado: esta “funcionando más despacio”. Según lo indicado las transformaciones de Lorentz  pueden ser utilizadas para casos más generales.

Postulados de la Relatividad Especial

 

  • Primer postulado:  Principio especial de relatividad: Las leyes de la física son las mismas en todos los sistemas de referencia inerciales. En otras palabras, no existe un sistema inercial de referencia privilegiado, que se pueda considerar como absoluto.
  • Segundo postulado: Invariancia de c: La velocidad de la luz en el vacío es una constante universal, c, que es independiente del movimiento de la fuente de luz.

 

 

Aquí podemos ver el tiempo que tarda la luz en llegar desde la Tierra a la Luna situada a más de 380.000 Km

 Einstein que se apropió de aquella idea (de Lorentz) y, además, la amplió al contraer también el Tiempo. La contracción de la longitud ha sido verificada en el diseño, por ejemplo, del acelerador lineal de la Universidad de Stanford. Las partículas salen con una velocidad v = 0,999975c, por tanto, metro de tubo acelerador es “visto” por los electrones como 144 metros. Si, según la expresión anterior, un cuerpo con masa se moviera a la velocidad c desaparecería por contracción de su longitud para un observador en reposo, lo cual refuerza el carácter inalcanzable de velocidad. Si los objetos con masa alcanzan este límite de velocidad la estructura básica de la realidad se desvanece. Por otra parte, vemos que cualquier influencia que afecte al tiempo también lo hará con el espacio. Esto no nos debe de extrañar, ya que ambas magnitudes se encuentran íntimamente relacionadas por lo único que se nos mantiene invariable: la velocidad de la luz. En relatividad hablamos de espacio-tiempo ya que son inseparables.

A la contracción, Einstein, le dio un marco teórico en la teoría especial de la relatividad. En teoría, un objeto de longitud /0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud /0 , donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

Un objeto que se moviera a 11 km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 km/seg. (la mitad de la velocidad de la luz, c), sería del 15%; a 262.000 km/seg. (7/8 de la velocidad de la luz), del 50% Es decir, que una regla de 30 cm. que pasara ante nuestra vista a 262.000 km (seg., nos parecería que mide sólo 15’54 cm…, siempre y cuando conociéramos alguna manera medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 km/seg., en números redondos, su longitud, en la dirección del movimiento, sería cero.  Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse en el Universo. (Pero ¿existir también?).

El físico holandés Hendrik Antón Lorentz, como hemos dicho, promovió ésta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas), se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula reducir su volumen, aumentaría su masa.  Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitz Gerald, debería crecer en términos de masa.

Resultado de imagen de Una partícula aumenta su masa si viaja a la velocidad de la luz

        Un objeto que corra a velocidades cercanas a la de la luz, verá incrementada su masa

Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación FitzGerald sobre el acortamiento. A 149.637 kilómetros por segundo, la masa de un electrónaumentaría en un 15%; a 262.000 km/seg., en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita.  Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita? El efecto FitzGerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas las “ecuaciones Lorentz-FitzGerald.”

Mientras que la contracción FitzGerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas si podía serlo…, aunque indirectamente. De hecho, el muón, tomó 10 veces su masa original fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores, han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

                                                                  Nada puede viajar a la velocidad de la luz

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial que, aunque mucho más amplia, recoge la contracción de FitzGerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

¡Qué cosas!

Resultado de imagen de La persistencia de la memoria

                                    El Tiempo pasa inexorable pero… ¡La memoria queda!

Algunas veces pienso que, los artistas en general, y los poetas en particular, tendrían que adaptar e incluir a sus esquemas artísticos y poéticos, los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano.

Estos adelantos científicos serían así coloreados con las pasiones humanas y transformadas, de alguna manera, en la sangre, y por qué no, los sentimientos de la naturaleza humana.

