lunes, 27 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Micro Mundo de los Átomos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Resultado de imagen de El misterioso mundo cuántico

Cuando por primera vez se puso este trabajo, dio lugar a comentarios que nos llevan hasta la realidad de hasta donde, resulta para nosotros incomprensible ese micro mundo de la cuántica, ese “universo” infinitesimal donde ocurren cosas que, no llegamos a comprender.

Sí, existe otro mundo que no vemos pero…, ¡está en éste!

La mecánica cuántica domina en el micromundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua.  Es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

 

Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza para describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros. Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.

http://elojocondientes.files.wordpress.com/2011/03/la-tierra-no-es-redonda.png

La Gravedad hace que la Tierra se vea como un mapa. Es una vista altamente exagerada, pero ilustra a las claras cómo la atracción gravitatoria que se manifiesta desde la masa de roca bajo nuestros pies no es la misma en todo lugar. La gravedad es más fuerte en áreas amarillas y más débil en las azules. (Imagen tomada por el satélite Goce)

Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.

¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son.

File:Observable universe logarithmic illustration.png

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33  centímetros, más joven que el Tiempo de Planck, 10-43 segundos y supere la temperatura de Planck de 1032 grados.  Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

Resultado de imagen de La naturaleza cuántica de la gravedad

En los intentos más recientes de crear una teoría nueva para describir la naturaleza cuántica de la gravedad ha emergido un nuevo significado para las unidades naturales de Planck. Parece que el concepto al que llamamos “información” tiene un profundo significado en el universo. Estamos habituados a vivir en lo que llamamos “la edad de la información”.  La información puede ser empaquetada en formas electrónicas, enviadas rápidamente y recibidas con más facilidad que nunca antes.

Los tiempos cambian y la manera de informar también, lejos nos queda ya aquellos toscos aparatos impresores del pasado, ahora, en espacios muy reducidos, tenemos guardada más información que antes había en una colección de libros.

Nuestra evolución en el proceso rápido y barato de la información se suele mostrar en una forma que nos permite comprobar la predicción de Gordon Moore, el fundador de Intel, llamada ley de Moore, en la que, en 1.965, advirtió que el área de un transistor se dividía por dos aproximadamente cada 12 meses. En 1.975 revisó su tiempo de reducción a la mitad hasta situarlo en 24 meses. Esta es “la ley de Moore” cada 24 meses se obtiene una circuiteria de ordenador aproximadamente el doble, que corre a velocidad doble, por el mismo precio, ya que, el coste integrado del circuito viene a ser el mismo, constante.

grid computing

Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros.  Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2.  Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.

 

La información llega a todos los rincones del Mundo

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias.

Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

α = 2πehc ≈ 1/137

αG = (Gmp2)/ hc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.

Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Resultado de imagen de Números puros adimensionalesResultado de imagen de Números puros adimensionales

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos. Con los adelantos actuales, estudiando la luz lejana de cuásares muy antiguos, se estudia si la constante de estructura fina (α) ha variado con el paso del tiempo.

Resultado de imagen de Cuásares captados por el Hubble

“Detalles del cuásar 3C 273 observado con el Telescopio Espacial Hubble. La imagen de la izquierda muestra claramente lo brillante y compacto que es el objeto, lo que hizo que pareciese una estrella. Para conseguir la imagen de la izquierda se utilizó un instrumento (un coronógrafo) que bloqueaba la luz del cuásar, dejando ver su galaxia anfitriona. En ambas tomas se aprecia el chorro de gas a alta velocidad proveniente del agujero negro súper-masivo central. Una de las componentes de la emisión en radio de 3C 273 coincide perfectamente con este chorro de gas. | Crédito de la imagen: HST / NASA / ESA / STScI.”

El Universo es muy grande, inmensamente grande y, probablemente, todo lo que nuestras mentes puedan imaginar podrá exisitir en alguna parte de esas regiones perdidas en las profundidades cósmicas, en los confines del Espacio-Tiempo, en lugares ignotos de extraña belleza en los que otros mundos y otras criaturas tendrán, sus propios habitats que, siendo diferente al nuestro, también, sus criaturas, estarán buscando el significado de las leyes del Universo.

emilio silvera

¡La Física! Los Caminos de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (38)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Cien mil millones de neuronas y conexiones sin fin

“Esta claro que la mayoría de lo que entendemos como nuestra vida mental implica la actividad del sistema nervioso, especialmente el cerebro. Este sistema nervioso está compuesto por miles de millones de células, las más simple de las cuales son las células nerviosas o neuronas. ¡Se estima que debe haber cien mil millones de neuronas en nuestro sistema nervioso! Hay tanto por descubrir.”

Resultado de imagen de Las aguas claras y cantarinas del río y las piedras pulidas de su lecho
                                                              ¡Todas las cosas son!
El Tiempo, aunque a ciencia cierta no sabemos lo que es, sí sabemos que nos permite contar historias de hechos pasados, buscar las huellas que dejaron en nuestro mundo los pobladores de otras civilizaciones, los cambios habidos en la Naturaleza, y, durante su inexorable transcurrir, van pasando cosas, se están produciendo cambios, y, la Entropía convierte lo nuevo en viejo, mientras que, esa otra clase de Entropía negativa, crea nuevas estrellas, nuevos mundos y nuevas criaturas.
Pero esas son otras historias y, el día de hoy hablaremos del…

¡Preludio a la relatividad! -Las ecuaciones de Lorentz-Fitzgerald- Éste último pensaba y decía cosas comos estas:

 

 

              George FitzGerald

 

“… la telegrafía debe mucho a Euclides y otros geómetras puros, al griego y al árabe que fueron matemáticos magistrales que inventaron nuestra escala de numeración y el álgebra, de Galileo Newton, que fundaron la dinámica, para que Newton y Leibniz inventaran el cálculo, para que Volta descubriera la galvánica bobina, a Oersted quien descubrió la acción magnética de las corrientes, que a Ampère descubriera las leyes de su acción, a Ohm que descubrió la ley de la resistencia de los cables, a Wheatstone, de Faraday, a Lord Kelvin, a Clerk Maxwell, Hertz a… Sin los descubrimientos, invenciones, y las teorías científicas resumen de estos hombres la telegrafía y otras maravillas y conocimientos…  ¡serían imposibles ahora!”

Hendrik Antoon Lorentz.jpg

    Hendrik Antoon Lorentz

 

Se le deben importantes aportaciones en los campos de la termodinámica, la radiación, el magnetismo, la electricidad y la refracción de la luz.  Formuló conjuntamente con George Francis FitzGerald una teoría sobre el cambio de forma de un cuerpo como resultado de su movimiento; este efecto, conocido como “contracción de Lorentz-FitzGerald”, cuya representación matemática de ella es conocida con el de transformación de Lorentz,  fue una más de las numerosas contribuciones realizadas por Lorentz al desarrollo de la teoría de la relatividad.

Fue, al igual que Henri Poincaré,  uno de los primeros en formular las bases de la teoría de la relatividad(frecuentemente atribuida primaria o solamente a Albert Einstein).  Fue ganador del Premio Nobel de Física en 1902, junto con su pupilo Pieter Zeeman,  por su investigación conjunta sobre la influencia del magnetismo en la radiación, originando la radiación electromagnética.  fue premiado con la Medalla Rumford en 1908 y la Medalla Coplay en 1918. Lorentz era hombre humilde y sencillo y le gustaba resaltar los logros de los demás:

 

 

 

Michael Faraday

 

“Como es probable que sepas, gran parte de nuestro conocimiento sobre la electricidad y el magnetismo se basa en los experimentos ingeniosísimos realizados por Michael Faraday en la primera parte del siglo XIX. Faraday era un experimentador genial, y descubrió numerosos fenómenos desconocidos hasta entonces, como la mutua. Estableció diversas leyes, pero no pudo elaborar una teoría global acerca del electromagnetismo porque sus conocimientos matemáticos no iban más allá de la trigonometría: hacía falta un teórico capaz de amalgamar el conocimiento adquirido por Faraday y otros experimentadores, como Hans Christian Ørsted, en una teoría general”.

Ese teórico era otro genio, James Clerk Maxwell, que estableció un conjunto de cuatro ecuaciones diferenciales bellísimas que describían de una manera extraordinariamente precisa los resultados de casi todos los experimentos de Faraday, Ørsted y compañía. Lo más sorprendente, el propio Maxwell y sus contemporáneos, fue una de las consecuencias inevitables de sus ecuaciones: la existencia de perturbaciones del campo eléctrico y el magnético que se propagaban por el espacio.”

 

 

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

 

 

Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

 

 

 

AetherWind.svg

                                                                                 experimento conocido de Michelson-Morley

Todo aquello fue posible gracia a que en 1893, el físico irlandés George Francis FitzGerald emitió una hipótesis explicar los resultados negativos del experimento conocido de Michelson-Morley.  Adujo que toda materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso.  Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

Parecía como si la explicación de FitzGerald insinuara que la Naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el de “contracción de FitzGerald”, y su autor formuló una ecuación para el mismo que, referido a la contracción de un cuerpo móvil, fue predicha igualmente, y de manera independiente, por H.A.Lorentz (1853-1928) de manera que, finalmente, se quedaron unidas como “Contracción de Lorentz-Fitz Gerald”.

 

 

 

 

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

 

 

 

 

 

 

La dilatación del tiempo es el fenómeno predicho por la teorçia de la relatividad,  por el cual un observador observa que el reloj de otro (un reloj físicamente idéntico al suyo) está marcando el tiempo a un ritmo menor que el que mide su reloj. Esto se suele interpretar normalmente como que el tiempo se ha ralentizado para el otro reloj, pero eso es cierto solamente en el contexto del sistema de referencia del observador. Localmente, el tiempo siempre está pasando al mismo ritmo. El fenómeno de la dilatación del tiempo se aplica a cualquier proceso que manifieste cambios a través del tiempo.

fórmula para determinar la dilatación del tiempo en la relatividad especial es:

 \Delta t = \gamma \ \Delta t_0 = \frac{\Delta t_0}{ \sqrt{1-\frac{v^2}{c^2}}} \,

 

Donde:

 

 \Delta t_0 \, es el intervalo temporal entre dos eventos co-locales para un observador en algún sistema de referencia inercial. (por ejemplo el número de tic tacs que ha hecho su reloj)
 \Delta t \, es el intervalo temporal entre los dos mismos eventos, tal y como lo mediría otro observador moviéndose inercialmente con velocidad v, respecto al primer observador
 v \, es la velocidad relativa entre los dos observadores
 c \, la velocidad de la luz y
 \gamma = \frac{1}{\sqrt{1-v^2/c^2}} \, es el también conocido como factor de Lorentz

De esta manera la duración del un ciclo de reloj del reloj que se mueve se ha incrementado: esta “funcionando más despacio”. Según lo indicado las transformaciones de Lorentz  pueden ser utilizadas para casos más generales.

Postulados de la Relatividad Especial

 

  • Primer postulado:  Principio especial de relatividad: Las leyes de la física son las mismas en todos los sistemas de referencia inerciales. En otras palabras, no existe un sistema inercial de referencia privilegiado, que se pueda considerar como absoluto.
  • Segundo postulado: Invariancia de c: La velocidad de la luz en el vacío es una constante universal, c, que es independiente del movimiento de la fuente de luz.

 

 

Aquí podemos ver el tiempo que tarda la luz en llegar desde la Tierra a la Luna situada a más de 380.000 Km

 Einstein que se apropió de aquella idea (de Lorentz) y, además, la amplió al contraer también el Tiempo. La contracción de la longitud ha sido verificada en el diseño, por ejemplo, del acelerador lineal de la Universidad de Stanford. Las partículas salen con una velocidad v = 0,999975c, por tanto, metro de tubo acelerador es “visto” por los electrones como 144 metros. Si, según la expresión anterior, un cuerpo con masa se moviera a la velocidad c desaparecería por contracción de su longitud para un observador en reposo, lo cual refuerza el carácter inalcanzable de velocidad. Si los objetos con masa alcanzan este límite de velocidad la estructura básica de la realidad se desvanece. Por otra parte, vemos que cualquier influencia que afecte al tiempo también lo hará con el espacio. Esto no nos debe de extrañar, ya que ambas magnitudes se encuentran íntimamente relacionadas por lo único que se nos mantiene invariable: la velocidad de la luz. En relatividad hablamos de espacio-tiempo ya que son inseparables.

A la contracción, Einstein, le dio un marco teórico en la teoría especial de la relatividad. En teoría, un objeto de longitud /0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud /0 , donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

Un objeto que se moviera a 11 km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 km/seg. (la mitad de la velocidad de la luz, c), sería del 15%; a 262.000 km/seg. (7/8 de la velocidad de la luz), del 50% Es decir, que una regla de 30 cm. que pasara ante nuestra vista a 262.000 km (seg., nos parecería que mide sólo 15’54 cm…, siempre y cuando conociéramos alguna manera medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 km/seg., en números redondos, su longitud, en la dirección del movimiento, sería cero.  Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse en el Universo. (Pero ¿existir también?).

El físico holandés Hendrik Antón Lorentz, como hemos dicho, promovió ésta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas), se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula reducir su volumen, aumentaría su masa.  Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitz Gerald, debería crecer en términos de masa.

Resultado de imagen de Una partícula aumenta su masa si viaja a la velocidad de la luz

        Un objeto que corra a velocidades cercanas a la de la luz, verá incrementada su masa

Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación FitzGerald sobre el acortamiento. A 149.637 kilómetros por segundo, la masa de un electrónaumentaría en un 15%; a 262.000 km/seg., en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita.  Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita? El efecto FitzGerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas las “ecuaciones Lorentz-FitzGerald.”

Mientras que la contracción FitzGerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas si podía serlo…, aunque indirectamente. De hecho, el muón, tomó 10 veces su masa original fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores, han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

                                                                  Nada puede viajar a la velocidad de la luz

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial que, aunque mucho más amplia, recoge la contracción de FitzGerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

¡Qué cosas!

Resultado de imagen de La persistencia de la memoria

                                    El Tiempo pasa inexorable pero… ¡La memoria queda!

Algunas veces pienso que, los artistas en general, y los poetas en particular, tendrían que adaptar e incluir a sus esquemas artísticos y poéticos, los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano.

Estos adelantos científicos serían así coloreados con las pasiones humanas y transformadas, de alguna manera, en la sangre, y por qué no, los sentimientos de la naturaleza humana.

Posiblemente, de haberlo hecho así, el grado general de conocimiento sería mayor.

emilio silvera

¿La sustancia cósmica? ¡La semilla de la materia!

Autor por Emilio Silvera    ~    Archivo Clasificado en La ignorancia nos acompaña siempre    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Large_cosmos20130404-2-vgdwr3

 

                                                           Debajo de ésta imagen se puede leer:

“Hallan indicios de materia oscura unida al Cosmos. La evidencia muestra nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares. Un detector de rayos cósmicos de dos mil millones de dólares en la Estación Espacial Internacional halló la huella de algo que pudiera ser la materia oscura. la misteriosa sustancia que se cree mantiene unido al cosmos.”

“Pero los primeros resultados del Espectrómetro Magnético Alfa (AMS, por sus siglas en inglés) son casi tan enigmáticos como la materia oscura en sí, la cual nunca ha sido observada directamente. Muestran evidencia de nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares, anunciaron un miércoles científicos en el laboratorio europeo de física de partículas cerca de Ginebra.”

 

Como no me canso de repetir, cualquiera de estas noticias nos vienen a decir que, de la “materia oscura”,  nada sabemos. Sería conveniente, para que las cuentas cuadren, que exista esa dichosa clase de materia o lo que pueda ser, toda vez que, sin ella, no resulta fácil llegar a una conclusión lógica de cómo se pudieron formar las galaxias, o, de por qué se mueven las estrellas de la manera que lo hacen.

http://misteriosaldescubierto.files.wordpress.com/2012/07/detectan-el-primer-filamento-de-materia-oscura-entre-dos-clusteres-de-galaxias.jpg

hace treinta años, los astrofísicos se enfrentan a este dilema: o bien las galaxias tienen mucha materia que no vemos, pero que causa una fuerte atracción gravitatoria sobre las estrellas externas (que por ello orbitarían tan rápido) o bien ni la ley de la gravedad de Newton ni la de Einstein serían válidas esas regiones externas de las galaxias. Las dos opciones son revolucionarias para la física: la primera implica la existencia de materia oscura en el universo (materia que no vemos pero que sí afecta al movimiento de las estrellas y galaxias), y la segunda implica que una ley básica (la de Newton/Einstein de la gravitación) es incorrecta.

Foto: M. Zemp

En el momento actual, no sabemos cual de esas dos opciones es la buena (podrían incluso ser buenas las dos, es decir, que existiera materia oscura y además que la teoría de Newton/Einstein estuviera mal. No creo que sea ese el problema, debe haber una tercera opción desconocida que debemos encontrar). La gran mayoría de los astrofísicos prefieren explicarlo con la materia oscura (un camino cómodo y fácil) antes que dudar de las leyes de la gravitación de Newton/Einstein. Esto no es sólo cuestión de gustos, es que las leyes de la gravitación funcionan con una increíble exactitud en todos los demás casos donde las hemos puesto a prueba (en los laboratorios, en las naves espaciales y los interplanetarios, en la dinámica del Sistema Solar, etc.).

El problema de la materia oscura (si es que realmente existe y no es que las leyes de Newton/Einstein sean incompletas) es uno de los más importantes con los que se enfrenta la astrofísica hoy en día.

Cuando pienso en la existencia ineludible de esa “materia cósmica” primigenia, la primera y más sencilla clase de materia que se formó en las primeras fracciones del primer segundo del big bang, en la mente se me aparece una imagen llena de belleza creadora a partir de la cual, todo lo que ahora podemos contemplar es posible. La belleza de la idea es que toma dos problemas -la ventana del tiempo inadecuada para la fromación de las galaxias y la existencia de la “materia oscura”- y los une para conformar una solución al dilema central de la estructura del universo.

La “materia oscura”, por hipótesis, tiene una ventana de tiempo mucho más larga que la materia ordinaria, porque se desapareja más pronto en el Big Bang. Tiene mucho tiempo para acumularse antes de que la materia ordinaria sea libre para hacerlo y formar los átomos. La “materia oscura” o “sustancia cósmica primera”, es de porte más sencillo y no tiene ni requiere la complejidad de la materia bariónica para formarse, es totalmente translúcida y se sitúa por todas partes, es decir, permea todo el universo invadiendo todas sus regiones a medida que este se expande más y más. Y fue esa “invisible” sustancia cósmica, la que realmente hizo posible que las galaxias se pudieran formar a pesar de la expansión de Hubble.

El hecho de que la materia ordinaria caiga entonces en el agujero gravitatorio creado de este modo sirve para explicar por qué encontramos galaxias rodeadas por un halo de algo que hemos dado en llamar “materia oscura”. Tal hipótesis mata dos pájaros de un sólo tiro.

Pero debemos recordar que en este punto sólo tenemos una idea que puede funcionar, no una teoría bien construida. Para pasar de la idea a la teoría, tenemos que responder dos preguntas importantes y difíciles:

1. ¿Cómo explicamos la estructura de la materia oscura?

2. ¿Que es la “materia oscura”? 

3. ¿Qué partículas son las que conforman ésta materia fantasmal?

Resultado de imagen de De qué está compuesta la materia oscura

          Tenemos la osadía de hablar de la “materia” oscura y decir, incluso que partículas la conforman

Se habla de materia oscura caliente y fría. También, algunas veces me veo sorprendido por las ocurrencias que tienen algunos científicos de hoy que, como los antiguos, imaginan respuestas para acomodar las cuestiones que realmente desconocen y, buscan así, una salida airosa sin que se note la inmensa ignorancia que llevan consigo.

http://quantitos.files.wordpress.com/2010/12/materia-oscura-3-big.jpg

Podríamos comenzar a examinar estas cuestiones pensando en el modo en que la “materia oscura” pudo separarse de la nube caliente en expansión, de materiales que constituía el universo en sus comienzos. Por analogía de la discusión del desaparejamiento de la materia ordinaria después de la formación de los átomos, llamaremos también desaparejamiento a la separación de la “materia oscura” de aquella fuente “infinita” de energía primera. Una transformarción como la que condujo a la formación de los átomos es necesaria para que ocurra el desaparejamiento. Todo lo que tiene que suceder es que la fuerza de la interacción de las partículas que forman la “materia oscura” caigan por debajo del punto en que el resto del universo puede ejercer una presión razonable sobre él. Después de esto, la “materia oscura continuará a su aire, indiferente a todo lo que la rodee.

Resulta que desde el punto de vista de la creación de la estructura observada del universo, la característica más importante del proceso de desaparejamiento para la “materia oscura” es la velocidad de las partículas cuando son libres. Si el desaparejamiento tiene lugar muy pronto en el Big Bang, la “materia oscura” puede salir con sus partículas moviéndose muy rápidamente, casi a la velocidad de la luz. Si es así, decimos que la “materia oscura” está caliente. Si el desaparejamiento tiene lugar cuando las partículas están moviendose poco a poco -velocidad significativamente menor que la de la luz- decimos que la materia está fría.

Foto

De los tipos de “materia oscura” que los cosmólogos toman en consideración, los neutrinos serán el mejor ejemplo. Los neutrinos han llamado la atención de los científicos en relación a la “materia oscura” durante mucho tiempo. Para tener una idea aproximada del número de neutrinos del universo, podríamos decir que existe actualmente un neutrino  por cada reacción nuclear que tuvo lugar desde siempre. Los cálculos indican que hubo aproximadamente mil millones de neutrinos producidos durante el Big Bang por cada protón, neutrón o electrón. Cada volumen del espacio del tamaño de nuestro cuerpo contiene unos diez millones de estos neutrinos-reliquias y en ellos no se encuentran los que se produjeron más tarde en las estrellas. Está claro que toda partícula tan corriente como ésta podría tener en principio un efecto muy grande sobre la estructura del Cosmos, si tuviera una masa.

“Uno de los problema más importantes del modelo de materia oscura “fría” (CDM) es que predice la formación de un número demasiado grande galaxias satélite durante las primeras fases de la evolución galáctica. El modelo de materia oscura “caliente” (WDM) predice un número más próximo al número de galaxias satélite observadas en nuestra galaxia y en las galaxias del grupo local. Sin embargo, muchos expertos aún prefieren el modelo CDM opinan que la falta de galaxias satélite es debida a que no las podemos observar porque son demasiado débiles. Pero creo que hay que recordar que le modelo WDM fue abandonado por que los neutrinos no explicaban la materia oscura (se formaban burbujas no observadas en el universo), pero los neutrinos estériles no tienen dichos inconvenientes.”

Pero resulta que la “materia oscura” caliente, actuando sola, casi con toda seguridad no podría explicar lo que observamos en el universo y que el escenario de “materia oscura”-fria, y, el modelo debe modificarse por completo si queremos mantenerlo como candidato a esa teoría última de la materia que “debe” existir en el universo pero, que no sabemos lo que es y la llamamos, precisamente por eso materia oscura”.

El tema de la materia desconocida, invisible, oculta y misteriosa que hace que nuestro universo se comporte como la hace… ¿sigue siendo una gran incognita! Nadie sabe el por qué las galaxias se alejan las unas de las otras, el motivo de que las estrellas en la periferia de las galaxias se muevan a mayor velocidad de lo que deberían y otros extraños sucesos que, al desconocer los motivos, son achacados a la “materia oscura”, una forma de evadirse y cerrar los ojos ante la inmensa ignorancia que tenemos que soportar en relación a muchos secretos del Universo a los que no podemos dar explicación.

Resultado de imagen de cuerdas cósmicas

              Claro que otros, han imaginado cuestiones y motivos diferente para explicar las cosas

Aunque no todas si son muchas las GUT y teorías de supersimetría las que predicen la de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían ser un candidato perfecto para la “materia oscura” Ejercen una atracción gravitatoria y no pueden ser rotas por la presión de la radiación en los inicios del Universo.

Imagen relacionada

 El espesor estimado de una cuerda es de 10-30 centímetros, comparados con los 10-13 de un protón. Además de ser la más larga, y posiblemente la más vieja estructura del universo conocido, una cuerda cósmica sería la más delgada: su diámetro sería 100.000.000.000.000.000 veces más pequeño que el de un protón.. Y la cuerda sería terriblemente inquieta, algo así como un látigo agitándose por el espacio casi a la velocidad de la luz. Las curvas vibrarían como enloquecidas bandas de goma, emitiendo una corriente continua de ondas gravitacionales: rizos en la misma tela del espacio-tiempo. ¿Qué pasaría si una cuerda cósmica tropezara con un planeta? Al ser tan delgada, podría traspasarlo sin tropezar con un solo núcleo atómico. Pero de todos modos, su intenso campo gravitatorio causaría el caos.

Resultado de imagen de Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Lo cierto es que todavía no se ha encontrado ninguna cuerda de este tipo. Si bien en los últimos años han surgido muchas candidatas a estar formadas por un efecto de lente de este tipo, la mayoría han resultado ser dos cuerpos distintos pero muy similares entre sí. Pese a ello, los astrofísicos y los teóricos de cuerdas no pierden la esperanza de encontrar en los próximos años, y gracias a telescopios cada vez más potentes, como el GTC y aceleradores como el LHC las evidencias directas de la existencia de este tipo de cuerdas; evidencias que no sólo nos indicarían que las teorías de cuerdas van por buen camino, sino que el modelo del Big Bang es un modelo acertado.

Resultado de imagen de Cuerdas cósmicas

Por tanto, cuando observásemos un objeto con una cuerda cósmica en la trayectoria de nuestra mirada, deberíamos ver este objeto dos veces, con una separación entre ambas del orden del defecto de ángulo del cono generado por la curvatura del espaciotiempo. Esta doble imagen sería característica de la presencia de una cuerda cósmica, pues otros cuerpos, como estrellas o agujeros negros,  curvan el espaciotiempo de manera distinta. Por tanto, una observación de este fenómeno no podría dar lugar a un falso positivo.

En este sentido, el nombre de cuerda cósmica está justificado debido a que son impresionantemente pesadas, pasando a ser objetos macroscópicos aun cuando su efecto es pequeño. Una cuerda de seis kilómetros de longitud cuya separación entre ambas geodésicas es de apenas 4 segundos de arco tendría ¡la masa de la Tierra!. Evidentemente, cuerdas de este calibre no se espera que existan en la naturaleza, por lo que los defectos de ángulo esperados son aún menores y, por tanto, muy difíciles de medir.

Una de las virtudes de la teoría es que puede detectarse por la observación. Aunque las cuerdas en sí son invisibles, sus efectos no tienen por qué serlo. La idea de las supercuerdas nació de la física de partículas, más que en el de la cosmología (a pesar de que, la cuerdas cósmicas, no tienen nada que ver con la teoría de las “supercuerdas”, que mantiene que las partículas elementales tienen forma de cuerda). Surgió en la década de los sesenta cuando los físicos comenzaron a entrelazar las tres fuerzas no gravitacionales – electromagnetismo y fuerzas nucleares fuertes y débiles – en una teoría unificada.

En 1976, el concepto de las cuerdas se había hecho un poco más tangible, gracias a Tom Kibble. Kibble estudiaba las consecuencias cosmológicas de las grande teorías unificadas. Estaba particularmente interesado en las del 10^-35 segundo después del Big Bang.

                    Podrían estar por todas partes

Aunque no todas si son muchas las Grandes Teorías Unificadas y teorías de supersimetría las que predicen la formación de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían un candidato perfecto la “materia oscura”. Ejercen una atracción gravitatoria, no pueden ser rotas por la presión de la radiación en los inicios del Universo.

Como habéis podido comprender, todas estas teorías están por demostrar y sólo son conjeturas derivadas de profundos pensamientos de lo que puso ser y de lo que podría ser. Nada relacionado con la materia oscura, las supercuerdas o las cuerdas cósmicas ha sido demostrado ni se han observado por medio alguno en nuestro Universo. Sin embargo, no descartar nada y hacer lo posible por demostrarlas, es la obligación de los científicos que tratan de buscar una explicación irrefutable de cómo es el Universo y por qué es así.

                         El misterioso “universo” de los campos cuánticos que nadie sabe lo que esconde

A los cosmólogos les gusta visualizar esta revolucionaria transición como una especie de “cristalización”: el espacio, en un principio saturado de energía, cambió a la más vacía y más fría que rodea actualmente nuestro planeta. Pero la cristalización fue, probablemente, imperfecta. En el cosmos recién nacido podría haberse estropeado con defectos y grietas, a medida que se enfriaba rápidamente y se hinchaba. En fin, muchas elucubraciones y conjeturas que surgen siempre que no sabemos explicar esa verdad que la Naturaleza esconde y, mientras tanto nosotros, simples mortales de la especie Homo, seguimos dejando volar nuestra imaginación que trata, cargada siempre de curiosidad, de desvelar esos misterios insondables del Universo.

Resultado de imagen de Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Siempre he creído más en la existencia de una primigenia sustancia cósmica

Finalmente sabremos sobre esa sustancia cósmica que impregna todo el universo pero, no será la materia oscura” de la que todos hablan, será otra cosa muy diferente e inimaginable en estos momentos en los que, nuestra ignorancia, echa mano de cualquier cosa para poder ocultarla… ¡materia oscura! ¿qué es eso?

emilio silvera

El Universo, “a su manera”, también es un “Ente...

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No pocas veces hemos explicado aquí que la Entropía mide la cantidad de Orden de un Sistema, y, si el desorden aumenta, también lo hace la Entropía. Es un Principio hace tiempo conocido: El Universo tiende al desorden ya que necesita menos energía para su mantenimiento. Nosotros y todos los organismos vivos, por el contrario, necesitamos energía para el mantenimiento. La energía nos asegura la supervivencia y hace posible la reproducción que garantiza la perpetuidad de la especie. Todos los seres vivos que conocemos están inmersos en la dinámica de un intercambio  constante con el medio al que se tiene que adaptar, cuando se producen cambios drásticos, las consecuencias son fatales para la vida.

Por tanto, vemos que la entropía del sistema está aumentando, ΔS > 0, a pesar de que no hay ningún tipo de intercambio con el exterior…

Sabemos que en el mundo real el desorden crece en todo sistema cerrado (las cosas se desgastan, los jóvenes envejecen, lo que se rompe nunca vuelve a recomponerse), a medida que pasa el Tiempo es inevitable que la Entropía aumente y que defina una dirección del tiempo, es la flecha que parte del pasado más ordenado y ráuda corre hacia un desordenado futuro. Dado que este futuro parecía inevitable y universal, los especialistas en termodinámica de la era victoriana preveían un destino último del universo en el que toda la energía útil se habría convertido en calor y todo sería una mezcla templada de materia a temperatura uniforme, una situación desoladora que llamaban la “muerte térmica” del Universo.

Delia Steninberg, una gran pesnsadora, nos dice:

 

“El Universo es un gran Ser vivo -Microbios. que surge de la Deidad Absoluta. Toma cuerpo cada vez que se manifiesta, y lo pierde cada vez que se resume en su Principio Esencial.

 

 

Lo cierto es que, el tenebroso pronóstico que hacían los victorianos de la muerte térmica del Universo, ahora sabemos que no será posible, ha quedado descartado. El hecho irrebatible de que el Universo se expande, como se descubrió en 1920, altera en todos los contextos tal predicción, y la constatación de que la Gravedad tiene de hecho energía negativa (como se descubrió en 1940) descarta en esencia ese tipo de muerte térmica que imaginaron los victorianos. Llegados a este punto y hablando de Entropía, no podemos dejar fuera del trabajo a un personaje que tiene mucho que decir de todo esto.

Imagen relacionada

Me envuelve tu caos creeme la entalpía de nuestras manos entrelazadas la entalpía de nuestros labios en un beso quiebran el inquebrantable segundo principio de la termodinámica y la entropía,…

Algunas fórmulas de la Física merecen estar en un lugar destacado para que, cualquiera quen pase por allí las puedan ver y, al ver aquellos jeroglificos matemáticos, poder preguntar por sus significados. Uno de esos casos es el que aquí contamos. Muy justamente, la fórmula a la que nos estamos refiriendo, está inscrita en la cabecera de la lápida que indica el lugar en donde descansan los restos de Ludwig Boltzmann en el cementerio Zentralfriedhof de Viena:

 

S = k log W

 

Cuando algo nos gusta y nos atrae, cuando es la curiosidad la que fluía nuestros deseos por saber sobre las cosas del mundo, del Universo y las fuerzas que lo rigen, cuando la Física se lleva dentro y nos dará el poder reconocer que es el único camino que nos dará esas respuestas deseadas, entonces, amigos míos, los pasos te llevan a esos lugares que, por una u otra razón tienen y guardan los vestigios de aquellas cosas que quieres y admiras. Así me pasó cuando visité el Fermilab, la tumba de Hilbert  en Viena, donde no pude resistir la tentación de ver, con mis propios ojos esa imagen de arriba y, desde luego, pensar en lo mucho que significaba la escueta S = k log W que figura en la cabecera de la lápida de Boltzmann como reconocimiento a su ingenio.

 

Resultado de imagen de La mecánica estadística

 

 

 

La sencilla ecuación (como todas las que en Física han tenido una enorme importancia (E=mc2, por ejemplo), es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para el logaritmo es el siguiente: S es la entropía de un Sistema; W el número de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el nombre de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión entre el micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física comocida como Mecánica Estadistica.

 

 

Resultado de imagen de todo lo grande está hecho de cosas pequeñas

 

La inmensa galaxia está hecha de pequeños átomos. Todo lo grande está hecho de cosas pequeñas

 

La entropía de un sistema es el desgaste que el sistema presenta por el transcurso del tiempo o por el funcionamiento del mismo. Los sistemas altamente entrópicos tienden a desaparecer por el desgaste generado por su proceso sistémico. Es una medida de desorden o incertidumbre de un sistema. El paso del Tiempo todo lo cambia. Lo que hoy es una estrella fulgurante, dentro de algunos miles de millones de años podrá ser una inmensa Nebulosa de la que surgirán por mecanismos de la Gravedad, nuevas estrellas y nuevos mundos. La Energía positiva de la Entropía destruye y la Energía Negatiuva de la Gravedad crea.

 

 

Resultado de imagen de La gravedad negativa

 

Una extraña fuente de gravedad negativa nos rodea, y los físicos no pueden explicarlo

 

Como todas las ecuaciones sencillas de gran trascendencia en la física, hay un antes y un después de su formulación: sus consecuencias son de un calado tan profundo que han cambiado la forma de entender el mundo y, en particular, de hacer Física, a partir de ellas. De hecho, en este caso al menos, la sutileza de la ecuación es tal que hoy, más de cien años después de la muerte de su creador, se siguen investigando sus nada triviales consecuencias:

 

S = k log W  ¡Que maravilla del Intelecto Humano!

La energía libre no es libre.

 

  1. Departamento de EntropíaLa energía de un sistema cerrado se mantendrá constante.
  2. La entropía de un sistema cerrado se mantendrá constante o aumentará.

Estos son los dosprincipios de la Termodinámica. Son, quizás, las leyes más sólidas y mejor demostradas de la naturaleza sostenidas por miles de observaciones experimentales y deducciones teóricas. Son estas misma leyes las que se pretenden violar una y otra vez cuando y charlatanes y embusteros tratan de separar a la gente de su dinero. Este es el caso de las Máquinas de Movimiento Perpetuo (MMP). La historia de estas máquinas es impresionante, la más antigua siendo una rueda diseñada por un astrónomo/astrólogo indio llamado Bhäskara II. Al principio los intentos para crear energía de la nada eran honestos; todavía no teníamos conocimientos como para entender cuán imposible era esto, cuan fundamental era el principio de que la energía no se crea ni se destruye. Intelectuales respetables como Pascal, Boyle y hasta Leonardo da Vinci diseñaron al menos una MMP.

 

 

Resultado de imagen de El principio de irreversibilidadResultado de imagen de El calor del objeto caliente pasa al objeto frio hasta igualar temperaturas

 

 

SEGUNDO PRINCIPIO DE LA TERMODINÁMICA.

IRREVERSIBILIDAD.

 

El calor fluye espontáneamente de una fuente caliente a otra fría. El proceso inverso nunca se produce espontáneamente en la naturaleza.

Esta transformación se denomine irreversible, por cuanto el sistema considerado no puede volver por sí mismo al estado primitivo, salo que se le entregue energía exterior.

 

Una de las consecuencias más importantes de la Entropía es, el principio de irreversibilidad del mundo macroscópico. Si las leyes de la Mecánica son reversibles, ¿cómo es posible que haya una dirección temporal definida en el mundo que nos rodea, en la cual observamos que un vaso cae y se rompe pero nunca hemos podido observar que los añicos se recompongan para reconstruir el vaso original?

En una Revista de Física de las emitidas por la Real Sociedad Española de Física, pude leer un magnifico artículo que firmaba Joel Lebowitz (una autoridad mundial en la materia) en el cual, nos explicaba como la ecuación S = k log W podía dar una explicación satisfactoria del fenómeno.

 

 

 

 

Los signos de la Entropía se dejan ver por todas partes. Nada permanece y todo cambia con el transcurrir del Tiempo

 

Resultado de imagen de Somos jóvenes y con el paso del tiempo envejecemos

 

Las huellas del inexorable paso del Tiempo

 

Los signos de la Entropía son comunes en nuestras vidas cotidianas y, como tantas otras cosas, forman parte de nuestro mundo en nuestro quehacer del día a día en el que, siempre estamos tratando de combatir a la entropía destructora. Al menos, nosotros, siempre que pensamos en la entropía la asociamos al desorden. Cosas que se hacen viejas y se rompen, habitaciones que se llenan de polvo, muebles deteriorados por el paso del tiempo, y, nosotros mismos que vemos marcadas en las arrugas del cuerpo la inexorable huella de la entropía.

De la célebre ecuación podemos derivar que: a mayor desorden mayor cantidad de microestados, es decir, mayor entropía. Los sistemas evolucionan siempre hasta alcanzar su estado máximo de entropía. ¿Si es así, como algunos hablan de la entropía como creadora de orden?

¿Cómo puede la entropía crear orden, si a mayor entropía mayor desorden? Claro que, la ecuación que es el “personaje principal” de este trabajo, es mucho más sutil que cualquier interpretación heurística que pueda hacerse de ella, y se puede llegar a ver que, de acuerdo con esta ecuación, pueden simultáneamente en un sistema aumentar la entropía y crearse estructuras ordenadas.

 

 

 

 

Los efectos de la Entropía conviven con nosotros, en las tres generaciones de arriba lo podemos constatar. El Tiempo pasa y la fleha del Tiempo en su inexorable caminar lleva a la abuela hasta sus últimos momento, el testigo lo recoge la hija que, para perpetuarse, se reproduce y tiene a su vez descendencia, y, en esa cadena sin fin, tratamos los humanos y otros seres vivos de luchar contra la Entropía destructora de todo lo que existe, inanimado o vivo.

 

 

Resultado de imagen de Las galaxias espirales luchan contra la entropía

 

En las galaxias espirales tenemos un buen ejemplo de que, luchan contra la entropía destructora de estrellas que al llegar al final de sus vidas (máximo nivel de entroía), se valen de las esxplosiones supernovas para crear Nebulosas que, a su vez, con la ayuda de la interacción gravitatoria, hacen posible que surjan a la vida nuevas estrellas, creando así, Entropía Negativa. ¡Algo muere para que algo surja a la vida!

 

 

 

En un texto profético sobre la era del ADN, en What is Life? de Erwin Shródinger, las nociones del código genético y metabolismo celular aún eran discutidas juntas. En su libro, Schrödinger adelantó la idea que el cromosoma contenía un “cristal aperiódico” en la forma de un “code-script”, inspirando posteriormente el descubrimiento de la forma de doble-hélice del ADN. Sin embargo aún es raro que los “genetistas populares” y los “teóricos de la vida” recuerden la teoría de la entropía negativa articulada en el mismo texto.

 

Resultado de imagen de El libro de Schrödinger sobre el origen de la vida

 

“En febrero de 1943, Erwin Schrödinger (1887-1961), físico de origen austríaco y exiliado del nazismo, impartió tres conferencias en el Trinity College de Dublín que fueron un clamoroso éxito: tuvo que repetir las tres para atender la demanda del público. En esas charlas, publicadas el año siguiente en forma de libro, este premio Nobel de Física de 1933 explicó ante estudiantes y un público general, no especialista, los resultados de algunos experimentos de genética que, en su opinión, podían encontrar explicación en el ámbito de la mecánica cuántica, la nueva física que él había ayudado a crear.”

 

Todos los seres vivos nos valemos de la reproducción para burlar a la Entropía destructura, y, aunque no podamos esquivarla a nivel individual, si que lo podemos hacer en el ámbito de la Civilización que, al reproducirse perdura. Aquí es donde entra la frase: “mientras haya muerte hay esperanza”. ¿Podríamos considerar como entes vivos a las Galaxias y a los mundos que, como el planeta Tierra se regenera mediante explosiones surpernovas, terremotos, erupciones volcánicas y otros fenómenos naturales? Creo que sí, de todos esos “desastres” surgen nuevas cosas, nacen nuevas plantas, se crean cursos de ríos, valles y montañas que no existían pasan a formar parte de un nuevo y renovado paisaje y, entre todo eso, también surgen nuevas formas de vida dispuestas a evolucionar como es su destino.

 

 

La Entropia y el fin del Universo 2

 

La entropía se adueñó de ésta habitación, y, de la misma manera, el mismo caos tendrá el universo en un futuro muy lejano. Pensar que la Entropía acabará algún día con nuestro Universo… Es duro de asimilar y, sin embargo… ¡Es lo que parece que nos dicen las leyes físicas! Nada es eterno.

 

La cuestión sobre la flecha del tiempo intriga a los científicos porque la mayor parte de las leyes fundamentales de la física no separan el pasado del futuro. El concepto de entropía, a su vez, se basa en el flujo del tiempo, ya que establece que el desorden o caos aumenta con el paso del tiempo, tal como señaló el físico Ludwig Boltzmann hace ya más de un siglo.

 

 

Imagen relacionada

 

 

Espacio y tiempo son conceptos que no tienen sentido antes de la aparición de la materia en el Universo, por lo que en el modelo cosmológico actual se considera que el espacio y el tiempo aparecen con la materia en el mismo momento del Big-Bang.

 

 

 

Resultado de imagen de La entropía y el fin del universo

 

 

Según este modelo cosmológico, a medida que el tiempo fluye, la entropía global del Universo también aumenta. Como la flecha del flujo del tiempo es irreversible, la flecha de flujo de la entropía también es irreversible. En el Universo, la cantidad de energía útil disminuye paulatinamente y aumenta la forma degradada de energía.

Dado que la entropía global siempre está en constante aumento, causará en algún momento el desplome térmico de todos los biosistemas en el Universo conocido, fenómeno conocido como Muerte Térmica del Biocosmos. Fin del Universo, de la vida, del tiempo y también de la entropía, según el actual modelo cosmológico.  El espacio se expande cada vez más, las galaxias se alejan las unas de la otras, la temperatura del Universo es muy baja y cada vez se irá reduciendo más y más, y, cuando alcance el Cero Absoluto, -273 ºC… ¡Todo habrá acabado, ni los átomos se moverán!

 

 

 

En el Universo dinámico, subyace la Entropía

 

Claro que, hablamos y hablamos de la Entropía pero, no caemos en la cuenta de que, en el Universo, todo está relacionado. Existen hilos invisibles que atan unas cosas a las otras e inciden sobre los comportamientos y, si eso es así (que lo es), deberíamos pensar en eso que llamamos “vacío cuántico” y preguntar: ¿Qué incidencia podría tener sobre esa entropía destructora?

 

 

Resultado de imagen de El vacío cuántico

 

¿Por qué surgen cosas del “vacío”?

 

En el vacío, la existencia del cuanto de acción que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas obliga a que su estructura sea discontinua, escalonada, fractal (prefractal), lejos de la continuidad clásica, por ello la geometría fractal puede enseñarnos algo que antes no podíamos ver. Pero las fluctuaciones cuánticas de energía del vacío no son simples variaciones sobre un fondo absoluto y estático. Las fluctuaciones determinan la propia geometría del espacio, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. La forma en que se puede proceder a analizarlas es idéntica a como se determina la dimensión fractal de una costa o cualquier figura fractal sencilla. La pauta que nos guia, en nuestro caso, es la variación de la energía virtual de las fluctuaciones con la distancia.

 

 

 

 

Desde distancias astronómicas hasta la Longitud de Planck la energía asociada está siempre en proporción inversa a dicha distancia: si para una distancia D se le asocia una energía E, para una distancia 2D se le asocia una energía E/2. A pesar de lo intrincadas e irregulares que son las fluctuaciones cuánticas su dependencia con el inverso de la distancia permite al vacío cuántico que se nos presente de forma, prácticamente, similar al vacío clásico a pesar de las tremendas energías a las que se encuentra asociado. En este efecto tuvo mucho que ver la particular geometría que adoptó nuestro Universo :

Tres dimensiones espaciales ordinarias y seis compactadas. Esta geometría y la propia naturaleza del cuanto de acción están íntimamente ligadas. Con otra geometría diferente las reglas de la mecánica cuántica en nuestro universo serían completamente diferentes.

 

 

 

La estabilidad del espacio-tiempo, de la materia y de la energía tal como los conocemos sería imposible y, a la postre, tampoco sería posible la belleza que esta estabilidad posibilita así como la propia inteligencia y armonía que, en cierta forma, subyace en todo el Universo.

Así que, entre el espacio que podemos ver, ese vacío que sabemos que está ahí y no podemos más más que algunas consecuencias de su existencia, lo que llamamos “materia oscura” que es la mayor concentración de “ese algo” que existe, y, que, bien podrían ser las semillas a partir de las cuales surge la materia normal o luminosa una vez que, con el tiempo y a partir de esa “semilla” se transforma en materia “normal”, Bariónica y, ahora sí, sujeta al electromagnetismo…Todo eso, amigos, no podría incidir de alguna manera en esa Entropía destructora que, sin que lo sepamos está siendo combatida por todos esos parámetros que ignoramos…a ciencia cierta.

Una ley científica es un fenómeno universal observado experimentalmente y que puede verificarse mediante el método científico. Algunas de leyes establecidas mediante el método científico que confirman la creación son:

Leyes de la Termodinámica y otras que hemos podido descubrir pero… esa sería otra historia.

 

 

Starburst Cluster Shows Celestial Fireworks

                         Laboratorio estelar, la cuna de los mundos.

Cuando me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese nuevo éter que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y que, de momento, sólo sabemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.

Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro se tratara, y, hasta objetos de enormes masas y densidades infinitas que no dejan escapar ni la luz que es atrapada por su fuerza de gravedad.

A String of 'Cosmic Pearls' Surrounds an Exploding Star

                Ya nos gustaría saber qué es, todo lo que observamos en nuestro Universo

Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe también una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

Isaac Asimov en uno de sus libros nos explicó que,  los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

The Cat's Eye Nebula: Dying Star Creates Fantasy-like Sculpture of Gas and Dust

Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.

Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

Resultado de imagen de El núcleo atómico

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

Resultado de imagen de El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del tipo magnetar, de las que se conocen seis. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!

Objetos como estos pueblan el universo, e incluso más sorprendentes todavía, como es el caso de los agujeros negros explicado en páginas anteriores de este mismo trabajo. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos.

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de esta energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).

Los rayos del Sol que envían al planeta Tierra su luz y su calor, también forma parte del Universo, al mismo tiempo que hace posible la vida en un planeta maravilloso que es el habitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar.

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene encuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

¿De qué está hecho el Sol?

El Sol está hecho con los mismos materiales que hay en la Tierra y en los demás planetas, ya que todo el Sistema Solar se formó a la vez en esta zona de la Vía Láctea que ocupamos. Sin embargo, estos materiales ni se distribuyen en las mismas proporciones, ni se comportan igual.

Estructura del Sol

¿De qué está hecho el Sol?

Componentes químicos   Símbolo %
Hidrógeno H 92,1
Helio He 7,8
Oxígeno O 0,061
Carbono C 0,03
Nitrógeno N   0,0084
Neón Ne 0,0076
Hierro Fe 0,0037
Silicio Si 0,0031
Magnesio Mg 0,0024
Azufre S 0,0015
Otros 0,0015

Para completar datos diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

Capas exteriores del Sol

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654.600 toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que ahora. El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra para unicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.

Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá

Las estrellas, como todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa,  las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.

Espero que al lector de este trabajo (obtenido principalmente de uno original de Asimov), encargado por la Asociación Cultural “Amigos de la Física 137, e/hc”, les esté entreteniendo y sobre todo interesando los temas que aquí hemos tratado, siempre con las miras puestas en difundir el conocimiento científico de temas de la naturaleza como la astronomía y la física. Tratamos de elegir temas de interés y aquellos que han llamado la atención del público en general, explicándolos y respondiendo a preguntas cuyas respuestas seguramente querrían conocer.

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira hacia la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.

Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.

En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo puede ser convertida en trabajo cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformadad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y menos energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo hasta el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo hasta el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua puede realizar un trabajo. El agua sobre una superficie horizontal no puede realizar trabajo, aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Esta imagen que lleva el nombre de “Noche cristalina” fue tomada en abril de 2008 en la mina de Río Tinto, en España. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Esta imagen que lleva el nombre de “Noche cristalina” fue tomada en abril de 2008 en la mina de Río Tinto, en (Huelva) España. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un depósito de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún trabajo, por muy alta que sea aquella.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 para representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es cada vez menor. Todo se deteriora con el paso del tiempo.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío hasta que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados entre sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

      Considerado como Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía desde puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y trabajo recibió el nombre de “termodinámica”, que en griego significa “movimiento de calor”.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. Esta regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía puede quedar congelada e inservisble. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no menos básica, y que denomina “segundo principio de la termodinámica.”

Según este segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más trabajo, ni pueden producirse cambios.

¿Está degradándose el universo?

Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación:   S = k log W que, aunque pequeña y sencilla, es la mayor aportación de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para el logaritmo es el siguiente: S es la entropía de un Sistema; W el número de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el nombre de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión entre el micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física comocida como Mecánica Estadistica.

Pero esa, es otra historia.

Un quinteto muy bien avenido

Sin ambargo, nunca debemos olvidar que el Universo es inmenso, en realidad, “infinito” para nosotros que no lo podemos visitar físicamente, sus distancias en las que, bellas formaciones, como la que arriba podemos contemplar, sólo pueden ser captadas por ingenios modernos y sofisticados telescopio que atrapan la luz que viaja desde miles de millones de kilómetros de distancia para poder así mostrarnos, objetos de una belleza que ningún pintor podría reproducir por su dinámica constante ni tampoco, nuestra imaginación podría mentalizar por el desconocimiento que tenemos de que maravillas así pudieran existir en un vasto Universo que, en gran parte, es aún un gran desconocido.

emilio silvera

¡Los Mayas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del saber del mundo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pirámide escalonada, Chichen Itza, "ciudad del brujo del agua". (Fuente: A. Ciudad, Los mayas, col. biblioteca iberoamericana, Anaya, Madrid, 1988. p. 35)

Aislada de las culturas del viejo mundo, la civilización maya, ubicada en lo que es actualmente el sur de México y Guatemala, surgió alrededor de la época del nacimiento de Cristo, floreció y, luego, desapareció abrupta y misteriosamente. Aparte de las pirámides y las estelas de piedra talladas con unos elaborados glifos, su historia se conserva en unos pocos códices, entre los que figura el libro de la creación escrito en lengua maya-quiché, el Popol Vuh. Sin embargo, la cosmología maya tiene muchos aspectos parecidos a las cosmologías de otras culturas: a la cosmología hindú  se parece en lo relativo a los ciclos alternos de destrucción y creación,  y en los enormes intervalos de tiempo en que se sitúan estos ciclos; a la cosmología de la antigua Mesopotamia, en el seguimiento meticuloso de los cuerpos celestes, que son manifestaciones de los dioses; a la cosmología moderna, en la cuidadosa experimentación y revisión de los dioses, y en la igualmente implacable condena de las teorías anticuadas.

Templo I de Tikal (700 d.c.) Fuente: A. Ciudad, Los mayas, col. biblioteca iberoamericana, Anaya, Madrid, 1988. p. 28)

Antes de la aparición de los seres humanos, el universo maya se desarrolla de una manera muy homogénea y continua. Como muchas otras cosmologías, comienza con un mar original. El Popol Vuh empieza diciendo: “Ahora todavía se ondula, ahora todavía se oyen sus murmullos…todavía susurra…y está vació bajo el cielo”.

legado de la cosmologia maya

Los Mayas y el Popol Vuh

 

Para la cosmología maya el libro sagrado llamado Popol Vuh encierra toda la cosmovisión de este antiquísimo pueblo y que reflejaron en sus páginas una declaración universal sobre la naturaleza del mundo.

El traductor Dennis Tedlock se refiere a esta escena diciendo que es una especie de “ruido blanco”; el sonido que precede al sonido. Sólo están presentes los dioses del mar y de la tierra, llamados colectivamente Corazón del Lago y Corazón del Mar: el Hacedor, el Modelador, el Portador, el Procreador y la Serpiente Emplumada Soberana. A éstos se unen el Corazón del Cielo y los primeros dioses celestes, llamados Huracán, Rayo Recién Nacido y Rayo Repentino.

Resultado de imagen de Corazón del Lago y Corazón del Mar: el Hacedor, el Modelador, el Portador, el Procreador y la Serpiente Emplumada Soberana. De los mayasResultado de imagen de Corazón del Lago y Corazón del Mar: el Hacedor, el Modelador, el Portador, el Procreador y la Serpiente Emplumada Soberana. De los mayas

Después de negociar, los dioses de las aguas y del cielo acordaron crear la tierra y la vida en una sucesión que se parece a la “sopa original” de la biología del siglo XX: una tierra cubierta por el océano y sometida a un violento relampagueo, que contribuye a producir los primeros aminoácidos. Así se producen las divisiones cósmicas, siendo la primera de ellas la separación preexistente de los dioses de las aguas y de los cielos, y la segunda la separación activa de la tierra y las aguas, y del cielo y la tierra. Acto seguido se lleva a cabo la siembra del Sol, la Luna y las estrellas. Los antiguos mayas concebían esta actividad como “la siembra” o el “amanecer”, porque la asociaban a la plantación de semillas, que empujan desde el subsuelo para crecer, y a la salida de los cuerpos celestes, con respecto a los cuales creían que recorrían el inframundo antes de salir por el este.

Máscara funeraria de jade hecha para "Pacal el Grande" ( Fuente: A. Ciudad, Los mayas, col. biblioteca iberoamericana, Anaya, Madrid, 1988. p. 91)Resultado de imagen de El arte maya antiguo representaba el cielo como una serpiente de dos cabezas, con símbolos de Venus-que sale justo antes del amanecer-en un extremo y el Sol en el otro

El arte maya antiguo representaba el cielo como una serpiente de dos cabezas, con símbolos de Venus-que sale justo antes del amanecer-en un extremo y el Sol en el otro. La cosmología maya describe una Tierra cuya base es un reptil terrestre monstruoso y un cielo que descansa sobre unos pilares en forma de cocodrilo y jaguar. Cada atardecer el Sol es devorado por el monstruo terrestre y vuelve al mundo subterráneo para luego salir cada mañana por el este.

El principal espectáculo de los mayas era un juego de pelota, parecido al fúlbol

Imagen relacionada

Por lo tanto, Venus y el Sol (representados en el Popol Vuh como un par de muchachos gemelos) surgen cada amanecer uno tras otro, tal como los gemelos humanos salen al nacer. Según Anthony Aveni: “La sinuosa imagen de una serpiente celeste de dos cabezas ofrece una descripción gráfica del modo en que se puede seguir a los largo del tiempo la línea imaginaria que conecta a Venus, situada sobre el horizonte, con el Sol, que se encuentra abajo”. Venus asciende como el “extremo frontal del monstruo cósmico que emerge del mundo subterráneo”. A medida que avanza el día, estos dos cuerpos celestes se desplazan cruzando el cielo para ponerse uno tras otro cuando llega el crepúsculo. El Popol Vuh relata este movimiento orbital celeste como el combate de los gemelos con Zipacna, un monstruo sísmico que tiene forma de cocodrilo, y habla del descenso de estos gemelos al submundo, el dominio de Una Muerte y Siete Muertes. Después de una serie de contiendas, los gemelos emergen para renacer con el día.

 

Resultado de imagen de La sinuosa serpiente maya

Tomando todo esto en conjunto, tenemos un monstruo en forma de reptil que está bajo la tierra, una serpiente celeste que planea sobre los cielos, y unos pilares en forma de cocodrilos que  conectan ambas regiones. Como una conjetura total, quizá tal como la comida pasa a través del cuerpo de una serpiente gigante (formando una gran protuberancia a medida que avanza), así vieron los mayas al Sol y las estrellas pasando a través de las grandes órbitas sinuosas por encima y por debajo del plano terrestre.

Sin embargo, las complicaciones y los problemas parecen empezar con el ser humano y dan lugar a la versión maya de la hipótesis de la pluralidad de los mundos. Según el Popol Vuh, los dioses crean primero los pájaros, los venados, los jaguares y las serpientes para que velen por los bosques y aporten ofrendas para sus creadores. Pero los animales no pueden rezar a los dioses; no pueden hablar ni una palabra y, cuando los dioses se dan cuenta de ello, decretan que los animales sirvan para un solo fin: ser comidos.

Resultado de imagen de La sinuosa serpiente maya

Visto esto, los dioses hacen otro intento. Esta vez modelan con arcilla un ser humano. Pero la arcilla es blanda y no se mantiene en una pieza. “No durará”, dicen entonces los dioses albañiles y escultores.” Parece que va menguando y deshaciéndose. Bueno, pues dejemos que mengüe. No puede andar y tampoco multiplicarse. Pues bien, que sea meramente un pensamiento”. Y los dioses abandonan su creación.

En la tercera creación, los dioses deciden que necesitan algo más sólido. Entonces hacen criaturas de madera, que son, efectivamente, tiesas como la madera. Estos prototipos tienen aspecto de personas, hablan como las personas y se reproducen como las personas, pero no tienen sentimientos, no piensan, y, lo peor de todo, no pueden recordar a sus creadores. (No rezan a sus dioses.) Los hombres de madera están poblando la Tierra cuando los dioses los destruyen mediante un diluvio; mediante el Arrancador de Rostros; mediante el Sangrador Inesperado, que los decapita; mediante el Jaguar Masticador, que los devora; y mediante sus propias piedras de moler, que los pulverizan. Como le sucedería a un cosmólogo de la teoría del plasma atrapado en una conferencia sobre el biga bang, no queda gran cosa de ellos después de esto. Y así termina la tercera creación.

Mapa no.2 Atlas Arqueológico de Campeche. Piña Chan, Román 1995, pp.22

Comenzaron a ser develados al mundo desde que en 1843, un señor de nombre B. Norman publicó un libro de viaje en el que menciona “una pequeña península llamada Jaina” en la que “está situado un gran túmulo alrededor del cual se han encontrado un número de pequeñas figuras de tierra..” (1) (figura no.1). Años más tarde, en 1847, el viajero norteamericano John L. Stephens dio a conocer Santa Rosa Xtampak, Dzibilnocac y Macobá; su libro Incidents of a travel in Yucatán fue el vehículo.

Mapa no.1 Mapa de México, la Península de Yucatán y Campeche

 

        Campeche guarda un tesoro antiguo invaluable en sus 56,850 kilómetros cuadrados, de costas bañadas por el Golfo de México, y selvas colindantes con Tabasco, Guatemala, Belice, Quintana Roo y Yucatán, por los cuatro vientos (Mapa no. 1). Alberga un número aproximado de 300 asentamientos mayas de diferentes dimensiones, estilos arquitectónicos y tiempos –testigos de una larga historia rica en acciones, personajes y mitos (Mapa no.2) .

Resultado de imagen de El Universo de los Mayas

La cosmología maya y la cosmología griega presentan una descripción similar de la existencias de los universos. En ambas existieron tres reinos o universos conocidos como cielo, tierra e inframundo.

Pero los dioses son empíricos y aprenden experimentando, trabajando en colaboración y haciendo tanteos, es decir, lo que Aveni llama un “proceso de aproximación sucesiva para construir el universo”. En la cuarta y última creación y después de muchas consultas, optan por utilizar maíz para hacer la carne, agua para la sangre, sebo para la grasa. Como resultado consiguen los primeros seres humanos auténticos, que hablan y rezan a sus creadores. Hay un fallo: los humanos son demasiado inteligentes. Como dice el Popol Vuh: “Veían perfectamente, conocían a la perfección todo lo que había bajo el cielo, dondequiera que miraran…A medida que miraban, se intensificaba su conocimiento”. A nadie le gusta tener competencia, por lo que los dioses nublaron el conocimiento humano de tal modo que las personas “quedaron cegadas como la superficie de un espejo cuando se le echa el aliento… Y así se perdió… la capacidad de comprender, así como la facultad de conocerlo todo”.

Resultado de imagen de El Universo de los Mayas

                        Tenían sus profecías en las que creían ciegamente

Tres intentos de creación fallaron antes de que surgiera un universo que pudiera sostener la vida humana. (Estos intentos fallidos recuerdan la cosmología que desarrolló en el siglo XVIII David Hume, al que ya hemos citado anteriormente.) Y así surge el mundo actual, aunque también él será destruido al final de su era. Los mayas, como los hindúes, concibieron el engranaje de unos largos ciclos temporales que generaron creaciones y destrucciones con tanta facilidad como un árbol despliega sus hojas y luego las deja caer.

Resultado de imagen de El Cinturon de Orion

Curiosamente, las fechas de la cuarta y última creación maya encajan bastante bien con las del cuarto y último ciclo hindú: 13 de agosto del año 3114 a. C. y 5 de febrero de 3112 a.C. para los mayas, según Linda Schele, y 17-18 de febrero del año 3102 a.C. para los hindúes, según Aveni. En la India estas fechas concuerdan con una conjunción planetaria en Aries. En la mitología maya estas fechas representan dos actuaciones de los dioses para crear el universo. El 13 de agosto de 3114 establecieron el corazón cósmico llevando las tres estrellas del cinturón de Orión al centro del cielo; dos años más tarde, el 5 de febrero, levantaron el árbol cósmico, que es la Vía Láctea.

Resultado de imagen de La Gran Nebulosa de Orion

Como en la India, ambos días correspondían a acontecimientos astronómicos. Schele, una epigrafista y profesora de historia del arte de la Universidad de Texas, que ve los mitos mayas como “mapas estelares”, afirma que el 13 de agosto del año 3114 a.C. las estrellas de Orión se situaron en el centro del cielo al amanecer. La Gran Nebulosa (M42), desconocida para los europeos hasta 1610, puede verse entre estas estrellas y los mayas la llamaron el humo de la cocina cósmica. Un año más tarde, los dioses plantaron el árbol cósmico, representado por la Vía Láctea, que conectaba las trece capas del cielo con las siete capas del submundo. Según Schele, “ En el año 3112 a.C. la mañana del 5 de febrero, la totalidad de la Vía Láctea ascendió por la parte oriental del horizonte, hasta que al amanecer se extendió de norte a sur por el cielo”. Aveni está de acuerdo con la primera interpretación, pero tiene dudas con respecto a las afirmaciones que hablan de la Vía Láctea del 5 de febrero.

 Resultado de imagen de Los sacerdotes mayas

Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada

Imagen relacionada

Según creían los sacerdotes mayas, estos acontecimientos celestes marcaban el amanecer de una nueva era, que se contabilizó usando la “cuenta larga”, un registro lineal de los días que comienza con la cuarta creación maya del año 3114 a.C. y predice que el final del universo actual tendrá lugar el 23 de diciembre del año 2012 d.C. Durante este intervalo de vida del universo, que es de unos cinco mil años, numerosos ciclos de tiempo menores marcaban las duraciones de los ritmos astronómicos, naturales y políticos intercalados.

Popol Vuh: transcripción del quiché maya y traducción al español

“El Popol Vuh, traducido como Libro del consejo, Libro de la comunidad, Libro del pueblo o El libro sagrado, es un relato sobre la creación del pueblo maya quiché, establecido en lo que hoy es Guatemala. Popol también se define como «estera tejida», y vuh o vuj, como «libro». El texto entreteje relatos mayas sobre cosmologías, orígenes, tradiciones e historias espirituales que explican la creación del mundo, los orígenes y las primeras migraciones de los pueblos centroamericanos, su historia y tradiciones, y proporciona una cronología de los últimos reyes y líderes quichés.”

Tedlock, al hacer la traducción del Popol Vuh, trabajó ampliamente en Andrés Xiloj Peruch, un líder espiritual maya moderno, para interpretar el antiguo texto en concordancia con las creencias mayas aún existentes. En los hogares de las chimeneas mayas suele haber en la actualidad tres piedras colocadas formando un triángulo, una representación de una moderna constelación maya-quiché formada por tres estrellas de Orión- Alnitak, Siph y Rigel-. El Popol Vuh afirma que, durante la destrucción de la tercera creación, “Las… piedras del hogar salieron disparadas, proyectadas fuera del fuego hacia las cabezas [de los hombres]”. Esto, según Xiloj Peruch, es la imagen de un volcán y una referencia indirecta al fogón cósmico. Hay además otras pruebas que proceden de los antiguos escribas mayas de Palenque y Quirigu, los cuales dijeron en sus escritos que al final de la era anterior, tres piedras del hogar anunciaron el paso a una nueva era. (Schele y Tedlock discrepan en cuanto a si la fecha de agosto de 3114 y la ascensión de las estrellas de Orión representan el final de la vieja era o el principio de la nueva, pero está claro que las piedras del hogar constituyen un punto de inflexión importante.)

   “La  gran cultura Maya se basaba en la concepción cíclica del tiempo, lo reflejan sus calendarios que tienen una gran exactitud. Predijeron  que a partir de la fecha de su civilización desde el año 3.113 a.C. al 5.125 en el futuro o sea el 21 de diciembre del 2012 , fecha en que su calendario se detiene, terminando así su ciclo del tiempo, no es el fin del mundo, sino el comienzo de una nueva era.

El 21 de diciembre de 2012,  el sol al recibir un fuerte rayo sincronizador proveniente del centro de la Galaxia cambiará su polaridad y producirá una gigantesca llamarada radiante. Este rayo sincronizador marca el comienzo de una nueva era y abre una puerta a otra dimensión, la humanidad debe estar preparada para atravesar dicha puerta y recibir una vibración mucho más alta de armonía, acabando con esta civilización del miedo.”

Imagen relacionada

Otra historia de la creación, proveniente de los mayas del Yucatán, refuerza el encaje de los ciclos cósmicos y políticos. Según Aveni. Cuando Pacal, rey de Palenque, falleció a mediados del siglo VIII d.C., había logrado consolidar el poder de su ciudad-estado frente a los desafíos de las ciudades vecinas. Chan Bahlum, hijo de Pacal, necesitaba una señal del cielo para cimentar su legitimidad política vinculando sus ancestros a los progenitores de la familia real de Palenque, tres dioses nacidos cuatro mil años antes. El linaje divino, tallado en los relieves de un templo, representa al dios nacido en segundo lugar como el Sol y al primogénito como Venus. La identidad del tercer dios es desconocida.

Resultado de imagen de una conjunción planetaria alineó a Saturno, Júpiter, Marte y la Luna

En cualquier caso, en el año 690 d.C., al principio del reinado de Chan Bahlum, una conjunción planetaria alineó a Saturno, Júpiter, Marte y la Luna, que se movieron juntos a través del cielo para situarse directamente sobre el templo del viejo rey. Con esto se tuvo una clara señal de los dioses que confirmaba el mandato real y el linaje divino de Chan Bahlum. El hecho de que en este acontecimiento no participaran ni Venus ni el Sol fue algo que probablemente no preocupó a los antiguos mayas. Aveni destaca que la cosmología maya no exige una correspondencia uno a uno; solamente alguna conexión entre el plano astral y el plano humano.

Resultado de imagen de El fin del mundo en 2012Resultado de imagen de El fin del mundo en 2012Resultado de imagen de El fin del mundo en 2012Resultado de imagen de El fin del mundo en 2012

Todos los medios se hicieron eco de la profesia Maya y pusieron toda clase de artículas y reportajes, aquí, en el Blog, se dejó claro que nada de aquello pasaría, que el mundo seguiría su rumbro y que ninguna catástrofe vendría a perturbar nustras vidas.

Entonces dije:

“¡Ah! Pero podemos estar tranquilos que, el mundo, no se acabará en 2.012 como muchos nos quieren hacer creer guiados por intereses oscuros que nada, en absoluto, tienen que ver con la Ciencia.”

Lo que habéis leído es un resumen entresacado del capítulo “La Mesoamérica Maya”, en el apartado de Cosmología: Aquella religión de los viejos tiempos, del libro “Los grandes descubrimientos perdidos” de Dick Teresi, en el que nos lleva hasta las antiguas raíces de la Ciencia, desde Babilonia hasta los Mayas. Hoy domingo, día de asueto, es un buen día para repasar cómo eran y pensaban aquella gente, aquella Civilización que, al igual que otras muchas de la antigüedad, llegaron a tener conocimientos que, para aquella época, son asombrosos.

Publica: emilio silvera