miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo complejo y… ¿nosotros?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

En la imagen se indican las regiones donde tuvieron lugar sucesos de gran importancia y que fueron capturadas en el ultravioleta extremo. Las lineas blancas trazan el campo magnético solar (Crédito: K. Schrijver & A. Title). Ni los 150 millones de kilómetros que nos separan de la estrella más importante para nosotros, nos impiden urgar y desvelar sus secretos, y, desde luego, hacemos muy bien, es mucho lo que nos va en ello. Saber y conocer lo que allí ocurra es, nuestra garantía de vida. Bueno, si no tanto como eso sí al menos tener la posibilidad de información por si, llegado el caso, podemos prevenir algún desastre.

File:Gravity Probe B.jpg

Satélite Gravity Probe B. Dedicado a medir la curvatura del campo gravitatorio terrestre debido a la teoría de la relatividad de Einstein. La gravedad ha sido medida y comprobada de muchas maneras pero… ¡Gravedad cuántica! ¿qué es eso? La imaginación anda más rápida que los conocimientos. Sin embargo, así hemos ido avanzando en el transcurrir del Tiempo. Ahora andamos a vueltas con la “materia oscura” que nadie sabe (a ciencia ciewrta) lo que es, yo la llamo materia cósmica y me parece más apropiado.

                          ¿Os acordáis? ¿Cuántos niños no habrán soñado con escenas como estas?

Cuando hablo de lo muy pequeño, puedo llegar a entender muy bien lo que es, lo que son, “licencias literarias” el papel de nada se queja y el lápiz puede escribir lo que quiera y piense el que lo sostiene, según le dicte su imaginación. Claro que, cuando comparamos ese mundo de ilusiones e imaginación con el mundo real, todo el edificio se viene abajo. ¡Lástima!

Todos los niños pequeños juegan con pequeños muñecos que son soldados, guerreros o seres de otras galaxias con poderes mágicos y, ellos, en su inocente mundo sin maldad, los dirigen con sus manitas gordezuelas al desarrollo de luchas y aventuras sin fin. Jonathan Swift, nos deleitó con aquellas aventuras de Gulliver, un aventurero que llegó a las tierras de Lilliput: Allí, todo era muy pequeño, la naturaleza, las plantas, los habitantes del lugar y sus casas y palacios, embarcaciones y todos los animales.

Gulliver era allí un gigante de proporciones inmensas: Incluso llegó a extinguir un fuego con una simple chorrada (es decir, hizo pipí) y acabó de inmediato con el (para ellos) enorme fuego.

Resultado de imagen de Minotaurus, Druidas, Dragones y Nibelungos

Historias y Leyendas ligadas a la Mitología. Minotaurus, Druidas, Dragones y Nibelungos que buscan anillos y tesoros…

Hemos demostrado tener mucha imaginación y las historias y leyendas que nos llegan desde el pasado está mezclada con la Mitología de los pueblos que, en todos los rincones del mundo crearon sus propios mitos que nos dibujan escenarios que hablan de la inmensa diversidad. Siempre hemos buscado algo pero nunca logramos encontrarlo todo. ¡La búsqueda continúa!

Al menos de momento, tenemos que admitir que es así. No creo que nunca podamos adquirir un conocimiento pleno de todas las cosas. Siempre nos quedarán secretos que desvelar y misterios por descubrir, y, la inmensa variedad y la vastedad compleja de la Naturaleza, tendrá siempre para nosotros, algunos rincones oscuros en los que moran respuestas que deseamos , y que sin embargo, es posible, que nunca las podamos atisbar.

¿Oiremos alguna vez que han encontrado los restos de la Atlántida?

“De todos los misterios que andan por el mundo, ninguno puede competir con las historias de tierras pérdidas y civilizaciones que ya no existen, y entre todas ellas, destaca sobremanera una: la desaparición de la Atlántida, un continente entero, que existió más allá de las Columnas de Hércules (Gibraltar) o quién sabe dónde. A la Atlántida, se la tragó la tierra, en día y una noche, sin dejar rastro ni de ella ni de la floreciente civilización que poseía. “… ¡Según nos cuentan!

     Lo cierto es que cuando miramos hacia atrás en el tiempo, sí que tenemos motivos para el asombro

Los orígenes del conocimiento quedan lejos y se pierde en la noche de los tiempos: Sumeria, Babilonia, Egipto, China, La India, Persia y más tarde Grecia y el Islam, Toda América y sus Civilizaciones y Europa. Nos tenemos que guiar por los vestigios dejados por aquellos pueblos que, desgraciadamente, el tiempo se ha encargado de borrar en la mayor parte de los casos y sólo hemos podido recuperar pequeñas obras y destruidas construcciones. De las más importantes en volumen, se ha conservado una gran colección por todo el mundo que nos habla de lo que fueron aquellos pueblos.

Resultado de imagen de El cúmulo Copo de Nieve y la Nebulosa del Cono

Con bastante amplitud hemos hablado aquí del Universo, de su “nacimiento” y de su posible “muerte”. De manera individual hemos hablado de los objetos que lo pueblan y de las fuerzan que lo rigen. Por ejemplo, el Cúmulo Copo de Nieve en la Nebulosa del Cono, es como tántas otras Nebulosas, el resultado de la explosión de una estrella al final de sus días. Las estrellas nunca quieren morir del todo y, cuando lo hacen al finalizar sus ciclos de fusión, se convierten en otros objetos distintos y, sus materiales sobrantes son dejados esparcidos por grandes regiones del espacio interestelar, en forma de bellas nebulosas de las que surgen nuevas estrellas, nuevos mundos y… -seguramente- nuevas formas de vida.

Resultado de imagen de Abell 2744: Cúmulo de Galaxias de Pandora

                                                             Es el Cúmulo de Galaxias llamado Pandora

Ahora sabemos que el Universo está constituito de innumerables galaxias que forman cúmulos que, a su vez, se juntan en supercúmulos. Estas galaxias están abarrotadas de estrellas y las estrellas, no pocas veces, están acompañadas de planetas que forman sistemas planetarios. Nosotros, los humanos, hemos realizado profundas observaciones que, con nuestros modernos ingenios, nos han podido llevar hasta el espacio profundo, allí donde habitan galaxias que nacieron hace ahora doce mil millones de años.

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la maisma manera, en presencia de masa … ¡se crean nuevas estrellas y nuevos mundos en los que, si el Azar los sitúa en el lugar adecuado, la Zona Habitable, podrían surgir formas de vida como ocurrió aquí en la Tierra.

                             Hemos estado divagando sobre lo que nos espera en el futuro.

Podemos imaginar muchas cosas y dibujar en nuestras mentes miles de escenarios diferentes de lo que será el futuro de la Humanidad: Alcanzaremos los conocimientos para poder vivir 200 años, la tecnología robotica avanzará tanto que, nuestra especie terminará fundiéndose con ella, de tal manera que podremos llegar a ser auténticos cyborgs, medio humanos y medio robots. También es posible que podamos conseguir durar algunos millones de años más y, de esa manera, tendremos tiempo para dominar las energías que se producen en las estrellas y en los agujeros negros. Tendremos tiempo para salir de nuestro confinamiento terrestre y crear bellas ciudades en mundos lejanos, la Humanidad se esparcirá por toda la Galaxia. También es posible que, dentro de unos días, unos meses o unos años, llegue ese meteorito inesperado y acabe con todos nuestros sueños. Otra posiblidad, es la de que podamos ser invadidos por seres de otros mundos que, con mentalidades muy diferentes, no traigan buenas intenciones. También entra dentro de lo posible que…

Resultado de imagen de La paradoja de Teseo

Teseo se preguntaba si cuando, en su paradoja de reemplazo, cuando a un objeto se le cambian todas las piezas, seguía siendo el mismo objeto. De la misma manera, nosotros, a medida que vamos evolucionando a lo largo de nuestras vidas, nos vamos transformando en otro muy diferente, toda vez que, las experiencias vivídas, nos cambian y nuestra mente de hoy, no es la mente de ayer. Ya lo decía Heráclito, el gran filósofo griego:

“Ningún hombre puede cruzar el mismo río dos veces, porque ni el hombre ni el agua serán los mismos.”

¿La metafísica? Una escalera que no hemos podido subir y una puerta, que tampoco hemos sabido cruzar. Es lo que está más allá de lo material, incluso sobrepasa el mundo filosófico de los pensamientos que se pueden constatar para adentrarse en ese otro “mundo” en el que la mente divaga y quiere llegar mucho más lejos  de lo que le está permitido.

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, realizamos conjeturas y comparaciones con otros … ¡Que podrían ser! En nuestro Universo existen cientos de miles de estrellas y mundos, más de cien mil millones de galaxias y, todo objeto se repite una y otra vez, y, siendo así (que lo es) ¿por qué no habrían de existir otros universos?

Hablar de una Naturaleza simétrica sería condenar a nuestro Universo a la monotonía de la igualdad, y, todos sabemos que en él se encuentra todo lo que existe, la Materia, el Tiempo y el Espacio, todo ello acompañado por fuerzas que hacen de nuestro universo el que conocemos y, dentro de toda esa inmensidad, también se encuentran la simetría y la asimetría, en nuestro mundo el día y la noche. La riqueza de la diversidad que conforma ese todo que el Universo es.

Resultado de imagen de Simetría y asimetría

La exploración de la simetría y la asimetría en la Naturaleza comenzaba con el mayor de los objetos naturales: ¡El propio Universo! Y, hemos ido reduciendo gradualmente la escala de tamaños con estructuras cada vez más pequeñas. En otras ocasiones hemos tenido aquí mismo la oportunidad de hablar de la simetría que encontramos en la Naturaleza de las plantas y de los animales. , desviamos nuestra atención hacia estructuras todavía menores, las diversas sub-unidades que constituyen todas las sustancias materiales, vivas o inertes.

de continuar y para aquellos que lo puedan desconocer, será conveniente que tengan una conciencia clara de qué son exactamente estas unidades inferiores. Comenzando con las más pequeñas y yendo después en sentido ascendente, la escala sería:

Las partículas elementales que están descritas en el Modelo estándar actual de la física de partículas que conforman la materia y las fuerzas con las que interaccionan y que, donde hemos podido saber, están divididas en familias:

Leptones: partículas puntuales con una dimensión espacial inapreciable. Los seis leptonesconocidos  son el electrón, el muón y el tauón, y el neutrino asociado a uno de ellos, el neutrino electrónico, muónico y tauónico.

Resultado de imagen de Leptones

Hadrones: Son aquellas partículas que se cree que están compuestas de pequeñas partículas puntuales llamadas quarks. Se han identificado cientos de hadrones, de los cuales los más importantes son el protón y el neutrón, ya que junto con el electrón forman la materia ordinaria.

Resultado de imagen de BarionesResultado de imagen de de la familia de los hadrones: mesones


Bosones: Partículas de “cambio”, partículas “soporte”, partículas “mensajeras” o partículas “indicadoras”. Contienen o son intermediarias de las cuatro fuerzas: electromagnetismo (conducido por el fotón), la fuerza débil (conducida por los vectores bosones intermedios), la gran fuerza nuclear (por los gluones) y la gravedad (por el gravitón aún no detectado). A finales de lños años setenta, las fuerzas elecdtromagnética y débil se unificaron en lo que llamamos la fuerza electrodébil. La teoría electrodébil predice un bosón masivo denominado partícula de Higgs que,según los del CERN, se cazó en el año 2.012. Sin embargo, faltan muchas explicaciones sobre dicho hallazgo.


                     Representación de los tres bosones intermediarios en la fuerza electrodébil

Una vez descritas, muy someramente, las partículas de la materia y las fuerzas que rigen el universo conocido, tendríamos que pasar, de inmediato, al paso próximo que estaría representado por el átomo que, hasta donde conocemos, es la menor unidad estructural en la que dividirse la materia sin que pierda sus propiedades. En el centro de todo átomo está el núcleo, que debe contener al menos un protón, pero habitualmente está formado por una mezcla de protones y neutrones. Alrededor del núcleo, agrupados en “capas”, están los electrones. El átomo más sencillo, el de Hidrógeno, un núcleo con un protón, alrededor del cual se mueve un único electrón. El átomo más complejo que se ha encontrado en la Naturaleza es el del Uranio, con 92 electrones. En el laboratorio se han encontrado algunos  elementos más complejos a los que se llaman transuránicos, es decir, que van más allá del uranio y que no se encuentran en la Naturaleza, son artificiales.

A merced del Universo, sobre el frágil puente de nuestra ignorancia y ante la luz cegadora de nuestras propias mentes que no nos deja “ver” el infinito mundo del conocimiento de las cosas, de la Naturaleza y de nosotros mismos. presentó “El Origen de las Especies”, allá por el año 1887, Thomas Henry Huxley dijo:

“Lo conocido es finito, lo desconocido infinito; intelectualmente nos hallamos en un islote en medio del océano ilimitado de lo inexplicable. La tarea de generación es reclamar un poco más de terreno, añadir algo de extensión y solidez de nuestras posesiones”

 

Como es algo que me despierta la curiosidad, con bastante asiduidad, hemos hablado aquí del Tiempo, y nos hemos preguntado qué puede ser. He dicho que pasado, presente y Futuro es sólo una Ilusión que llamamos Tiempo. Sin embargo, nosotros, los humanos, estamos condenados a vivir en un perpetuo presente, nunca podremos conocer eso que llamamos futuro y que será el Tiempo de los que vendrán detrás de nosotros y, la paradoja es, que para ellos, también será un Tiempo presente. Nadie nunca podrá conocer el futuro. Bueno… ¡Imaginarlo Sí!

http://4.bp.blogspot.com/-DJo1wxvXAC0/TaYnYaVjmCI/AAAAAAAAAWQ/VGLS3Gro0rU/s1600/palms-clock.jpg

Esta misma entrada ha sido vista aquí en varias ocasiones pero, lo que representa, tiene el derecho a que sea divulgada una y otra vez. Se trata de la historia de intrépidos viajeros-aventureros que con su valor, hicieron posible el conocimiento de nuevas tierras y nuevas gentes. Algunos tenían en la mente la existencia de lugares maravillosos y no se paraban a pensar en los peligros que tratar de descubrirlos conlleva. Otros, buscaban tesoros y no pocos salían en busca de las aventuras que esperaban vivir en asombrosas situaciones, lugares y gente que ni podían imaginar.

Parecida era la concepción de la tierra representada en el primer mapamundi griego del que se tienen referencias. Hablan de él y lo describen Heródoto y Estrabón. Lo dibujó Anaximandro (ca. 611-545 a.C.) y sabemos que el mapa abarcaba todo el ámbito de la tierra habitable con todos los mares y ríos conocidos. La tierra, según la representó Anaximandro, era un cilindro oblongo, dos veces más ancho (de Este a Oeste) que alto (de norte a sur). Se distribuía alrededor del mar Mediterráneo y estaba a su vez rodeada por un río-océano. Esta tierra cilíndrica y oblonga estaba habitada únicamente en su disco superior -al que los griegos llamaban ecúmenos, diferenciando la tierra habitada y habitable de la tierra-planeta-, y permanecía libremente suspendida en el centro de una esfera completa que era el cielo. No se caía, porque al ser equidistante de todo, no podía caer hacia ningún lado.

Imagen relacionada

        La concepción del mundo ha sido siempre muy variada para los distintos pueblos

Pasamos a comentar hechos y sobre personajes que, en distintas épocas y partes del mundo, hicieron posible el avance de nuestros conocimientos, todos y todo contribuyó a ello, cada cosa y cada personaje en su medida, y, unificados lo hicieron posible.  Hoy nosotros,  podemos aprender de todo aquello, y podemos saber como llegaron a conseguir los conocimientos que tenemos en muchos aspectos de nuestras experiencias transmitidas por estudiosos de hace muchos siglos.

Imagen relacionada

Pitágoras fundo su escuela después de viajar a Egipto para aprender matemáticas

Aquellos hombres arriesgaban sus vidas por saber, fueron muchos de los clásicos griegos los pertenecientes a este grupo viajero, y, a pesar del riesgo que ello conllevaba, viajaban a lugares lejanos buscando saber de matemáticas o de astronomía.

Todos hemos oído hablar, con más o menos frecuencia, de “Sistemas Complejos”, aquí mismo en estas páginas, la palabra sale a relucir con cierta frecuencia y, no me extraña que “la palabreja” cree una barrera, dado que, para muchas personas, “complejo” significa “complicado” y suponen automáticamente que, si un sistema es complicado, será difícil de comprender. La naturaleza posee una fuerte tendencia a estructurarse en forma de entes discretos excitables que interactúan y que se organizan en niveles jerárquicos de creciente complejidad, por ello, los sistemas complejos no son de ninguna manera casos raros ni curiosidades sino que dominan la estructura y función del universo.

Claro que, no siempre ese temor a lo difícil y complicado, está justificado y, tal suposición no es, necesariamente correcta. En realidad, un sistema complejo es tan solo un sistema que está formado por varios componentes más sencillos que ejercen entre sí una interacción mutua que, naturalmente, tiene sus consecuencias. Si miramos la imagen de arriba, vemos una inmensa y hermosa Nebulosa que está formada por una serie de “cosas” sencillas como lo son el gas hidrógeno y el polvo interestelar entre otros y, en presencia de energías, la gravedad y otros parámetros, ahí ocurren cosas tales como, el nacimiento de estrellas y la aparición de mundos…entre otras.

Los grandes triunfos de la Ciencia se han logrado, en gran medida, descomponiendo los sistemas complejos en sus componentes simples, es decir, estudiar por partes lo que allí está presente (en caso necesario, como primera aproximación, dando el paso suplementario de pretender que todos los componentes son más sencillos de lo que son en realidad) para llegar a comprender el todo.

              No siempre vemos lo que es

Nuestra realidad es que uno de nosotros percibimos, entendemos y actuamos de manera diferente en la vida. Cada uno poseemos nuestra propia realidad del mundo y de nosotros mismos. Estamos construidos a base de creencias, y esas creencias son las que influyen de manera decisiva en nuestra realidad y en nuestra conducta, por lo tanto, son las culpables de que consigamos o no nuestros objetivos. Básicamente nuestra realidad está formada por nuestras creencias.

Ninguna idea nos ha llegado de manera instantánea y depurada en todos sus conceptos, sino que, han sido ideas que han tenido que ir siendo depuradas más y más a conseguir esa realidad que buscábamos haciendo que, el esquema encontrado, se parezca lo más posible al mundo que nos rodea y que podemos observar. Esa es, en pocas palabras la historia de la Relatividad de Einstein que ajunto muchas ideas  y conceptos conseguir sus teorías que están muy cercas de lo que el mundo es.

Resultado de imagen de el valle marineris de marte

El Valle Marineris es, de hecho, el más complejo entramado de cañones fluviales de todo el Sistema Solar con una longitud de 4 100 kilómetros, una anchura próxima a los 500 y zonas en las que la profundidad alcanza algo más de los cuatro kilómetros. Aunque la primera impresión pueda ser la de que la conformación se debe a movimientos de la corteza marciana, lo cierto es que, después de muchos estudios se puede dar por hecho que fue el agua el verdadero agente que modeló lo que podríamos considerar como uno de los más bellos y extensos “Parques Nacionales” de todo el Sistema Solar.

Vía Láctea (como otras galaxias espirales) es una zona de reducción de entropía…, así se deduce de varios estudios realizados y se puede argumentar que, … Efectivamente, existe un parámetro oculto universal que crea la Entropía negativa que, como por ejemplo hacemos nosotros al reproducirnos, estamos luchando contra la Entropía destructura y creamos nuevas vidas.

 

 

“Una inteligencia que conociese, en un momento determinado, todas las fuerzas que operan en la Naturaleza, así como las posiciones momentáneas de todas las cosas que constituyen el universo, sería capaz de condensar en una sola fórmula los movimientos de los cuerpos más grandes del mundo y los de los átomos más ligeros, siempre que su intelecto sea bastante  poderoso para someter a análisis todos los datos; para él nada sería incierto, el pasado y el futuro estarían presentes ante sus ojos.”

 

 

Inmensas galaxias cuajadas de estrellas, nebulosas y mundos. Espacios interestelares en los que se producen transmutaciones de materia que realizan el asombroso “milagro” de convertir unas cosas en otras distintas. Un Caos que lleva hacia la normalidad. Estrellas que explosionan y riegan el espacio de gas y polvo constituyentes de materiales en el que se forjarán nuevas estrellas, nuevos mundos y nuevas formas de vida. Así es como ocurren las cosas en este universo nuestro que no hemos llegado a conocer. De hecho, ni sabemos a ciencia cierta si su “nacimiento” fue debido, realmente, al Big Bang.

Me gustaría continuar con el resumen de lo que hemos tratado durante todo el año pero… ¡Es dificil! “El Tiempo” me lo impide y, ya seguiremos hablando de todos estos temas interesantes en el año venidero que, nos dará muchas sorpresas con nuevos descubrimientos e inventos  que nos llevan a ese futuro que nunca podremos conocer.

emilio silvera

Entrevista científica

Autor por Emilio Silvera    ~    Archivo Clasificado en Entrevista científica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Reportaje de prensa: Entrevista en el País a  Viatcheslav Mukhanov | Físico teórico
Resultado de imagen de Caer en un agujero negro
            “Si caes en un agujero negro no sientes nada”

El cosmólogo ruso explica por qué los humanos le debemos la vida a las fluctuaciones cuánticas

 

 

Viatcheslav Mukhanov, después de la entrevista.

                      Viatcheslav Mukhanov

A finales de los años setenta, en la Unión Soviética, Vitali Guínzburg, uno de los creadores de la bomba atómica, le sugirió a uno de sus estudiantes que se dedicase a la cosmología. Era un campo emergente que intentaba responder algunas de las preguntas más importantes para la humanidad, por ejemplo, cómo se originó el universo. Era solo un “bla, bla, bla, no había ninguna observación experimental”, ni visos de conseguirla, recuerda el físico teórico Viatcheslav Mukhanov, quien, a pesar de ello, decidió seguir el consejo de su superior.

Resultado de imagen de Instituto de Física y Tecnología de Moscú,

En 1981, cuando aún era un estudiante de doctorado en el Instituto de Física y Tecnología de Moscú, Mukhanov publicó junto a su compañero Gennady Chibisov su teoría de que las galaxias se originaron por fluctuaciones cuánticas. Esas irregularidades de densidad a escala microscópica surgieron poco después del Big Bang, se amplificaron durante los primeros momentos de expansión del universo y evolucionaron durante 13.700 millones de años hasta transformarse en los cientos de miles de millones de galaxias agrupadas en cúmulos y supercúmulos que en la actualidad conforman el universo.

En 2013, el satélite Planck realizó el mapa más detallado del fondo cósmico de microondas, la luz más antigua del universo. En sus imágenes se apreciaban pequeñas diferencias de temperatura cuya explicación más plausible eran las fluctuaciones cuánticas que Mukhanov había predicho tres décadas antes.

Resultado de imagen de Tratando de recibir un mensaje extraterrestre

Si nos enviasen un mensaje extraterrestre de vuelta, el retardo sería de 48.000 años. Es imposible comunicarse

 

Mukhanov (Kanash, extinta URSS, 1952) emigró a Europa tras la caída de la URSS y actualmente es catedrático de cosmología en la Universidad Ludwig-Maximilians de Múnich (Alemania). Ha ganado algunos de los galardones más importantes en su área y en 2016 recibió, junto a Stephen Hawking, el Premio Fronteras del Conocimiento. De visita en España para ofrecer una conferencia en la Fundación BBVA, Mukhanov explica en esta entrevista por qué confirmar su nueva teoría puede estar más allá de nuestras capacidades como especie.

Pregunta. ¿Cuándo surgió su interés por la ciencia?

Respuesta. Cuando estaba en el colegio. Mis padres eran los dos de clase trabajadora y mi educación fue primordialmente autodidacta. Compraba libros. En la Unión Soviética, todos los libros se publicaban en grandes tiradas. Los había hasta en las ciudades provinciales, porque nadie quería comprarlos. Había libros de teoría cuántica de campos o gravitación con una tirada mucho mayor que los best sellersactuales. Después me mudé a Moscú para estudiar en el internado de Andréi Kolmogorov [un famoso matemático ruso], donde preparábamos el examen de acceso a la universidad.

P. ¿Cómo era formarse como científico en la URSS?

R. La URSS era un país horrible. Por ejemplo, necesitabas permiso para vivir en Moscú y sin él no podías trabajar en la ciudad. Era como conseguir un título aristocrático en la Edad Media. Hasta tener un teléfono era complicado. Tenías que ponerte a la cola y esperar 10 años. En 1992 me mudé a Suiza. Pensé que serían solo dos años. Pero, después, en Rusia, las cosas tomaron un cariz no muy bueno, especialmente para la ciencia. Fue el latrocinio de todo. Y continúa ahora.

Resultado de imagen de Las semillas de la vida vinieron del espacio

… pruebas de que los meteoritos contienen ciertos bloques de construcción del ADN, la molécula que porta las instrucciones genéticas para la vida.

 

 Resultado de imagen de Ingredientes para la vida en el Espacio Interestelar

Descubrimos las semillas de las que surgen las galaxias, los planetas, las estrellas y, finalmente, nuestra vida

 

P. ¿Cómo formuló su teoría de las fluctuaciones cuánticas?

En 1978 mi supervisor decidió emigrar fuera de la URSS. Necesitaba un nuevo supervisor y ese fue Guínzburg. En 1979 no tenía ni idea de qué hacer. Se me acercó Chibisov y empezamos a trabajar. Pensamos en cómo usar la mecánica cuántica en el universo temprano. Nos dimos cuenta de que, si tomas el modelo de expansión acelerada [del universo], que fue llamado inflación dos años después, puedes emplear las fluctuaciones cuánticas, amplificarlas y tener, más o menos, una explicación válida para el origen de la estructura del universo. El origen de las semillas de las que surgen las galaxias, los planetas, las estrellas y, finalmente, nuestra vida.

P. ¿Cómo pueden unas fluctuaciones a escala cuántica generar todas las galaxias?

Resultado de imagen de Las fluctuaciones cuanticas formaron las galaxias

R. La mecánica cuántica impide conocer simultáneamente la posición y la velocidad de un fragmento determinado de materia. Esto hace que sea imposible que haya un reparto perfectamente homogéneo de la materia, hay pequeñas anomalías inevitables. Las fluctuaciones cuánticas permiten explicar cómo una pequeña burbuja de milésimas de gramo puede expandirse aceleradamente hasta generar materia suficiente para crear 100.000 millones de galaxias.

P. Si es tan fácil que aparezcan universos, ¿es posible que existan muchos más?

R. Puede que haya muchos. Pero no hay forma de confirmar la teoría cosmológica del multiverso. Al menos en los próximos 10.000 millones de años. El campo de los multiversos no es física, la física supone predecir y después medir. Este campo está en los límites de la metafísica, es imposible falsar sus predicciones.

Resultado de imagen de Trapitt 1 y sus siete planetas

La NASA anunció el descubrimiento de 7 nuevos planetas del tamaño de la Tierra y tres de ellos podrían ser habitables.

Encontrar un sistema solar con siete “tierras” es un descubrimiento menor

 

P. Solo sabemos de qué está hecho el 4% del universo, el resto es materia y energía desconocidas. ¿Cuándo cree que romperemos esta barrera?

R. No se puede decir eso. Es una afirmación un poco exagerada. Hay que diferenciar entre lo cuantitativo y lo cualitativo. Si digo que casi el 100% del universo es hidrógeno y helio, podrías pensar: ¿en qué lugar quedamos todos nosotros? Somos una fracción de un uno por ciento. Pero esa fracción, en la que están los elementos pesados de los que estamos hechos, es mucho más importante que el resto. Por eso no se puede decir que no entendemos solo el 4% del universo. El 96% restante, compuesto por materia oscura y energía oscura, son una trivialidad.

P. ¿En qué trabaja ahora mismo?

Resultado de imagen de La singularidad de un agujero negro

R. En las singularidades. Por ejemplo, los agujeros negros. Ya unificamos la mecánica cuántica con la relatividad general con las perturbaciones cuánticas a nivel cosmológico. Pero ahora, si caes en un agujero negro, debes unificarlo usando métodos diferentes y nadie sabe cómo. Es la teoría del todo. Intentamos entender la estructura que hay dentro de un agujero negro. De acuerdo con la relatividad general, el interior de un agujero negro es enorme. Si cayeras en un agujero negro no sentirías nada, más allá de perder la comunicación con el amigo que dejaste en el exterior. O, mejor dicho, seguirías recibiendo información suya pero él no podría escucharte. Una vez cruzas el horizonte del agujero negro, si es lo suficientemente grande, te encontrarás en otro universo que evoluciona de forma separada al nuestro.

P. ¿Seguirías vivo?

R. Por algún tiempo, sí. Si se trata de un agujero negro muy grande podrías seguir vivo mucho tiempo, incluso 100 años, si el agujero tiene un diámetro de 100 años luz. Pero si caes en un agujero negro del tipo que formaría nuestro Sol, con apenas tres kilómetros de diámetro, morirías en una fracción de segundo. La mayoría de la gente piensa que los agujeros negros son como una caja negra donde hay un centro. Pero un agujero negro no tiene centro. Más allá del horizonte es como un universo en contracción. En el centro, el tiempo termina. Gracias a la energía oscura, podrías entrar en otro universo. Por ejemplo, si hay energía oscura, puedes hacer que la contracción se detenga y podrías ser expulsado en otro universo. Pero perderías toda comunicación. Por el momento, esto es especulación, no hechos.

P. ¿Podremos explorar algún día este tipo de cuerpos para conocer su estructura?

Resultado de imagen de La singularidad de un agujero negro

R. No. Solo si tienes el coraje suficiente para dejarte caer en uno. Un agujero negro es una puerta en una única dirección. No puedo imaginarme cómo comunicarse desde dentro de un agujero negro hacia afuera. De alguna forma estos objetos son la frontera de nuestra fantasía.

P. ¿Qué le parece el descubrimiento reciente de un sistema solar con siete tierras?

R. Es un descubrimiento menor. ¿Qué hay de especial en la vida? No debemos pensar que somos excepcionales. Nuestro planeta es como una pequeña partícula de suciedad que llamamos Tierra, y hay una pequeña cubierta sobre ella que llamamos gente. No hay nada inusual. El descubrimiento de los exoplanetas es fantástico, pero no es sorprendente. Lo chocante sería que no existiesen.

Resultado de imagen de Inmigrantes hacinados en campamentos en toda Europa

 

Lo que está sucediendo con los inmigrantes en Europa y EE UU es peor que volver a la Edad Media.

 

Resultado de imagen de Vida extraterrestre en otros mundos

 

P. ¿Cree que encontraremos vida inteligente en el universo?

R. Cuando era pequeño me interesaban muchos estos temas. En 1974 mandaron unas señales de radio a un cúmulo globular. Si nos enviasen un mensaje de vuelta, el retardo sería de 48.000 años. Es imposible comunicarse. En este sentido, deberíamos ser más modestos.

P. Usted trabaja en Alemania desde hace décadas, ¿qué le parecen los movimientos contrarios a la inmigración en este país y en otros?

R. Es como una vuelta a la mentalidad de la Edad Media. [Ángela] Merkel hizo un buen movimiento al acoger inmigrantes, pero lo que falta es una política. Deben ser incorporados en la sociedad. No puedes tenerlos en campos. Cuando este tipo de cosas ocurrieron en Oriente Medio desataron una guerra civil. Recordemos el final del Imperio Romano. Los godos cruzaron el Danubio y empezaron a reclamar lo que les prometieron los romanos, pero no se lo dieron debido a la corrupción. No puedes cerrar el país a los inmigrantes. No puedes hacer este tipo de estupideces. Sobre todo señalar a seis o siete países, como en el caso de EE UU. Ni siquiera es una mentalidad de la Edad Media, es anterior. Es horrible.

La gran aventura de estar aquí para poder “ver” tantas...

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lo cierto es que, sin excepción, todo es una gran aventura que comienza cuando nacemos. Sin embargo, no sabemos como puede terminar pero, eso sí, todas ellas son emocionantes y conllevan los misterios de fascinantes incertidumbres, nunca sabremos lo que pasará “mañana” toda vez que no hemos llegado a comprender, en toda su plenitud, a ninguna de estas historias e incluso, de algunas, desconocemos hasta su comienzo y, por ello, nos vemos en la necesidad de inventarlo. Claro que, lo que sucede primero no es necesariamente el principio.

Imagen relacionada

    Con ésta atmósfera ígnea, la Tierra todavía se estaba enfriando, ya existían las primeras bacterias

Esta es la Imagen de la Tierra, nuestro planeta que desde hace cuatro mil millones de años da cobijo a la Vida. Su clima y su topografía varían continuamente, como las especies que viven en él. Y lo que es más espectacular,  hemos descubierto que todo el universo de estrellas y galaxias está en un estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan de otros hacia un futuro que será muy diferente del presente. Ahora sabemos que, vivimos en un tiempo prestado.

Pero, a pesar del cambio incesante y la dinámica del universo visible, existen aspectos de la fábrica del Universo misteriosos en su inquebrantable constancia. Son esas misteriosas cosas invariables las que hace de nuestro Universo el que es y lo distinguen de otros mundos que pudiéramos imaginar. Cuando se conocen estas misteriosas constantes, podemos percibir que es como si hubiera un hilo dorado que teje una continuidad a través del espacio-tiempo que, inexorable, transcurre en la Naturaleza. Y, tales constancias, nos llevan a pensar que todas las cosas son iguales a lo largo del vasto Universo. Que fueron y serán las mismas en otros tiempos además de hoy.

La velocidad de la luz en el vacío, c, es una de esas misteriosas constancias que perduran a través del tiempo y del espacio, nunca varía. De hecho, quizá sin un substrato semejante de realidades  invariables no podrían existir corrientes superficiales de cambio ni ninguna complejidad de mente y materia. La velocidad de la luz, c, es una constante universal que marca el límite de velocidad del universo en el que nada, ninguna información, puede transmitirse más rápida que la velocidad de la luz. Einstein nos demostró que la velocidad de la luz en el vacío debería actuar como ese límite último de velocidad.

Resultado de imagen de La velocidad de la luz en el vacío

Con razón nos decía Planck:

La ciencia no puede resolver el misterio final de la Naturaleza. Y esto se debe a que, en el último análisis, nosotros mismos somos parte del misterio que estamos tratando de resolver.” 

 

Y, quizás por eso precisamente, será necesario que contactemos con otros seres inteligentes, con otras Civilizaciones de fuera de la Tierra para que, nos podamos conocer mejor, ya que, al compararnos con otras especies del Universo, podremos ver con diáfana claridad, quiénes somos que, precisamente, tiene mucho que ver con las constantes del universo, ya que, de ser distintas, no estaríamos aquí.

El mundo que nos rodea es así porque está conformado por esas constantes de la Naturaleza que hacen que las cosas sean como las podemos observar. Le dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la naturaleza. ¿Recordáis el 137? Ese número puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son, pero la razón de sus valores sigue siendo un secreto profundamente escondido.

¡Nos queda mucho por descubrir! Pero, es cierto, que algo hemos avanzado y sabemos algunas cosas como, por ejemplo que…

Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electróncrea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro,llamado el radio clásico del electrón, dado por r= e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.

Imagen relacionada

“La creciente distancia entre la imaginación del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” 

El mundo que nosotros percibimos es “nuestro mundo”, el verdadero es diferente y como nos dice Planck en la oración entrecomillada, cada vez estamos más cerca de la realidad, a la que, aunque no nos pueden llevar nuestros sentidos, si no llevarán la intuición, la imaginación y el intelecto.

Está claro que la existencia de unas constantes de la Naturaleza nos dice que sí, que existe una realidad física completamente diferente a las realidades que la Mente humana pueda imaginar. La existencia de esas constantes inmutables dejan en mal lugar a los filósofos positivistas que nos presentan la ciencia como una construcción enteramente humana: puntos precisos organizados de una forma conveniente por una teoría que con el tiempo será reemplazada por otra mejor, más precisa. Claro que, tales pensamientosm quedan fuera de lugar cuando sabemos por haberlo descubierto que, las constantes de la naturaleza han surgido sin que nosotros las hallamos invitado y, ellas se muestran como entidades naturales que no han sido escogidas por conveniencia humana.

 Las distintas constantes del Universo han sido puestas a prueba para comprobar si han cambiado a lo largo del tiempo.

Los cuásares están entre los objetos más distantes en el universo. La palabra cuásar o “quasar” es una contracción de las palabras “quasi” y “stellar”, por ello son llamados así por su apariencia estelar. El cuásar más lejano hasta ahora es SDSS 1030 +0524 y se halla a unos 13000 millones de años-luz de distancia apenas unos 700 millones después de nacer el universo. La medición de la distancia de estos objetos se toma de la velocidad de alejamiento que presentan, dato que nos lo da el desplazamiento al rojo (z). Se cree que un cuásar nace cuando se fusionan dos galaxias y sus agujeros negros centrales quedan convertidos en este potente y energético objeto.

Resultado de imagen de El cuásar 3C191 fue localizado

El cuásar 3C191 fue localizado con un desplazamiento al rojo de 1,95 y por eso su luz salió cuando el universo tenía sólo una quinta parte de su edad actual, hace casi once mil millones de años, llevando información codificada sobre el valor de la constante de estructura fina en ese momento. Con la precisdión de las medidas alcanzables entonces, se encontró que la constante de estructura fina era la misma entonces que ahora dentro de un margen muy pequeño que se puede deber a la imprecisión de la medida:

α (z = 1,95/α(z = 0) = 0,97 ± 0,05

La Constante de la Estructura Fina - www.pedroamoros.com

       La Constante de la Estructura Fina

Poco después , en 1967, Bahcall y Schmidt observaron un par de líneas de emisión de oxígeno que aparecen en el espectro de cinco galaxias que emiten radioondas, localizadas con un desplazamiento hacia el rojo promedio de 0,2 (emitiendo así su luz hace unos dos mil millones de años: Aproximadamente la época en que el reactor de Oklo estaba activo en la Tierra y obtuvieron un resultado consistente con ausencia de cambio en la constante de estructura fina que era aún diez veces más fuerte:

α (z = 0,2)/α(z = 0) = 1,001 ± 0,002

Estas observaciones excluían rápidamente la propuesto por Gamow de que la constante de estructura fina estaba aumentando linealmente con la edad del universo. Si hubiese sido así, la razón α(z = 0,2)/α(z = 0) debería haberse encontrado con un valor próximo a 0,8.

[nebulosa20111%255B3%255D.jpg]

Una de las cuestiones más controvertidas en la cosmología es porque las constantes fundamentales de la naturaleza parecen finamente ajustadas para la vida. Una de estas constantes fundamentales es la constante de estructura fina o alfa, que es la constante de acoplamiento de la fuerza electromagnética (usualmente denotada g, es un número que determina la fuerza de una interacción) y equivale a 1/137,03599911.

La ilustración muestra cómo los rayos X de un cuasar distante, son filtrados al pasar por una nube de gas intergaláctico. Midiendo la cantidad de la disminución de la luz debido al oxígeno y otros elementos presentes en la nube los astrónomos pudieron estimar la temperatura, densidad y la masa de la nube de gas  (el cuasar PKS 2155-304).

Actualmente, el más potente método utilizado en estos experimentos dirige todo su potencial en la búsqueda de pequeños cambios  en la absorción por los átomos de luz procedentes de cuásares lejanos.  En lugar de considerar pares de lineas espectrales  en dobletes del mismo elemento, como el silicio,  considera la separación entre líneas causada por la absorción de la luz del cuásar por diferentes elementos químicos en nubes de gas situadas entre el cuásar y nosotros. Y, a todo esto, las cuatro fuerzas fundamentales siguen estando presentes.

No debemos descartar la posibilidad de que, seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el Universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que se cree la escala logarítmica de tamaño desde el átomo a las galaxias.  Todas las estructuras del Universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras, la  atracción (Expansión) y la repulsión (contracción).  Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla, así, el resultado es la estabilidad de la estrella.  En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos.  Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, ћ, c, G y mprotón.

α = 2πeћc ≈ 1/137
αG = (Gmp2)ћc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.  Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el Universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales.  Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios.  Los átomos pueden tener propiedades diferentes.  La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la Naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas, no se puede llegar a saber porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Es un gran mérito por nuestra parte que, nuestras mentes, puedan haber accedido a ese mundo mágico de la Naturaleza para saber ver primero y desentrañar después, esos números puros y adimensionales que nos hablan de las constantes fundamentales que hacen que nuestro Universo sea como lo podemos observar.

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137.  Ese número encierra más de lo que estamos preparados para comprender, me hace pensar y mi imaginación se desboca en múltiples ideas y teorías.  Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”.  El gran físico creía que no podríamos llegar a las verdades de la naturaleza solo por la observación y la experimentación.  Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.

“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben.  En el cartel solo pondría esto: 137.  Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.

Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba.  La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón,  por el producto de la velocidad de la luz y la constante de Planck.

Lo más notable de éste número es su adimensionalidad.  La velocidad de la luz, c, es bien conocida y su valor es de 299.792.458 m/segundo, la constante de Planck racionalizada, ћ, es ћ/2 = 1,054589 ×10 julios/segundo, la altura de mi hijo Emilio, el peso de mi amigo Kike (hay que cuidarse), etc., todo viene con sus dimensiones.  Pero resulta que cuando uno combina las magnitudes que componen alfa ¡se borran todas las unidades! El 137 está sólo: se exhibe desnudo a donde va.  Esto quiere decir que los científicos del undécimo planeta de una estrella lejana situada en un sistema solar de la Galaxia Andrómeda, aunque utilicen quién sabe qué unidades para la carga del electrón y la velocidad de la luz y que versión utilicen para la constante de Plancl,  también les saldrá el 137.  Es un número puro.  No lo inventaron los hombres.  Está en la naturaleza, es una de sus constantes naturales, sin dimensiones.

La física se ha devanado los sesos con el 137 durante décadas.  Werner Heisember (el que nos regaló el Principio de Incertidumbre en la Mecánica Cuántica), proclamó una vez que, todas las fuentes de perplejidad que existen en la mecánica cuántica se secarían si alguien explicara de una vez el 137.

¿Por qué alfa es igual a 1 partido por 137? El 137 es un número primo. Su inversa, 1/137, es un valor muy cercano al de la constante alfa, que (según la electrodinámica cuántica) caracteriza la interacción entre fotones y electrones. El nombre técnico de alfa es “constante de estructura fina“, y es una de las constantes físicas cuya predicción teórica mejor coincide con los datos experimentales.

Los físicos han demostrado que el valor de alfa es el que tiene que ser para que exista un Universo como el nuestro. De hecho, si alfa variara apenas un poco (menos del 5%), el carbono no se produciría en los hornos estelares y, la vida, tal como la concemos, estaría ausente.

Nosotros, los humanos del planeta Tierra, sabemos de todas esas cuestiones y la última lección que aprendemos de la manera en que números puros como α definen el mundo es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e identificamos con α, es una combinación de la carga del electrón, e, la velocidad de la luz, c, y la constante de Planck, h. Inicialmente podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si c, h y c cambian de modo que sus valores que tienen unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas pero el valor de alfa (α) permaneciera igual, este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la Naturaleza. Si se duplica el valor de todas las masas, no se puede llegar a saber porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

¡Qué cosas! Tiene la Naturaleza que todo lo hace de manera que nosotros estemos aquí. Bueno, al menos así lo parece.

emilio silvera