Posiblemente, de haberlo hecho así, el grado general de conocimiento sería mayor.

emilio silvera

 

  1. 1
    Pedro
    el 26 de noviembre del 2018 a las 18:12

    Imaginemos que tenemos dos naves con velocidades una muy próxima a la velocidad de c y la otra 1/2 de c. Bien. Quieren enviarse un saludito por escrito, reciproco, a través de un rayo de luz ¿Es posible? 
    Si son ritmos de tiempo tan dispares, y por tanto los procesos físicos que acontecen también, ¿Surgirá algún ritmo de tiempo nuevo, o bien uno predominará sobre el otro, cuando se entrecruzan su información.
    Tenemos ritmo de la nave A, ritmo de la nave B, y ritmo de entorno donde acontece C. Resulta que la velocidad de la luz no varía siempre c.
    O bien todo es una sandez con mayúsculas llegar a tener tal pretensión.

    Con mi estrechez mental al respecto, solo se me ocurre pensar que la dilatación del tiempo como nos lo cuentan es una milonga esperpentica.

     

    Responder
  2. 2
    Emilio Silvera
    el 27 de noviembre del 2018 a las 6:02

    Del Tiempo, lo que sí sabemos seguros es que, cada ser y cada cosa viene al “mundo” con un Tiempo predeterminado: Una mosca vive 4 semanas, un elefante 70 años, una tortuga galápago 150 años, nosotros, los humanos tenemos una vida media de 80 años, una estrella vive millones o miles de millones de años dependiendo de sus masas, Si no ocurren percances inesperados, esos tiempos se cumplirán. Todo lo demás, son situaciones especiales que podrán imponer un Tiempo “especial” o, incluso imaginario, según sea el caso de cada cual.

    Nadie, a lo largo de la Historia de la Humanidad ha sabido explicarnos lo que el Tiempo es. Algunos dicen que no existe que sól,o es una abstracción de la Mente pero… ¿Desde cuando una abstracción a medida que transcurre ese Tiempo que no existe, hace que las cosas se vuelvan más viejas (no podemos olvidar que el Tiempo nació con una “gemela” llamada Entropía y, entre los dos… ¡Los estragos y transformaciones que pueden lograr… Son notables!

    Responder
  3. 3
    Fandila Soria
    el 27 de noviembre del 2018 a las 11:05

    El tiempo será una de las cuantificaciones variables del existir. El no ser, la nada, no posee tiempo.

    Responder
    • 3.1
      Emilio Silvera
      el 27 de noviembre del 2018 a las 12:45

      Y, como el no ser y la nada no existen, quiere decir que sí está el Tiempo que que es y somos y también hay. El Tiempo siempre está, sin el Tiempo no habría nada, ni materia ni espacio ni universo, ni tampoco seres que, como nosotros hablamos de él sin llegar a comprenderlo bien.

      Responder
  4. 4
    kike
    el 27 de noviembre del 2018 a las 19:54

     Creo que cuando pensamos en el tiempo, olvidamos a Einstein, que nos demostró que el tiempo no es una unidad; el tiempo está unido indisolublemente ccon el espacio. Si no existe espacio no existe tiempo.

     Nosotro, al vivir en una espacio, contamos con el tiempo, y además no podemos imaginar como sería ninguna de las dos constantes por separado; ni siquieera si existen.

     Quizás, fuerza de nuestr universo, exista un tiempo sin espacio o un espacio sin tiempo, caso positivo las cosas serían muy diferentes a lo que conocemos…

    Responder
    • 4.1
      Pedro
      el 27 de noviembre del 2018 a las 22:09

      Vamos a animar el ambiente:
      Acerca del concepto espacio-tiempo, soy in capaz de asimilar nada de nada,su representación gráfica más o menos si lo entiendo no obstante como fenómeno físico me resulta muy incomprensible.pongo un ejemplo:
      Estoy en una estación de autobuses, resulta que no me muevo de la misma, y  tarda una hora en llegar el autobus.
      No soy capaz de visualizar el conjunto espacio-tiempo, y si por separado espacio y tiempo como independientes.

      Sin embarcó en un contexto que haya movimiento no tengo dificultades en el conjunto espacio-tiempo.
      ¿Entonces cuál es la lectura correcta?

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting