miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿El origen del Universo? ¡Cómo puedo saberlo yo!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 Resultado de imagen de Puede que todo surgieron a partir de esa densidad infinita. Allí comenzó el Tiempo y el nuevo universo se expandió,

 

Resultado de imagen de Puede que todo surgieron a partir de esa densidad infinita. Allí comenzó el Tiempo y el nuevo universo se expandió,

 

 

Puede que todo surgiera a partir de esa densidad infinita. Allí comenzó el Tiempo y el  universo se expandió, se crearon las partículas de materia, que se juntaron para formar los núcleos que al verse arropados por los electrones con sus cargas negativas, venían a equilibrar las positivas de los protones y, de esa manera, se pudieron unir para formar moléculas y materia. Sustancia cósmica primero, estrellas y galaxias después, y, dentro de toda esa vorágine, miles de millones de años más tarde, llegaron a surgir en los mundos ¡la vida! Pensando en todo esto, a uno se le viene a la cabeza pensamientos del pasado, enseñanzas escolares y preguntas que no tienen respuestas.

 

 

 

 

 

¿Dónde estabas tú cuando yo puse los cimientos de la Tierra? Dilo si tienes entendimiento. Claro que a  pregunta, lo único que podríamos hacer es contestar, con otra pregunta: ¿Quién lo sabe realmente? La especulación sobre el origen del universo es una vieja actividad humana que está sin resolver, ya que, pretendemos saber algo que no sabemos si llegó a ocurrir, toda vez que incluso, podría ser, que el universo esté aquí siempre. Y, si llegó como algo , tampoco sabemos, a ciencia cierta, cómo y de dónde lo hizo. Pero, nosotros, los humanos, no dejamos de especular con esta cuestión de compleja resolución y dejamos volar nuestra imaginación en forma de conjeturas y teorías que, no siempre son el fiel reflejo de lo que pudo pasar que, de momento, permanece en el más profundo anonimato.

La Humanidad forma parte indisoluble, indistinguible del cosmos. Todo lo que somos surgió con el mismo universo y en el corazón de las estrellas. En palabras de Sagan, somos polvo de estrellas.

Claro que, la Humanidad y el Universo están tan juntos, tan conectados que, sería imposible que no hablaran de él, y, sobre todo, que no trataran de saber su comienzo (si es que lo hubo) y, hurgar en su dinámica poder entender nuestra presencia aquí junto con las estrellas de las que procedemos y de las galaxias que son las villas del Universo que alojan a cientos de millones de mundos habitados que, como la Tierra, tienen otras criaturas que también, ellas se preguntan por el principio y el final  poder conocer sus destinos.

Viatcheslav Mukhanov, en la Fundación BBVA en Madrid

                                     Viatcheslav Mukhanov, en la Fundación BBVA en Madrid

«El Universo surgió de la nada y puede volver a suceder»

Eso nos dice este personaje, que el Universo surgió de la “Nada” y, está claro que la Nada no existe y, si surgió, es porque había, con lo cual, la Nada queda invalidada. Pero, si hubo un suceso de creación, ¿que duda nos  caber de que tuvo que haber una causa? Lo cierto es que, en las distintas teorías de la “creación” del universo, existen muchas reservas.

¡¡Lo de la singularidad es difícil de digerir!!

No obstante tales reservas, unos pocos científicos trataron de investigar la cuestión de cómo pudo haberse originado el universo, aunque admitiendo que sus esfuerzos quizás eran “prematuros”, dijo Weinberg con suavidad. En el mejor de los casos, contemplado con una mirada alentadora, el realizado hasta el momento, parece haber encendido una lámpara en la antesala de la génesis. Lo que allí quedó iluminado era muy extraño, pero era, en todo caso, estimulante. No cabía descubir algo familiar en las mismas fuentes de la creación.

Hemos podido contemplar como en la Nebulosa del Águila nacen nuevas estrellas masivas. Sin embargo, no hemos llegado a poder saber, con certeza como surgió el Universo entero y de dónde y porqué lo hizo para conformar un vasto espacio-tiempo lleno de materia que evolucionaría hasta poder conformar las estrellas y los mundos en enormes galaxias, y, en esos mundos, pudieron surgir criaturas que, conscientes de SER, llegaron un nivel animal rudimentario, hasta los más sofisticados pensamientos que les hicieron preguntarse: ¿Quiénes somos, de dónde venimos,  dónde vamos? Y, esas preguntas, realizadas 14.000 millones de años después del comienzo del tiempo, y  junto a la pregunta del origen del Universo, todavía, no han podido ser contestadas. Nuestro intelecto evoluciona pero, sus límites son patentes.

Resultado de imagen de Protoestrella

Nube molecular, anomalía gravitatoria, se forma un grumo, el grumo atrae más material, el disco de gas y polvo gira más y más, el núcleo se va condensando y la temperatura sube, se produce la fusión nuclear….. Ha nacido una estrella. Los vientos estelares y la radiación expulsan el material sobrante que se alejan para formar planetas.

Una estrella que se forma en la Nebulosa comienza siendo protoestrellas y, cuando entra en la secuencia principal, brilla durante miles de millones de años dutante los cuales crea nuevos elementos a partir del más sencillo, el Hidrógeno. Los cambios de fase que se producen por fusión en el  nuclear de las estrellas, son los que han permitido que existieran los materiales necesarios para la química de la vida que, al menos hasta donde sabemos, no apareció en nuestro planeta Tierra, hasta hace unos 4.o0o millones de años, y, desde entonces, ha evolucionando para que , nosotros, podamos preguntas, por el origen del universo.

          Seguimos tratando de saber… ¡sobre el origen del Universo! Otra cosa son las teorías

Los científicos han imaginado y han puesto sobre la mesa su estudio, dos hipótesis, la llamada génesis del vacío, y la otra, génesis cuántica y ambas, parecían indicar mejor lo que el futuro cercano podía deparar al conocimiento humano sobre el origen del Universo.

La Génesis de vacío: El problema central de la cosmología es explicar  algo msurge de la nada. Por “algo” entendemos la totalidad de la materia y la energía, el espacio y el tiempo: el universo que habitamos. Pero la cuestión de lo que significa NADA es más sitíl. En la ciencia clásica, “nada” era un vacío, el espacio vacío que hay entre dos partículas de materia. Pero concepsión siempre planteaba problemas, como lo atestigua la prolongada indagación sobre si el espacio estana lleno de éter, y en todo caso no sobrevivió al advenimiento de la física cuántica.

El vacío cuántico nunca es realmente vacío, sino que resoba de partículas “virtuales”. Las partículas virtuales pueden ser concebidas como la posibilidad esbozada por el principio de indeterminación de Heisenberg de que una partícula “real” llegue en un tiempo determinado a un lugar determinado. Como las siluetas que salen de pronto en un campo de tiro policial, representan no sólo lo que es sino también lo que podría ser. el punto de vista de la física cuántica, toda partícula “real” está rodeada por una corona de partículas y antipartículas virtuales que borbotean del vacío, interaccionan unas con otras y luego desaparecen.

Resultado de imagen de Las ondas fluctúan de aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio.

Las ondas fluctúan de aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Está en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son  los electrones. Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a moviéndose aleatoriamente, de  impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutronesmantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.

Una cosa sí sabemos, las reglas que gobiernan la existencia de las partículas virtuales se hallan establecidas por el principio de incertidumbre y la ley de conservación de la materia y de la energía.

http://farm5.static.flickr.com/4025/4516869871_1cd24e4f97.jpg

En un  estudio, un grupo de físicos ha propuesto que la gravedad podría disparar un efecto desbocado en las fluctuaciones cuánticas, provocando que crezcan tanto que la densidad de energía del vacío del campo cuántico podría predominar sobre la densidad de energía clásica. Este efecto de predominancia del vacío, el cual surge bajo ciertas específicas  razonables, contrasta con la ampliamente sostenida creencia de que la influencia de la gravedad sobre los fenómenos cuánticos debería ser pequeña y subdominante.

Claro que, hablar aquí del vacío en relación al surgir del universo, está directamente asentado en la creencia de algunos postulados que dicen ser posible que, el universo, surgiera de una Fluctuación de vacío producida en otro universo paralelo y, entonces, funciona de manera autónoma como un universo de los muchos que son en el más complejo Metaverso.

Inmediatamente después de que la llamada espuma cuántica del espacio-tiempo permitiera la creación de nuestro Universo, apareció una inmensa fuerza de repulsión gravitatoria que fue la responsable de la explosiva expansión del Universo primigenio (inflación(*)).Las fluctuaciones cuánticas del vacío, que normalmente se manifiestan sólo a escalas microscópicas, en el Universo inflacionario en expansión exponencial aumentaron rápidamente su longitud y amplitud convertirse en fluctuaciones significativas a nivel cosmológico.

En el Modelo corriente del big bang que actualmente prevalece y que, de , todos hemos aceptado al ser el que más se acerca a las observaciones realizadas, el universo surgió a partir de una singularidad, es decir, un punto de infinita densidad y de inmensa energía que, explosionó y se expansionó crear la materia, el espacio y el tiempo que, estarían gobernados por las cuatro leyes fundamentales de la naturaleza:

Fuerzas nucleares débil y fuerte, el electromagnetismo y la Gravedad. Todas ellas, estarían apoyadas por una serie de números que llamamos las constantes universales y que hacen posible que nuestro universo, sea tal lo podemos contemplar. Sin embargo, existen algunas dudas de que, realmente, fuera esa la causa del nacimiento del Universo y, algunos postulan otras causas  transiciones de fase en un universo anterior y otras, que siendo más peregrinas, no podemos descartar.

La Tierra con la luna

Nosotros, estamos confinados en el planeta Tierra que es un mundo suficientemente preparado para acoger nuestras necesidades físicas, pero, de ninguna manera podrá nunca satisfacer nuestras otras necesidades de la Mente y del intelecto que produce imaginación y pensamientos y que, sin que nada la pueda frenar, cual rayo de luz eyectado por una estrella masiva refulgente, nuestros pensamientos vuelan también, hacia el espacio infinito y con ellos, damos rienda suelta a nuestra más firme creencia de que, nuestros orígenes están en las estrellas y hacia las estrellas queremos ir, allí, amigos míos, está nuestro destino.

El Universo es grande, inmenso, casi infinito pero, ¿y nosotros? Bueno, al ser una parte de él, al ser una creación de la Naturaleza, estamos formando parte de esa inmensidad y, precisamente, nos ha desempeñar el papel de la parte que piensa, ¿tendrá eso algún significado?

Yo, no lo sé… Pero… ¿¡Quién sabe realmente!?

emilio silvera

¿Cómo pudo surgir la Vida? ¡Es todo tan complejo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                  
                                           

 Resultado de imagen de Las mejores imágenes del Universo

                     

 

 

 

 

    Podemos leer en las piedras… ¡Cuentan tantas historias!

Con sus tres mil quinientos millones de años de edad, las rocas sedimentarias dispersas por algunas regiones del mundo, por ejemplo, en Australia Occidental (Grupo Warrawoona), nos regalan uno de los primeros atisbos e vida y el en la infancia de la biosfera. Esas rocas contienen estromatolitos y estructuras microscópicas que han sido interpretados como bacterias fósiles, aunque ese extremo aún siga en pleno debate. No obstante, las signaturas químicas proporcionan evidencias sólidas de la antigüedad de la vida, aunque el tipo de biolo´gia responsable de ellas siga siendo incierto. En las investigaciones geológicas de la vida primigenia de la Tierra seguimos mirando a través de un cristal oscuro.

Muchas veces pasamos junto a sistemas rocosos sin pensar que, en ellos, están presentes un sin fin de del pasado que nos hablan de la vida y, son los geólogos los que, pacientemente se internan por lugares perdidos del mundo en busca de esa huella que nos hable del surgir de la vida.

El vestigio geológico, como dijo James Hutton, no presenta “ni vestigios de un principio ni perspectiva de un futuro”. Las perspectivas de un futuro siguen siendo remotas, pero durante las últimas décadas los paleontólogos han desenterrado lo que verdaderamente se podría considerar como los vestigios del principio de la vida.

Resultado de imagen de Insectos fosilizados de millones de años de edadResultado de imagen de Insectos fosilizados de millones de años de edad

                         Insectos fosilizados de millones de años de edad. El primero quedó atrapado en ámbar y el segundo es un mosquito repleto de sangre de hace 46 millones de años.

”fosil01”

Fósiles de cascarones (a la izquierda) y de manto bacteriano (a la derecha) en los sedimentos de Pilbara, Grupo Warrawoona, 3.446 Ga-© Frances Westall.

Estas estructuras han sido atribuidas a bacterias fosilizadas. La cantidad de carbono restante unida a estos microfósiles es generalmente muy débil ( 0,01-0,5% con puntas excepcionales hasta el 1%) lo que hace particularmente difícil el análisis del carbono orgánico. No obstante, se han podido determinar los isótopos de carbono y presentan un enriquecimiento variable pero así y todo significativo en carbono 12, lo que habitualmente se traduce en un origen biológico. En general, las moléculas biológicas producidas por fotosíntesis se caracterizan por un enriquecimiento en 12C en relación con los carbonatos minerales. Así, la relación 12C/13C pasa de 88,99 en los carbonatos minerales de referencia a valores comprendidos entre 90,8 y 91,7 en las moléculas orgánicas biológicas.

Resultado de imagen de Cianobacterias

La cianobacteria UCYN-A, que vive en simbiosis con un alga unicelular del grupo de las primnesiofíceas . Fuente: www.solociencia.com

Aunque no son plantas, las cianobacterias son uno de los principales seres vivos capaces de realizar la fotosíntesis, y  están sujetos al mismo intercambio de gases. En ellos los gases fluyen a través de la membrana y la pared celular por transporte pasivo.

Arguyendo un parecido entre las cianobacterias modernas y los microfósiles de Pilbara, William Schopf, de la Los Angeles, ha descrito estos últimos como fósiles de cianobacterias. Estas bacterias ancestrales, pues, ya habrían practicado la fotosíntesis oxigenada. Interpretación muy importante ya que situaría la fotosíntesis oxigenada muy atrás en los tiempos geológicos, mientras que los indicios bioquímicos más antiguos de la fotosíntesis oxigenada encontrados en esquistos carbonados, también en Australia, sólo se remontan a 2.700 millones de años. Según el inglés Martin Brasier, de la Universidad de Oxford, las estructuras contendrían efectivamente carbono orgánico enriquecido en isótopo 12, pero la materia orgánica sería de origen puramente químico y no biológico. Podría proceder de la reacción del hidrógeno con el monóxido de carbono (reacción llamada de Fischer-Tropsch), dos gases presentes en los fluidos de las fuentes hidrotermales. La acumulación de materia orgánica en microestructuras sería debida a la cristalización del cuarzo en la vena hidrotermal, y el importante enriquecimiento en carbono 12 sería el resultado de procesos puramente químicos. La explicación de Brasier, no obstante, no es totalmente convincente porque no es probable que la reacción de Fischer-Tropsch produjera moléculas tan complejas como los kerógenos (materia orgánica compleja, insoluble en los disolventes habituales) depositados en las venas hidrotermales.

Resultado de imagen de Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguas

                    Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguas

 Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de donde se han encontrado Bacterias fósiles de una antigüedad aproximada de 3.500 millones de años.

Muchas veces hemos opido hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un esótopo raro de Carbono que se produce en natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrogeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.

Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios…del Oxígeno, de la atmósfera, etc. 

En los materiales más antiguos simplemente no queda suficiente 14C que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que sus secretos muy bien guardados en lo más profundo de los tiempos.

Resultado de imagen de Los fósiles más antiguos de seres vivos

Resultado de imagen de Los fósiles más antiguos de seres vivos

El Tiempo inexorable nos muestra los dos escenarios: El primero de aquellos “seres” que vivieron hace millones de años, y, el segundo lo que queda ellos hallados por excavaciones científicas.

Conforme estudiamos los restos fósiles vamos sabiendo más de tiempos pretéritos. Cada descubrimiento nos retrotrae un poco más en el pasado y nos dice, por ejemplo, que el primer ojo o el primer ser fotosintético se remontan aún más en el tiempo de lo que pensábamos.

Resultado de imagen de Frances Westall, del CNRS francés, y sus colaboradores han analizado unos tapetes microbianos fósiles encontrados en el cinturón Barberton Greenstone sudafricano

Restos de filamentos fósiles de microbios fotosintéticos de hace 3300 millones de año. Fuente: Frances Westall.

Frances Westall, del CNRS francés, y sus colaboradores han analizado unos tapetes microbianos fósiles encontrados en el cinturón Barberton Greenstone sudafricano y llegado a la conclusión de que la fotosíntesis ya existía al menos hace 3300 millones de años.

Estas capas de microbios crecían en una Tierra en la que no había oxígeno libre, una Tierra muy distinta a la que conocemos ahora. Probablemente su hábitat era la línea costera a muy baja profundidad bajo la superficie. Un sitio en el que había agua y la luz del Sol llegaba sin dificultad. Esa tonalidad, probablemente verde-azulada, sería la que cambiaría el planeta gracias a la luz y la evolución.

                         ¡La Vida! Que estuvo presente en el pasado… ¡De tantas maneras!

Los microorganismos fósiles más antiguos fueron encontrados en los sedimentos de Barberton, en África del Sur, y de Pilbara, en Australia. Estos sedimentos, de una antigüedad de entre 3.200 y 3.500 millones de años, son ligeramente más jóvenes que las rocas de Groenlandia. Los sedimentos se han conservado bien y muestran la existencia de abundante vida en las aguas litorales de poca profundidad, y quizá incluso cerca de la superficie del agua (algunos biofilms tienen una estructura laminada que parece indicar una vida bacteriana que ya utilizaba energía ). Los microfósiles identificados comprenden estructuras filamentosas con una longitud de entre diez y algunos cientos de micras, bastoncillos de algunas micras de largo y estructuras esféricas y ovoides de aproximadamente 1 micra de diámetro.

Resultado de imagen de Los fósiles más antiguos de seres vivos

Los trabajos realizados en Orleans, en el Centro de biofísica molecular del CNRS, por Frances Westall podrían aportar una explicación intermedia. Se han observado al electrónico morfologías de microfósiles tales como biofilms, polímeros, cascarones, filamentos, bastoncillos, en las muestras de sílice tomadas en Pilbara en zonas limítrofes con las venas hidrotermales de Schopf, pero nunca en el interior mismo de las venas. Estas morfologías contienen carbono identificado por microanálisis con el microscopio electrónico. Parece, en efecto, que las bacterias ancestrales vivían, y posteriormente fueron fosilizadas, en rocas sedimentarias cercanas a venas hidrotermales. Las venas hidrotermales pueden muy bien haber arrastrado la materia orgánica de las bacterias muertas y/o fosilizadas (por lo tanto, enriquecidas en carbono 12), materia orgánica que habría sido depositada nuevamente más arriba en las venas hidrotermales, para formar las famosas estructuras carbonadas complejas descritas por Schopf. Las estructuras de Schopf, pues, sólo serían restos de materia orgánica bacteriana y no bacterias fosilizadas. Esta explicación, por lo tanto, es intermedia entre el todo bacteriano de Schopf y el todo químico de Brasier. No obstante, afirma la presencia de vida bacteriana hace unos 3.500 millones de años.

”fosil02”

Izquierda: Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de años.

Derecha: Bacterias fósiles de una antigüedad de aproximadamente 3.500 millones de años

Las rocas más antiguas susceptibles de presentar trazas de vida son sedimentos de una antigüedad aproximada de 3.750 millones de años descubiertos en el sudoeste de Groenlandia.

Estos sedimentos demuestran la presencia permanente de agua líquida, de gas carbónico en la atmósfera y contienen kerógenos, moléculas orgánicas complejas. La relación isotópica del carbono está comprendida entre 90,2 y 92,4 en lo referente a la materia orgánica de los sedimentos de Groenlandia. Estos valores sugieren, pero no demuestran de manera cierta, la existencia de actividad fotosintética, y por lo tanto de vida primitiva, hace 3.800 millones de años. En efecto, materia orgánica muy antigua (a veces reducida a cristales de grafito) ha sufrido importantes modificaciones en el curso de la diagénesis.

Resultado de imagen de Muchos son los lugares en los que podemos encontrar moléculas orgánicas complejas

               Muchos son los lugares en los que podemos encontrar moléculas orgánicas complejas

El producto final de degradación, los kerógenos, se compone de macromoléculas complejas estables resistentes, que pueden incluso ser transformadas en grafito puro durante el metamorfismo. Todos estos tratamientos pudieron muy bien generar los enriquecimientos en 12C observados. También hay que desconfiar mucho de la contaminación eventual de estas rocas por microorganismos más recientes, contaminación que, evidentemente, falseará los análisis. A causa de las múltiples transformaciones sufridas por estas rocas, hay muy pocas probabilidades de encontrar en ellas vestigios de microfósiles. En efecto, en los sedimentos de Groenlandia no se ha descubierto ninguna estructura parecida a bacterias fósiles.

Imagen relacionada

El hallazgo de enlaces de carbono y nitrógeno en la estrella MWC 480 parece reafirmar la teoría de que los compuestos químicos básicos de la vida son comunes en el Universo.

También aquí hay que rendirse a la evidencia: la esperanza de encontrar pequeños autómatas químicos fosilizados hace 4.000 millones de años, o incluso moléculas orgánicas constitutivas de tales autómatas, es prácticamente nula. De hecho, tres factores han contribuido a borrar sus indicios sobre la Tierra: la historia geológica accidentada de la Tierra (y en particular la tectónica de placas), la erosión debida a la presencia permanente de agua líquida y la propia vida, que produce enormes cantidades de oxígeno, un veneno para las moléculas orgánicas reducidas. Por lo tanto, podemos temer que las primeras páginas del libro de la historia de la vida queden para siempre en blanco.

              Mapa de Australia con la región de Pilbara coloreada en rojo.

”fosil01”

Fósiles de cascarones (a la izquierda) y de manto bacteriano (a la derecha) en los sedimentos de Pilbara, Grupo de Warrawoona, 3.446 Ga-
© Frances Westall

El grupo Warrawoona

En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental . La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.

Son celulas que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares calidos y son el resultado de la union de seres uni- celulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.

En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a identificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron. Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.

Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos. Actualmente, estos restos están cuestionados tanto por su origen biológico por su edad.

La datación del Carbono y la datación radiométrica nos hablan de su Tiempo

Puede parecer sorprendente que las bacterias puedan dejar fósiles. Sin embargo, un grupo particular de bacterias, las cianobacterias o “algas azul-verdosas”, han dejado un fósil que se extiende en el Precámbrico – las cianobacterias más viejas, como fósiles conocidos tienen casi 3.500 millones años, son los fósiles más antiguos actualmente conocidos. El grupo muestra lo que probablemente es el conservacionismo más extremo de morfología de cualquier organismo. Aparte de las cianobacterias, las bacterias fósiles identificables no son muy frecuentes. Sin embargo, bajo ciertas condiciones del medio químico, pueden reemplazarse células bacterianas con minerales, muchas veces pirita o siderita (carbonato férrico), formando réplicas de las células que una vez estuvieron vivas.

Cianobacterias esenciales en la historia y el futuro del planeta

decíamos, en la datación de objetos más antiguos situados en las profundidades de la historia de la Tierra, el 14C no sirve, y, nos tenemos que valer de otros materiales cuya vida media sea más larga. ello, necesitamos un reloj mucho más imponente: un radioisótopo cuya vida media se mida en muchos millones de años o incluso, en miles de millones de años. El Potasio 40 (40k) se identificó inicialmente como un candidato prometedor para la geocronología. Este isótopo inestable se desintegra formando o bien Calcio 40 (40 Ca), que desafortunadamente no distinguierse de los iones de Calcio ya presentes en el mineral, o bien Argón (40 Ar), que só piede distinguierse. La Vida Media del 40K es de 1250 millones de años. Además, el Potasio es abundante y está ampliamente distribuido en los minerales que forman las rocas.

       Mineral de Circón

Sin embargo, lo que realmente necesitamos para datar las rocas muy antiguas es un sistema que funcione como las “cajas negras” de los avianes: un isótopo que no se pierta fácilmente en un mineral que no se altere fácilmente. Los circones, unos minerales que contienen uranio y se encuientran en los granitos y otras rocas igneas, son las cajas negras de la geología precámbrica. De hecho, el uranio enlazado a los cristales de circón en el de su formación nos proporcionan dos cronómetros fiables: el 238U se desintegra en Plomo 206 (206Pb) con una vida media de unos cuatro mil quinientos millones de años (la edad de la Tierra), mientras el osotopo 235U, abundante ( un 7 por mil), se desintegra en 207Pb con una vida media de algo más de setecientos millones de años. peculiaridad nos permite verificar por dos métodos las edades medidas en las rocas más antiguas de la Tierra y, podemos daber la edad de los fósiles hallados en ellas.

Resultado de imagen de La vida en ambientes arcaicos

Imagen relacionada

         Nuestro metabolismo ya existía hace 3.000 millones de años, antes que nuestros genes

La Era Arcaica también conocida como  Precámbrico; es la era más antigua y la más extensa,  ya que se origina con el nacimiento de la Tierra hace 4.500 millones de años, y se extiende hasta hace 500 millones de años aproximadamente.

En este periodo se produce una evolución de la corteza terrestre, ya que durante ella ocurrieron grandes plegamientos y cataclismos que dieron origen a algunas cadenas de montañas y océanos.

A  comienzos del  Arcaico, el flujo de calor de la Tierra era casi tres veces superior al que es hoy  y se comenzarían a  formar los continentes.+

Resultado de imagen de La vida en ambientes arcaicos

Figura 1 Mapa de la ubicación de los sitios arqueológicos de la bahía de Gualaguala (norte de Chile). Location map of the archaeological sites from the …

En la actualidad, nuestro conocimiento de la vida en ambientes arcaícos es a un tiempo frustrante y emocionante: frustrante porque tenemos muy pocas certezas, emocionante porque sabemos algo, por poco que esto sea. Además, es estimulante, pues el compañero de la ignorancia es la oportunidad. Así que nos quedan preguntas importantes que realizar sobre las rocas de Warrawoona y las de otros lugares que nos muestran fósiles que, no siempre sabemos descifrar. Si las rocas más antiguas que hemos podido identificar nos indican la presencia de organimos complejos, ¿queé clase de células vivían en tiempos aún más lejanos? Y, en última instancia, ¿cómo pudieron surgir? ¿Cuál es el origen de la vida?

El origen de la vida Tabla Figura

¿Quién puede contestar esa pregunta?

La vida fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Nosotros (creo), junto con la inmensa diversidad de clases de vida que en la Tierra han sido, estábamos presentes en las que el Universo tenía impresas en la evolución de Gaia. Sin embargo, la vida es muy distinta a todo lo demás porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un papel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida, y, esa evolución bioquímica de la materia para hacer posible la vida, se gestó, primero en las estrellas, más tarde en laas explosiones supernovas que hicieron posible la transmutación de materiales sencillos en más complejos y, finalmente, en las Nebulosas donde se formaron nuevas estrellas y planetas que, cargados con estos materiales prebióticos, sólo tuvieron que esperar que, en algún plameta como la Tierra, situado en la Zona habitable de su estrella (el Sol) dejara que el Tiempo, con su transcurrir, hiciera el trabajo.

         Muchos son los planetas situados en la zona habitable de “sus estrellas”

A grandes rasgos entendemos como pueden haber evolucionado las moléculas biológicas a partir de precursores simples presentes en la Tierra joven. Sin embargo, ssigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de froma tan compleja hasta llegar a “fabricar” una “máquina” tan maravillosa como nuestro cerebro de cuyas funciones, simplemente conocemos una muy superficial.

Si pensamos en cómo se pudo conformar el cerebro humano, una estructura de tal complejidad que, posiblemente, nada en el Universo se le pueda igualar, toda vez que, llegar a transiciones de fase que pasan por sucesos que parten la materia inerte y llegan hasta los pensamientos y los sentimientos…, no existe nada que se le pueda igualar.

¿Conoceremos algún día la verdadera Historia? Esperemos que, al menos, en su mayor parte sí.

emilio silvera