domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Telescopio de Canadá detecta misteriosas señales de radio de una galaxia lejana

Telescopio de Canadá detecta misteriosas señales de radio de una galaxia lejana

Un telescopio de Canadá detecta unas extrañas y misteriosas señales de radio procedentes de una galaxia muy lejana

ASTRONOMÍA

NOTICIA
Fotografía de la galaxia M51,  EL MUNDO

 

Rastrean las misteriosas señales situadas en lejanas regiones del Universo

 

Los FRB son uno de los misterios más intrigantes de la astrofísica

La naturaleza y el origen de las explosiones de las ondas de radio es desconocida

Los FRB surgen por todo el cielo, y no están seguros de qué los causa

 

Un equipo de científicos liderado por Canadá ha hallado unas señales misteriosas que emanan de una galaxia muy lejana. La naturaleza precisa y el origen de las explosiones de las ondas de radio es desconocida, según revela la investigación publicada en la revista Nature.

Entre las 13 ráfagas de radio rápidas, conocidas como FRB, se ha hallado una señal de repetición muy inusual, proveniente de la misma fuente a unos 2.500 millones de años luz de distancia. Es decir, una segunda señal igual que otra anterior que se registró en 2012. Los científicos creen que las FRB proceden de poderosos fenómenos astrofísicos a miles de millones de años luz de distancia, pero el origen real sigue siendo un misterio.

Imagen relacionada

“¡Mira! Vemos FRB”, dijo Deborah Good, una astrónoma de la Universidad de British Columbia en Vancouver, Canadá, en una reunión de la American Astronomical Society en Seattle, el pasado 7 de enero.

Good informó sobre los primeros resultados del Experimento Canadiense de Cartografía de la Intensidad del Hidrógeno (CHIME), un telescopio que originalmente fue diseñado para explorar el Universo primitivo pero que resultó ser ideal para detectar FRB . Visto por primera vez en 2007, los FRB son uno de los misterios más intrigantes de la astrofísica. Aparecen por todo el cielo, y los astrónomos no están seguros de qué los causa.

Resultado de imagen de Los FRB surgen por todo el cielo

Tal señal sólo había sido registrada una vez antes, y por un telescopio diferente.“Hemos descubierto una segunda señal repetitiva y sus propiedades son muy similares a la primera”, dijo Shriharsh Tendulkar, de la Universidad McGill de Canadá. Apareció por primera vez en 2012 y parece originarse en una galaxia a unos 2.500 millones de años luz de la Tierra.

¿Una estrella de neutrones o una nave alienígena?

 

Resultado de imagen de Estrella de neutronesResultado de imagen de Sofisticada nave alienigena

 

 

Hay una serie de teorías sobre lo que podría estar causando estas señales de radio. La mayoritaria es que se trata de una estrella de neutrones con un campo magnético muy fuerte que gira muy rápidamente, o que se trata de dos estrellas de neutrones que se fusionan. Y, entre una minoría de observadores, que se trata de alguna forma de nave espacial alienígena.

De las más de 60 FRB observadas hasta la fecha, sólo se habían encontrado repeticiones de una sola fuente una vez, un descubrimiento realizado por el radiotelescopio de Arecibo en Puerto Rico en 2015, ahora ya son dos.

Resultado de imagen de radiotelescopio de Arecibo en Puerto RicoResultado de imagen de radiotelescopio de Arecibo en Puerto Rico

“Hasta ahora, solo se conocía una FRB repetida. Sabiendo que hay otra sugiere que podría haber más por ahí. Y con más repetidores y más fuentes disponibles para el estudio, podremos entender estos enigmas cósmicos -de dónde proceden y qué los causa-“, apunta Ingrid Stairs, miembro del equipo CHIME y astrofísica de la UBC.

Antes de que CHIME comenzara a recopilar datos, algunos científicos se preguntaban si el rango de frecuencias de radio con el que el telescopio había sido diseñado para detectar sería demasiado bajo para captar ráfagas de radio rápidas. La mayoría de las FRB detectadas anteriormente se habían encontrado en frecuencias cercanas a 1400 MHz, muy por encima del rango del telescopio canadiense de 400 MHz a 800 MHz.

El estudio de FRB de baja frecuencia y la forma en que su radiación se dispersa en el camino a la Tierra, puede revelar más sobre el entorno en el que nacieron las explosiones.

Publica: emilio silvera

La Física de Partículas al Servicio de la Salud

Autor por Emilio Silvera    ~    Archivo Clasificado en La física en la vida cotidiana    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

A los que critican los gastos realizados en adelantos (principalmente en proyectos espaciales), les aconsejo leer esté reportaje, donde se deja claro que, la mayoría de esos proyectos nos hacen adelantar en rtecnologías que, más tarde, son empleadas en salvar vidas.

 Imagen relacionada

Resultado de imagen de La Física de Partículas al Servicio de la Salud

 

 

En realidad, en el CERN, se trabaja en algo más que en las partículas subatómicas y se buscan nuevas respuestas y remedios para paliar el dolor en el mundo. También, se ha contribuido de manera notable a las comunicaciones y, el mundo es tal como lo conocemos hoy gracias a Ingenios como el LHC que, por desconocimiento de muchos, en su mpomento, fue tan denostado.

 

Transferencias tecnológicas del CERN a la Biomedicina.

 

 

                                                                                                           

                                                                                                                                        

                                    Partículas y mucho más

Seguramente la mayoría de los lectores de la Revista Española de Física han oído más de una vez hablar del CERN. Fundado en 1954, constituye el mayor laboratorio de física de partículas del mundo, con veinte países miembros y un personal de unas 3.000 personas entre físicos, ingenieros y personal técnico y administrativo de todo tipo. Seguramente están también al tanto de los grandes experimentos que se están preparando en este centro como el Large Hadron Collider (LHC), situado en un túnel circular de 27 km de longitud, destinado a elucidar el origen de la llamada ruptura de la simetría electrodébil y en última instancia el origen de las masas de las partículas elementales (no de la masa del protón o del neutrón como erróneamente se dice a veces en los medios de comunicación), o del proyecto CERN Neutrino Gran Sasso (CNGS), que consiste en enviar un haz de neutrinos de alta energía desde el CERN al laboratorio subterráneo italiano del Gran Sasso que se encuentra a 730 km, para estudiar las oscilaciones de estas huidizas partículas.

También es muy probable que muchos lectores asocien de manera natural la palabra acelerador de partículas  a los instrumentos que utilizan los físicos modernos para estudiar y comprender mejor la estructura y el comportamiento de la materia a pequeñas escalas. Sin embargo, de los 17.000 aceleradores de partículas que se estima existen en la actualidad en todo el mundo, aproximadamente la mitad de ellos se usan en medicina y sólo una parte muy pequeña se usan para investigación fundamental. Por este y otros motivos que se discutirán más adelante, en este número especial de la Revista Española de Física dedicado a la física y las ciencias de la vida, ha parecido conveniente incluir un artículo en el que, al menos brevemente, se describieran algunas de las transferencias tecnológicas (spinoffs) importantes que la actividad del CERN aporta a dichas ciencias.

         Mucho de lo que aquí se descubre, se aplica a nuestra Salud

Es bastante razonable que, como ocurre con las ciencias del espacio, mucha gente se pregunte cuál es la utilidad social de la física de partículas más allá  de la adquisición de conocimientos fundamentales de la naturaleza. Sin embargo, es preciso señalar que los aceleradores y detectores de partículas del CERN y otros laboratorios similares requieren el uso, y muchas veces el desarrollo, de tecnologías de punta que obligan a una estrecha colaboración con la industria  que redunda en beneficio de ambas partes. Las transferencias tecnológicas que se producen en este proceso se incorporan inmediatamente a nuestra vida diaria en áreas tales como la electrónica, procesamiento industrial y médico de imágenes, manejo y usos de la radiación , metrología, nuevos materiales, tecnologías de la computación y la información, tratamiento del cáncer, etc. En este artículo se pondrá el énfasis en aquellas actividades del CERN que han redundado de una forma más clara en beneficio de las ciencias biomédicas.

PET/TC o más allá de los rayos X

En el ámbito de la medicina los aceleradores de partículas se utilizan con dos finalidades; una para la formación de imágenes con propósitos diagnósticos y otra, para terapia, principalmente oncológica. Desde el descubrimiento de los rayos X por Röntgen en 1895, este tipo de radiación electromagnética ha proporcionado una información de valor incalculable y aún sigue proporcionándola. Sin embargo, mucho más recientemente, se han desarrollado otras técnicas complementarias de diagnóstico basadas en los llamados radiofármacos. Estas sustancias radiactivas presentan idealmente la propiedad de poder ser inyectadas en el organismo humano de forma segura y de fijarse exclusivamente a determinados tejidos. Posteriormente, a medida que van desintegrándose, emiten ciertas partículas que pueden ser detectadas y analizadas produciendo de esta forma imágenes estáticas o incluso dinámicas de los órganos en los que se depositaron los radiofármacos y, en definitiva, proporcionando información no solamente sobre la morfología de aquellos, sino también, en muchos casos, sobre su función y metabolismo.Los radiofármacos se producen utilizando haces de protones de alta intensidad y, como tienen una vida media muy baja, deben utilizarse cerca de donde se han creado. Se calcula que unos 20 millones de personas son diagnosticadas cada año mediante el uso de este tipo de sustancias.

Son técnicas no invasivas que dejan al descubierto lo que interesa ver y eliminar.

Una de las técnicas de este tipo más utilizada en la actualidad es la Positron Emission Tomography (PET). En su aplicación se utiliza normalmente un ciclotrón para irradiar alguna sustancia que se convierte en radiactiva por desintegración beta positiva (emisora de positrones). Esta sustancia se une por ejemplo a la glucosa y se inyecta al paciente. Los positrones producidos se aniquilan con los electrones circundantes dando lugar a dos fotones de energía muy bien definida, emitidos en direcciones opuestas. Estos fotones interaccionan con un material escintilador dando lugar a la emisión de otros fotones que pueden ser detectados por fotomultiplicadores o fotodiodos para formar la imagen de los tejidos que se pretenden estudiar en función de la distribución de la glucosa radiactiva. Por ejemplo, en el caso del diagnóstico del cáncer las células cancerosas suelen consumir más glucosa que las células sanas debido a su mayor vascularización y a su mayor actividad metabólica y reproductiva, produciendo por tanto una mayor emisión de fotones. Por el contrario, las zonas donde el tejido presente mayor número de células muertas brillarán menos debido a la menor concentración de glucosa radioactiva, lo cual puede ser muy útil para el diagnóstico de infartos y otras lesiones.

Resultado de imagen de Adelantos médicos descubiuertos en el CERN

         Tecnológias que llegan más allá

De acuerdo con David Townsend, uno de los pioneros en el desarrollo de la tecnología PET, aunque ésta no fue inventada en el CERN, una cantidad esencial e inicial de trabajo desarrollado en el CERN  a partir de 1977 contribuyó de forma significativa al desarrollo del PET 3D. La tecnología PET alcanza su grado más alto de utilidad diagnóstica cuando se combina con la Computed Tomography (CT). La CT es un método de formación de imágenes tridimensionales a partir del procesamiento digital de un gran número de imágenes bidimensionales de rayos X. Inicialmente, las diferentes imágenes se obtenían alrededor de un solo eje de rotación y de ahí su nombre original de Computed Axial Tomography (CAT).

Resultado de imagen de La técnica combinada PET/CT

            Se puede llegar a lugares que antes eran imposibles de localizar

La técnica combinada PET/CT es uno de los desarrollos más excitantes de la medicina nuclear y la radiología modernas. Las reconstrucciones de imágenes CT permiten el diagnóstico precoz de tumores basándose en sus características morfológicas, mientras que la tecnología PET es capaz de diferenciar con grane eficiencia los tejidos malignos de los benignos. La fusión PET/CT permite ahora integrar las imágenes morfológica y fisiológica en una única imagen. El prototipo del scanner ART, el Partial Ring Tomograph (PRT), fue desarrollado en el CERN en 1980 y 1990 por David Townsend, Martín Wensveen y Henri Tochon-Danguy, y evaluado clínicamente en el departamento de medicina nuclear del Hospital Cantonal de Ginebra. ART puede considerarse como el precursor de la parte PET del moderno scanner PET/CT, que ha producido un impacto extraordinario en la tecnología de imágenes con fines médicos. Además, el CERN continua hoy en día contribuyendo a este campo fundamental de la medicina moderna mediante proyectos como Clear PET, Clear PEM, HPD PET etc.

Sin embargo, la importancia del CERN en el desarrollo de las tecnologías PET o CT, y en general de todo tipo de scanner, va mucho más allá. En efecto, todo este tipo de dispositivos se basa, de una forma u otra, en los detectores desarrollados a finales de los  sesenta en el CERN por George Charpak. Su trabajo fue reconocido en 1992 con la concesión del Premio Nobel de Física por su invención y desarrollo de detectores de partículas, en particular de la cámara proporcional multihilos, que produjo una revolución en la técnica de exploración de las partes más íntimas de la materia. Los detectores desarrollados por Charpak se usan aún para todo tipo de investigaciones médicas y biológicas y podrían eventualmente sustituir completamente a las placas fotográficas en la radio-biología aplicada. La velocidad creciente con la que permiten registrar las imágenes en radio medicina conducen a una menor tiempo de exposición y a menores dosis de radiación indeseada recibida por los pacientes.

Resultado de imagen de Hadronterapia, o las partículas contra el cáncer

Hadronterapia, o las partículas contra el cáncer, La energía de un haz de partículas atravizan el tejido sin dañarlo y llegan al tumos que destruyen.

Como es bien sabido, una de las herramientas terapéuticas esenciales en el campo de la oncología es la radioterapia. Dicho tratamiento se aplica hoy en día aproximadamente a la mitad de los pacientes de cáncer. En cierto modo se puede considerar como una forma sutil de cirugía donde el bisturí es reemplazado por un haz colimado de partículas capaz de esterilizar las células malignas mediante la inactivación de su ADN, impidiendo así su reproducción. Tradicionalmente, la radioterapia se ha basado en el uso de rayos X (fotones), electrones y, más recientemente, hadrones, es decir, partículas capaces de interaccionar fuerte o nuclearmente, si bien no es ésta la propiedad más interesante de estas partículas para las aplicaciones radioterapeúticas. Los haces de rayos X y los electrones se obtienen normalmente a partir de aceleradores lineales como los del CERN, aunque mucho más pequeños, y se apuntan hacia los tumores con la energía, dirección y colimación apropiadas para optimizar su efecto destructivo sobre los mismos. Por su parte, los neutrones pierden energía en el interior del organismo de una forma diferente, lo cual les hace más indicados para el tratamiento de ciertos tipos especiales de tumores. Se obtienen a partir de las colisiones de protones, previamente acelerados en un ciclotrón, con núcleos de berilio. Este hecho hace que esta terapia sea bastante más cara que las anteriores, pero a cambio el ciclotrón puede ser usado también para la producción de radiofármacos.

                                      Cintíficos del CERN aplivcan antimateria contra el Cáncer

El estudio de las posibilidades de utilización de haces de hadrones en la terapia del cáncer tuvo su origen en el trabajo seminal de R.R Wilson titulado Radiological Use of Fast Protons (Radiology 47, 1946). En dicho artículo se ponía de manifiesto que los protones, así como otras partículas cargadas pesadas, presentan la propiedad única de que al penetrar en el cuerpo humano depositan la mayor parte de su energía a una preofundidad que depende de su energía inicial. Este hecho permite seleccionar cuidadosamente el área que se quiere irradiar, preservando de dicha radiación al tejido sano que pudiera encontrarse a menor profundidad. Además, como las partículas se detienen a una distancia de la superficie bien definida por la energía del haz, tampoco resultarían dañadas las células situadas detrás del blanco seleccionado.

En contraste, la energía depositada por los rayos X alcanza su máximo cerca de la superficie de entrada y decae exponencialmente hasta que abandona el cuerpo humano en el lado opuesto, haciendo por tanto muy difícil seleccionar la zona que quiere irradiarse sin dañar otras áreas de células sanas. El trabajo de Wilson de 1946 condujo a toda una nueva línea de investigación experimental, principalmente en el Lawrence Berkeley Laboratory, que ha dado lugar al desarrollo de una nueva clase de terapias antitumorales basadas en la irradiación con protones y más recientemente con iones de carbono. Estas técnicas han sido aplicadas en más de 40 centros de todo el mundo, y de ellas se han beneficiado hasta la fecha más de 50.000 pacientes. No obstante, continúan investigándose nuevas formas de intentar mejorar el ratio entre la energía depositada en las células tumorales y en el tejido sano.

Resultado de imagen de el CERN y proyectos de la hadroterapia

En la actualidad, el CERN se encuentra involucrado en diversos proyectos relacionados con la hadronterapia. Por ejemplo, en el diseño de un acelerador de protones e iones de carbono dedicado exclusivamente a usos médicos conocido como Proton Ion Medical Machine Study (PIMMS). Otro proyecto interesante es la realización de las pruebas del Linear Booster ( LIBO), capaz de acelerar una haz de protones hasta 200 Mev (los hospitales habiualmente utilizan energías en torno a los 65 MeV) y que estaría especializado en el tartamiento de tumores profundos.

Finalmente, y situándonos en un plano de investigación a un nivel más básico, es interesante señalar que en octubre de 2006 se presentaron los primeros resultados de un experimento llevado a cabo en el CERN con potencial para futuras aplicaciones en la terapia del cáncer. Se trataba del Antiproton Cell Experiment (ACE), que constituye la primera investigación realizada hasta la fecha sobre efectos biológicos de los antiprotones. Los antiprotones se comportan como los protones cuando entran en el organismo, pero generan mucha más energía en el blanco seleccionado debido a du aniquilación con los protones existentes en los núcleos de los átomos de las células, y además depositan esta energía de una forma biológicamente más efectiva.

 Se busca antimateria contra el Cáncer. Los resultados muestran que los antiprotones son cuatro veces más efectivos que los protones para destruir células vivas. (Foto: Especial CERN )

Evaluando la fracción de células supervivientes después de la irradiación con el haz de antiprotones, el experimento ACE ha encontrado que a eficiencia de éstos es unas cuatro veces mayor que la de los protones, mientras que el daño producido a las células situadas antes del blanco era básicamente el mismo. De acuerdo con Michael Holzscheiter, portavoz del experimento ACE, este hecho podría ser extremadamente importante para el tratamiento de casos de cáncer recurrente, donde este tipo de propiedad es vital. La tecnología desarrollada previamente en el CERN para la obtención de haces de antiprotones de buena calidad a la energía apropiada es esencial para este prometedor experimento, que difícilmente podría haberse realizado en ningún otro laboratorio. Éste es por tanto un magnífico ejemplo de cómo la investigación en física de partículas desarrollada en el CERN puede generar soluciones innovadores con excelentes beneficios médicos potenciales.

Los investigadores de ACE, en colaboración con otras instituciones de todo el mundo, están realizando en la actualidad nuevos tests para comprobar la eficacia de este método en el caso de tumores situados a mayor profundidad, y comparando sus resultados con los de otros métodos más convencionales como la irradiación mediante iones de carbono. Si todo sale como se espera, los beneficios clínicos de esta nueva técnica podrían empezar a producirse dentro de la próxima década.

Otro ejemplo importante de tecnología creada en el CERN con aplicaciones a la terapia del cáncer es el Neutron Driven Element Trasmuter. Se trata de un sistema de producción de radioisótopos específicos específicos a partir de un acelerador de protones cuyo desarrollo fue liderado por Carlo Rubbia, Premio Nobel de Física en 1984 por el descubrimiento de los bosones W y Z y ex director general del CERN. La idea es utilizar el haz de protones para producir neutrones los cuales provocan reacciones en un ambiente apropiado donde ciertos elementos son convertidos en los isótopos deseados.

Resultado de imagen de el haz de protones para producir neutrones los cuales provocan reacciones en un ambiente apropiado donde ciertos elementos son convertidos en los isótopos deseados.

La diferencia principal entre este método, seguro y barato, y el método más tradicional de utilizar los neutrones provenientes de un reactor nuclear, es que no requiere el uso de material fisionable ni funciona críticamente, es decir las reacciones se detienen en el momento en el que el acelerador es apagado. Más aún, el método tiene la ventaja de que sólo se producen los isótopos requeridos, lo que redunda en una importante reducción de impacto ambiental. Normalmente, el blanco utilizado es plomo, elemento idóneo por presentar el menor ritmo de captura de neutrones. Los neutrones se producen por espalación a partir del haz de protones y permanecen en el interior del blanco de plomo, que está rodeado  de un deflector de grafito, hasta que su espectro se suaviza suficientemente para cubrir un gran rango de energías que permiten su utilización para la transmutación de los elementos necesarios para la obtención de los isótopos deseados.

El Neutron Driven Element Trasmuter ha permitido, entre otras cosas, la producción de radioisótopos beta emisores como el 166Ho, 186 Re o el 188Re que son de gran importancia en braquiterapia. Dicha técnica, muy utilizada en el tratamiento de cánceres ginecológicos y en el de cáncer de próstata, es un tipo de radioterapia de proximidad donde la fuente radiactiva se sitúa dentro o muy cerca de los tejidos que requieren irradiación. Típicamente, la fuente radiactiva, de alta actividad y corta vida media, se encapsula en una semilla, filamento o tubo y se implanta en quirófano en la zona deseada. Las diferentes dosis requeridas en cada caso hacen que sea fundamental disponer del mayor muestrario posible de radioisótopos con la actividad y vida media apropiadas, lo cual convierte al Neutron Driven Element Trasmuter en una herramienta valiosísima para el futuro de este tipo de técnica terapéutica.

                            Información y computación sin fronteras

CERN, … where the web was born; éste es uno de los reclamos publicitarios que suelen utilizarse  para hacer ver al público la importancia de los retornos tecnológicos que en este laboratorio tienen lugar. Y en efecto, fue a finales de los ochenta cuando Tim Berners-Lee desarrolló estándar de Hyper Text Transfer Protocol (HTTP)  e implementó los primeros servidores web en el CERN. Su esfuerzo permitió la comunicación fácil y segura y el intercambio de todo tipo de información entre todos los ordenadores del mundo conectados a internet, dando lugar de esta forma a una de las revoluciones tecnológicas más importantes de las últimas décadas. Las repercusiones científicas, tecnológicas, culturales, comerciales y de ocio de la web son ya tan conocidas que apenas merecen comentario alguno.

El término Grid fue acuñado por Ian Foster and Carl Kesselman en su libro The Grid, Blueprint for new Computing Infraestructure (Morgan Kaufman, 1998), aunque las ideas básicas habían sido consideradas con anterioridad. No existe un acuerdo general sobre cual debería ser la definición precisa de las tecnologías Grid, pero hay un amplio concenso en que esta debería contener elementos tales como recursos compartidos, virtualización, abstracción del acceso a los recursos y estandarización. La filosofía Grid consistería, no sólo en compartir información entre diferentes usuarios, sino también recursos, como por ejemplo, procesadores, tiempo de CPU, unidades de almacenamiento, así como otros aparatos e instrumentos, de tal forma que eventualmente cada usuario tendría acceso virtual, por ejemplo, a la capacidad de cálculo de todos los demás usuarios de esa Grid. En los primeros tiempos de esta tecnología de la información se llegó a hablar de la Grid, refiriéndose a la posibilidad  de existencia de una única World  Wide Grid.

                                               Todo surgió del CERN

Hasta el momento, sin embargo, este concepto no es una realidad y más bien lo que se encuentra es que diferentes grupos de proyectos crean su propia Grid usando sus propias implementaciones, estándares y protocolos y dando acceso restringido solamente a una cierta comunidad de usuarios autorizados. Así, aunque se siguen realizando importantes esfuerzos en cuanto a la estandarización de los protocolos, no está claro cual será el camino que este tipo de tecnología seguirá en el futuro en lo que se refiere a la futura existencia de un única Grid.

En cualquier caso es importante resaltar que una vez más el CERN ha sido pionero en este tipo de tecnología. Los detectores que se están instalando (a estas alturas, todos instalados y en marcha) en el LHC (ATLAS, CMS, ALICE, LHCb, SUSY, etc.), son tan complejos, que han requerido cada uno de ellos el concurso de muchas instituciones de todo el mundo para su construcción, y lo seguirán requiriendo para su mantenimiento cuando el acelerador empiece a funcionar (ya está en marcha), y, como no, para el análisis de los datos que se obtengan. Para hacerse una idea de la dimensión y complejidad de estos análisis baste mencionar que el compact Muon Selenoid (CMS), una vez pasado su primer filtro, deberá almacenar información sobre el resultado de las colisiones producidas en su interior a un ritmo del orden de 100 a 200 MB por segundo durante un tiempo esperado de unos cien días por año. Resulta obvio que sólo una tecnología tipo Grid puede afrontar con posibilidades de éxito un reto semejante y de hecho el CERN ha inspirado varios proyectos Grid multinacionales por este motivo. Posiblemente, el más grande de ellos hasta la fecha sea el EGEE (Enablinbg Grids for E-Science), que conecta más de 150 paises y ofrece 20 000 CPUs y más de 10 Petabytes de memoria.

Resultado de imagen de La tecnología Grid

De manera análoga a como ocurrió con las tecnologías de la detección y aceleración, las tecnologías Grid tendrán, y de hecho ya empiezan a tener, un fuerte impacto en las ciencias de la vida y de la salud. En este sentido, uno de los campos obvios de aplicación es la bioinformática. Gracias a los espectaculares avances llevados a cabo en los últimos años en el campo de la biología molecular, se dispone hoy en día de cantidades crecientes de información genética de diferentes especies e individuos. Dicha información codificada en el ADN en forma de secuencia de tripletes o codones de ácidos nucleicos, que constituyen los genes que contienen la estructura primaria de las diferentes proteínas, ha sido y está siendo obtenida por centenares de grupos diferentes distribuidos por todo el mundo y debe almacenarse en gigantescas bases de datos de forma eficiente para su compartición, contrastación y análisis.

Ejemplos típicos serían la búsqueda de determinadas secuencias, comparaciones, búsqueda de determinadas mutaciones o alelos, etc. Resulta evidente que esta ingente labor puede verse enormemente beneficiada por el uso de tecnologías Grid. De hecho, la Bioinformática, y en particular sus aplicaciones biomédicas, han sido una parte importante del proyecto EGEE desde el comienzo del mismo.

Finalmente, y como última muestra de cómo puede revertir en la sociedad las tecnologías de la información y la computación provenientes de la física de partículas, es interesante mencionar el Proyecto Mammogrid y su continuación Mammogrid Plus. Liderado por el CERN, dicho proyecto de la UE utiliza la tecnología Grid para crear una base de datos de mamografías que pueda ser usada para investigar un gran conjunto de datos e imágenes que, aparte de otras aplicaciones sanitarias, sea útil para estudiar el potencial de esta tecnología para servir de soporte a la colaboración entre los profesionales de la salud de la  UE.

      Ciencia, Tecnología y Sociedad

A estas alturas debería haber quedado claro que los centros científicos de élite internacionales como el CERN, no sólo nos proporcionan un conocimiento más profundo de la naturaleza, sino que las tecnologías de punta que en ellos se desarrollan acaban permeando a la Sociedad y se incorporan a nuestras vidas cotidianas. El autor del artículo, Antonio Dobado, del Departamento de Física Teórica I de la Universidad Complutense de Madrid, ha pretendido ilustrar el hecho innegable de la conexión existente entre temas tan aparentemente dispares como el de la Física de Partículas y la Biomedicina, pero ejemplos semejantes podrían haberse encontrado en prácticamente cualquier área de la actividad humana.

La Sociedad no puede permanecer por más tiempo ajena a la Ciencia y a todo lo que trae consigo. Precisamente por eso la RSEF dedica un gran esfuerzo a la difícil tarea de convencer al público de la importancia de la Física como valor científico, cultural y social, como una forma rigurosa y profunda del acercamiento al conocimiento de la naturaleza, y a la vez como generadora de nuevas tecnologías. En este sentido, es una espléndida noticia la inminente creación de un nuevo Grupo especializado en el seno de la RSEF denominado Física Médica. Y, desde aquí, aprovechamos la oportunidad para darles la bienvenida y desearles el mayor éxito en sus futuras andaduras en la búsqueda de la verdad científica.

Publica: emilio silvera

Fuente: Revista Española de FÍSICA.

Publicada por la RSEF con el Nº 3 Volumen 21 de 2007

La presente transcripción es de:  Emilio Silvera

Miembro numerario de la RSEF y adscrito a los Grupos Especializados de Física Teórica y Astrofísica.

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En otras ocasiones hemos presentado aquí trabajos que, entre los temas que fueron tratados, entraba el Universo estacionario y también la posibilidad de un final con la presencia del Big Crunch, lo cual, según todos los datos de la cosmología moderna, no será posible dado que, el Universo euclideo y la Densidad Crítica que se observa no sería suficiente para producir tal final.

Resultado de imagen de Muerte térmica del UniversoResultado de imagen de Muerte térmica del Universo

    Cuando el Universo alcance la temperatura del cero absoluto (-273 ºC) ni los átomos se moverán

Por el contrario, la dinámica observada de expansión es cada vez más acelerada y, aunque algunos hablan de la “materia oscura”, en realidad no sabemos a qué se puede deber tal expansión pero, lo cierto es que no habrá colapso final y sí, en cambio, una expansión ilimitada que nos llevará hacia un “enfriamiento térmico” que llegará a alcanzar un máximo de entropía dS = dQ/T, así habrá una gran parte de la energía del Universo que no podrá producir trabajo. Sin embargo, es curioso que siendo eso lo que se deduce de los datos que tenemos, cuando miramos lo que predicen las nuevas teorías basadas en las cuerdas y la mecánica cuántica nos indica que tal escenario es poco creíble.

 

Todo parece indicar que nada podrá impedir que en las galaxias se sigan produciendo explosiones supernovas que formaran hermosas Nebulosas de las que nacerán nuevas estrellas, toda vez que las galaxias, quedarán aisladas y detendrán su expansiòn y tal hecho, no parece que pueda incidir en la mecánica galáctica de formación de nuevas estrellas.

Así, las estrellas más masivas devolverán parte de la materia que las conforman al medio interestelar y la gravedad y la radiación se encargarán de que nuevos ciclos se sigan produciendo. Y, las estrellas menos masivas, como nuestro Sol y otras seguirán sus vidas durante miles de millones de años y, si tiene planetas en su entorno, ¿quién sabe si estando en la zona habitable no podrá hacer surgir alguna clase de vida? Claro que, el proceso de la dinámica del universo es llegar al frío absoluta de los -273 ºC y, en ese momento, las masas de las estrellas quedarían bloqueadas, los átomos presentes en las Nebulosas perderían su dinámica y nada, en nuestro Universo, tendría movimiento ni energía para crear trabajo, la Entropía sería la dueña y señora de todo y una última estrella habría nacido para quedar colapsada sin poder cumplir su misión de transmutar elementos.

                               Sería triste contemplar un Universo congelado

Pero no pocas de todas estas conclusiones son conjeturas que se hacen conforme a los datos observados que llevan a esas consecuencias. En otros panoramas se podría contemplar como en el futuro, las estrellas escaparían lentamente de las galaxias y según algunos cálculos el 90% de la masa estelar de una galaxia habría huido al espacio en unos 10^19 años. El 10% restante habría sido engullido por agujeros negrossupermasivos centrales. El mismo mecanismo haría que los planetas escaparan de su soles y vagaran por el espacio como planetas errantes hasta perderse en el espacio profundo y, los que no lo hagan caeran hacia el centro de sus soles en unos  0^20 años.

Un último estudio ha indicado que el Universo es curvo, no plano como se creía y tal resultado, aunque tendrá que ser verificado, es importante para saber el final que realmente espera a nuestro Universo en ese futuro muy lejano en el que, no sabemos siquiera si nuestra especie andará aún por aquí.

http://1.bp.blogspot.com/-C6Hg4nNRyas/TpxW2WatgMI/AAAAAAAAHTY/Te65G8OZoMg/s1600/macs1206_hst.jpg

Esa imagen de arriba no sería repetida y las galaxias, los cúmulos se disgregarían debido a interacciones gravitatorias en unos 10^23 años y, en un momento determinado el universo estaría formado por enanas negras, estrellas de neutrones y agujeros negros junto con planetas y pequeñas cantidades de gas y polvo, todo ello, sumergido en una radiación de fondo a 10^-13K. Hay modelos que predicen que los agujeros negros terminarán evaporándose mediante la emisión de la radiación de  Hawking. Una vez evaporado el agujero negro, los demás objetos se convertirían en Hierro en unos 10^1500 años pero también, pasado mucho tiempo, se evaporaran y a partir de este momento el universo se compone de partículas aisladas (fotoneselectronesneutrinosprotones). La densidad tenderá a cero y las partículas no podrán interactuar. Entonces, como no se puede llegar al cero absoluto, el universo sufrirá fluctuaciones cuánticas y podría generar otro universo. ¿Qué locura!

Claro que toda esa teoría podría modificarse si  la “energía oscura” -si finalmente existe- resultara ser negativa, con lo cual el fin se produciría antes. Tampoco se ha contado con la posible inestabilidad del protón. Todo esto está descrito según la física que hoy día se conoce, lo cual nos puede llevar a conclusiones erróneas. Como vereis, tenemos respuestas para todo y, aunque ninguna de ellas pueda coincidir con la realidad, lo cierto es que, el panorama de la cosmología está lleno de historias que, algunas podrán gustar más que otras pero todas, eso sí, están cargadas de una imaginación desbordante.

Como mi intelecto es más sencillo y no alcanza a ver en esas profundas lejanías, me quedo con lo más tangible y cercano como lo es el hecho cierto de que el Universo tiene que tener miles de millones de años para que haya podido tener tiempo suficiente para que los ladrillos de la vida sean manufacturados en las estrellas.

Las leyes de la gravitación nos dice que la edad del universo está directamente ligada a otras propiedades que manifiesta, como su densidad, su temperatura y el brillo del cielo. Puesto que el Universo debe expandirse durante miles de millones de años, debe tener una extensión visible de miles de millones de años-luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace más frío y disperso. Ahora sabemos que la densidad del Universo es hoy día de poco más de 1 átomo por m3 de espacio.

Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra porque no es tan sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extratreterrestres. Si existen en el Universo otras formas de vida avanzada (como creo), entonces, al igual que los seres de la Tierra habrán evolucionado sin ser perturbadas por los seres de otros mundos hasta que puedan llegar a lograr una fase tecnológica avanzada.

Además, la muy baja temperatura de la radiación hace algo más que asegurar que  el espacio sea un lugar frío: también garantiza la oscuridad del cielo nocturno. Durante siglos los científicos se han preguntado por esta sorprendente característica del Universo. Si ahí fuera en el espcio hubiera un número enorme de estrellas, entonces cabría pensar que mirar hacia arriba al cielo nocturno sería un poco como mirar un bosque denso.

                                                 Millones de estrellas en un sólo cúmulo globular

Cada linea de visión debería terminar en una estrella. Sus superficies brillantes cubrirían cada parte del cielo haciéndolo parecido a la superficie del Sol. Lo que nos salva de ese cielo brillante es la expansión del Universo y la lejanía a la que se encuentran las estrellas entre sí. Para encontrar las condiciones necesarias que soporte la complejidad viviente hicieron falta diez mil millones de años de expansión y enfriamiento.

La Densidad de materia ha caido hasta un valor tan bajo que aun sim toda la materia se transformase repentinamente en energía radiante no advertiríamos ningún resplandor importante en el cielo nocturno. La radiación es demasiado pequeña y el espacio a llenar demasiado grande para que el cielo parezca brillante otra vez. Hubo un tiempo cuando el Universo tenía, menos de cien mil años, en que todo el cielo era brillante, tan brillante que ni estrellas ni átomos ni moléculas podían existir, la podría radiación los destruía. Y, en ese tiempo, no podrían haber existido observadores para ser testigo de ello.

[ic2118_dss.jpg]

Con algunas estrellas por aquí y por allá, alguna que otra Nebulosa (incluso algunas brujas), el Universo es oscuro y frío.

Pero estas consideraciones tienen otros resultados de una Naturaleza mucho más filosófica. El gran tamaño y la absoluta oscuridad del Universo parecen ser profundamente inhóspitos para la vida. La apariencia del cielo nocturno es responsable de muchos anhelos religiosos y estéticos surgidos de nuestra aparente pequeñez e insignificancia frente a la grandeza e inmutabilidad (aparente) de las estrellas lejanas. Muchas Civilizaciones rindieron culto a las estrellas o creyeron que gobernaban su futuro, mientras otras, como la nuestra, a menudo anhelan visitarlas.

Mucho se ha escrito sobre el efecto emocional que produce la contemplación de la insignificancia de la Tierra ante esa inmensidad del cielo salpicado de estrellas, inmersa en una Galaxia que tiene más de cien mil millones y que ahora sabemos, que también tiene, miles de millones de mundos. En efecto, la idea de ese conocimiento es impresionante y puede llegar (en algunos casos) a ser intensamente desagradable y producir sensación de ahogo y hasta miedo. Nuestra imaginación matemática se ve atormentada ante esa inconmensurable grandeza que, nuestras mentes, no llegan a poder asimilar. Y, la sorpresa llegó cuando pudimos descubrir que dentro de nuestro Universo, existía otro a escalainfinitesimal que planteaba preguntas que no sabíamos responder.

Resultado de imagen de the scale of the universe 2

The Scale of The Universe 2

“Pues bien, tratando de responder a estas preguntas es como nace The Scale of The Universe 2una visualización interactiva creada por  Cary y Michael Huang; la visualización es sorprendente porque nos permite ir a escalas mínimas y llegar hasta el tamaño aproximado del Universo, comparando cosas que están, de muchas maneras, más allá de nuestra imaginación (sigo pensando que es difícil imaginarse el tamaño real de un átomo, o el de una galaxia).”

 

 

Claro que, en eso de lo grande y lo pequeño…, todo puede ser muy subjetivo y, no pocas veces dependerá de la perspectiva con que lo podamos mirar. Podríamos considerar la Tierra como enorme, al mirarla bajo el punto de vista que es el mundo que nos acoge, en el que existen inmensos océanos y grandes montañas y volcanes y llanuras y bosques y ríos y, una inmensa lista de seres vivos. Sin embargo, se nos aparecerá en nuestras mentes como un minúsculo grano de arena y agua si la comparamos a la inmensidad del Universo. Igualmente, podemos ver un átomo como algo grande en el sentido de que, al juntarse con otros, pueden llegar a formar moléculas que juntas, son capaces de formar mundos y galaxias.

Si comparamos una galaxia con un átomo, éste nos parecerá algo ínfimo. Si comparamos esa misma galaxia con el Universo, lo que antes era muy grande ahora resulta ser también muy poca cosa. Si el mundo que nos acoge, en el que la Humanidad ha escrito toda su historia y costado milenios conocer, dado su “inmensidad” para nosotros, lo comparamos con la Nebulosa Orión, nos parecerá ridículo en tamaño y proporción y, sin embargo, cuán importante es para nosotros. Todo puede ser grande o pequeño dependiendo de la perspectiva con que lo miremos y según con qué lo podamos comparar.

Nada es objetivamente grande; las cosas son grandes sólo cuando consiguen tocar la sensibilidad del observador que las contempla, encontrar los caminos hacia su corazón y su cerebro. La idea de que el Universo es una multitud de esferas minúsculas circulando como motas de polvo en un vacío oscuro e ilimitado, podría dejarnos fríos e indiferentes, si no acomplejados y deprimidos, si no fuera porque nosotros identificamos este esquema hipotético con el esplendor visible, la intensidad conmovedora del desconcertante número de estrellas que están ahí, precisamente, para hacer posible nuestra presencia aquí y, eso amigos míos, nos hace ser importantes, dado que demuestra algo irrefutable, formamos parte de toda esta grandeza.

 

Bueno, no es por nada pero, ¿quién me puede decir que una imagen como la que arriba podemos contemplar, no es tan hermosa como la más brillante de las estrellas del cielo? Incluso diría que más, ya que se trata del producto o esencia del marterial que allí se fabricó y que ha podido llegar a su más alto nivel de belleza que, aemás, tiene consciencia de Ser y genera pensamientos y, ¡sentimientos!

Yo, si tengo que deciros la verdad, no me considero nada insignificante, soy consciente de que formo parte del Universo, como todos ustedes, ni más ni menos, somos una parte de la Naturaleza y, como tales productos de algo tan grande, debemos estar orgullosos y, sobre todo procurar, conocer bien qué es lo que realmente hacemos aquí, para qué se nos ha traído y, para ello amigos, el único camino que conozco es, llegar a conocer a fondo la Naturaleza y procurar desvelar sus secretos, ella nos dirá todo cuanto queramos saber.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

Me parece al caso traer aquí este trabajo que puse hace algún tiempo ya, toda vez que el hallazgo de las Ondas gravitacionales lo ha renovado y su contenido puede resultar interesante al filo de aquella noticia. Decía por aquel entonces:

Kip Thorne at Caltech.jpg

         Kip Stephen Thorne

Lo que nos cuentan Kip S. Thorne y  otros especialistas en Agujeros negros nos posibilitan para entender algo mejor los mecanismos de estos extraños objetos que aún esconden secretos que no hemos sabido desvelar. Está claro que muchas de las cosas que sobre agujeros negros podemos leer, son en realidad, especulaciones de cosas que se deducen por señales obervadas pero que, de ninguna manera, se pueden tomar como irrefutables verdades, más bien, las tomaremos como probables o muy probables de acuerdo a los resultados obtenidos de muchos experimentos y, ¿por qué no? de muchas horas de prácticas teóricas y pizarras llenas de ecuaciones que tratan de llegar al fondo de un saber que, desde luego, nos daría la clave de muchas cuestiones que en nuestro Universo son aún desconocidas.

¿Qué clase de masa conforma la singularidad? ¿Emiten alguna clase de radiación o no? ¿Por qué algunas agujeros negros explotan? ¿Será cierto que por una parte el agujero negro engulle masa y por la contraria la expulsa? Incluso algunos han especulado con la posibilidad de viajar a través del agujero negro y salir a otro universo… ¡Cualquier locura es válida en la especulación!

 

En el corazón de una galaxia lejana, a más de 1.000 millones de años-luz de la Tierra y hace 1.000 millones de años, se acumuló un denso aglomerado de gas y cientos de millones de estrellas. El aglomerado se contrajo gradualmente, a medida que algunas estrellas escapaban y los 100 millones de estrellas restantes se hundían más hacia el centro. Al cabo de 100 millones de años, el aglomerado se había contraído hasta un tamaño de varios años-luz, y pequeñas estrellas empezaron, ocasionalmente, a colisionar y fusionarse, formando estrellas mayores. Las estrellas mayores consumieron su combustible y luego implosionaron para formar agujeros negros; y, en ocasiones, cuando dos de estos agujeros pasaban uno cerca del otro, quedaban ligados formando pares en los que cada agujero giraba en órbita alrededor del otro.

Cuando se forma un par de agujeros negros binarios semejantes, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal) en la superficie insertada y, a medida que los agujeros giran uno en torno al otro, los pozos en órbita producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Las ondulaciones forman una espiral en el tejido del espacio-tiempo en torno al sistema binario, muy semejante a la estructura espiral del agua que procede de un aspersor de cesped que gira rápidamente. Los fragmentos de curvatura forman un conjunto de crestas y valles en espiral en el tejido espacio-temporal.

http://eltamiz.com/wp-content/uploads/2007/12/onda-gravitatoria1.jpg

Puesto que la curvatura-espaciotemporal es lo mismo que la gravedad, estas ondulaciones de curvatura son realmente ondas de gravedad, u ondas gravitatorias. La Teoría de la Relatividad General de Einsteinpredice, de forma inequívoca, que tales ondas gravitatorias deben producirse siempre que dos agujeros negros orbiten uno en torno al otro.

Cuando parten hacia el espacio exterior, las ondas gravitacionales producen una reacción sobre los agujeros de la misma forma que una bala hace retroceder el fusil que la dispara. El retroceso producido por las ondas aproxima más los agujeros y les hace moverse a velocidades mayores; es decir, hacen que se muevan en una espiral que se cierra lentamente y hace que se vayan acercando el uno hacia el otro. Al cerrarse la espiral se genera poco a poco energía gravitatoria, una mitad de la cual va a las ondas y la otra mitad va a incrementar las velocidades orbitales de los agujeros.

 

El movimiento en espiral de los agujeros es lento al principio; luego, a medida que los agujeros se acercan, se mueven con mayor velocidad, radian sus ondulaciones de curvatura con más intensidad, y pierden energía y se cierran en espiral con más rapidez. Finalmente, cuando cada agujero se está moviendo a una velocidad cercana a la de la luz, sus horizontes se tocan y se fusionan. Donde una vez hubo dos agujeros, ahora sólo hay uno.

http://chandra.harvard.edu/photo/2005/j0806/j0806_2panel.jpg

El horizonte del agujero giratorio queda perfectamente liso y con su sección ecuatorial circular, con la forma descrita precisamente  por la solución de Kerr a la ecuación de campo de Einstein. Cuando se examina el agujero negro liso final, no hay ningún modo de descubrir su historia pasada. No es posible distinguir si fue creado por la coalescencia de dos agujeros más pequeños, o por la implosión directa de una estrella supermasiva construida por materia, o por la implosión directa de una estrella constituida por antimateria. El agujero negro no tiene “pelo” a partir del cual se pueda descifrar su historia.

dibujo colisión estrellas de neutrones

También dos estrellas de neutrones pueden producir ondas. Como ya se intuía y vaticinaban los rumores de los científicos, al fin se han descubierto la fusión de dos estrellas de neutrones acaecida hace millones de años a millones de años luz.

Pero lo verdaderamente interesante de esta detección es que el mismo suceso ha sido observado tanto el “espectro de las ondas gravitatorias” como en el espectro electromagnético.

Esta imagen de una visualización animada muestra la fusión de dos estrellas de neutrones en órbita. A la derecha, una visualización de la materia de las estrellas de neutrones. A la izquierda se muestra cómo se distorsiona el espacio-tiempo cerca de las colisiones. / Karan Jani, Georgia Tech.</p>
<p>” /></p>
<p style=Sin embargo, la historia no se ha perdido por completo: ha quedado un registro codificado en las ondulaciones de la curvatura espacio-temporal que emitieron los agujeros coalescentes. Dichas ondulaciones de curvatura son muy parecidas a las ondas sonoras de una sinfonía. De la misma forma que la sinfonía está codificada en las modulaciones de las ondas sonaras (mayor amplitu aquí, menor allí), también la historia de la coalescencia está codificada en modulaciones de las ondulaciones de curvatura. Y de la misma forma que las ondas sonoras llevan su sinfonía codificada desde la oequesta que la produce hasta la audiencia, también las ondulaciones de curvatura llevan su historia codificada desde los agujeros fusionados hasta los rincones más lejanos del Universo lejano.

Imagen relacionada

Las ondulaciones de curvatura viajan hacia afuera por el tejido del espacio-tiempo a través del conglomerado de estrellas y gas del que nacieron los agujeros. El aglomerado no absorbe las ondulaciones ni las distorsiona en absoluto; la historia codificada de las ondulaciones permanece perfectamente invariable, se expanden hacia el exterior de la galaxia madre del aglomerado y el espacio intergaláctico, atraviesan el cúmulo de galaxias del que forma parte la galaxia progenitora, luego siguen atravesando un cúmulo de galaxias tras otro hasta llegar a nuestro propio cúmulo, dentro del cual está nuestra Vía Láctea con nuestro Sistema Solar, atraviesan la Tierra, y continúan hacia otras galaxias distantes.

http://4.bp.blogspot.com/_yd9OLN_xAiw/SeXI-2qdPXI/AAAAAAAAEIE/B4pD0a4_kAw/s400/16.jpg

Por aquel entonces decía:

“Claro que, en toda esta historia hay un fallo, nosotros, los humanos, aún no somos lo suficientemente hábiles para haber podido construir aparatos capaces de detectar y oir las sinfonías  mencionadas con entusiamos por el Sr. Thorne y, que según el cree, son mensajes que nos traen esas ondas de gravedad de los agujeros negros binarios. Es como si no pudiéramos oir esa hermosa sinfonía que nos mostraría un nuevo Universo por nosotros desconocido. Ahora sabemos que por medio de potentes telescopios podemos conocer lo que es el Universo, podemos observar galaxias lejanas y estudiar cúmulos de galaxias o de estrellas y captar las imágenes de bonitas Nebulosas, todo eso es posible gracias a que al captar la luz que emitieron esos objetos cosmológicos hace decenas, cientos, miles o millones de años como señal electromagnética que viajando a la velociodad de c, hace posible que podamos ver lo observado como era entonces, en aquel pasado más o menos lejano. De la misma manera, se cree que, las ondas gravitatorias emitidas por estos objetos misteriosos, se podrán llegar a captar con tal claridad que nos permitirá saber de otra faseta (ahora) desconocida del Universo, y, sobre todo, podremos entender el pasado de esos densos objetos que, de momento, nos resultan exóticos y también extraños.”

 

Finalmente el Proyecto LIGO lo ha conseguido y al Señor Thorne le dieron el Nobel.

emilio silvera