sábado, 23 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡El Universo y la vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Es bueno que el Ser Humano sepa el por qué de las cosas, que se interese por lo que ocurre a su alrededor, por su planeta que le acoge, por el lugar que ocupamos en el universo, por cómo empezó todo, cómo terminará y qué será del futuro de nuestra civilización y de la Humanidad en este universo que, como todo, algún día lejano del futuro el tiempo inexorable, llevará al final de sus días.

El fin del universo es irreversible, de ello hemos dejado amplio testimonio a lo largo de muchos trabajos, su final estará determinado por la Densidad Crítica, la cantidad de materia que contenga nuestro universo que será la que lo clasifique como universo plano, universo abierto, o universo cerrado. En uno de estos modelos de universos, el final será distinto…,  claro que para nosotros, la Humanidad, será indiferente el  modelo que pueda resultar; en ninguno de ellos podríamos sobrevivir cuando llegara ese momento límite del fin. La congelación y el frío del cero absoluto o la calcinación del fuego final a miles de millones de grados, acabarán con nosotros, si para entonces, estuviéramos aún por aqui (que no es probable).

 

 

 

 

LAS ESTRELLAS:

Que por cierto, son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

 

La vida (a partir de su primer paso, del primer individuo de cada especie) surgió en el Universo de manera espontánea por la evolución de la materia y (no sabemos si debido al Azar), bajo ciertas circunstancias muy especiales que estaban presentes en ciertos lugares del Universo, lo que dio lugar al surgir de la vida tal como la conocemos y, posiblemente, de muchas más formas desconocidas para nosotros. Y, todo eso amigos, es Entropía Negativa. Ahora, Las características de un ser vivo son siempre una recombinación de la información genética heredada. De todas las maneras, hay que aclarar que la vida existe porque el Universo es como lo observamos, sus características permiten su presencia. Hay vida en nuestro universo debido a que las cuatro fuerzas fundamentales y las constantes universales lo permiten.

CONSECUENCIA LOGICA: Las variaciones dentro de una misma especie son el resultado de una gran cantidad de información genética presente ya en sus antepasados y, como consecuencia de la lógica evolución, de la aparición espontánea de nueva información genética…

Aquí, en todo su esplendor, tenemos un trozo de Universo que, nos está hablando de la creación. Esas estrellas brillantes, azuladas y supermasivas que radían en el ultravioleta ionizando toda la región circundante, es un signo, inequívoco de que la vida está cerca. Elementos sencillos se transformaran en otros más complejos y, apareceran aminoácidos y la química-biológica que hacer, mucho más tarde, que sea posible la aparición de la vida en algún mundo perdido en las profundidades de una Galaxia que, como la nuestra, tendrá otras “Tierras” y otros “Seres”.

Cuántas veces se preguntó la Humanidad: ¿Hay vida en el Universo, además de la que existe en la Tierra? Las leyes de la Física, aplicables a toda la materia y la energía, tienen sin duda un papel fundamental en la comprensión del Universo y por ello la Astrofísica ha tenido un desarrollo espectacular en los últimos tiempos a pesar de la escasez de materia como la que conocemos.

Resultado de imagen de La composición química del Universo

Por otro lado, como el Universo es muy grande, las densidades medias son muy bajas y la materia se encuentra normalmente en estructuras muy simples, en forma de átomos y partículas individuales. La composición química del Universo y sus procesos son por ello también importantes para comprender su evolución, dando pie al uso más o menos extendido de astroquímica. Sin embargo, las moléculas complejas son relativamente raras y los organismos vivos muchísimo más. La parte Biológica del Universo que conocemos se reduce a nuestro propio planeta por lo que parece excesivo poder hablar de Astrobiología. Por qué tenemos que preocuparnos por una parte tan ínfima del Universo. Ciertamente porque los seres humanos pertenecemos a esta extraña componente y, ya que no podemos reproducir en el laboratorio el paso de la química a la biología, es en el contexto del Universo (el gran Laboratorio) y su evolución en el que podemos analizar los límites y las condiciones necesarias para que emerja la vida en cualquier sitio.

Fotos de nebulosas

En las Nebulosas nacen las estrellas, en sus hornos nucleares se producen las transiciones de fases necesarias para crear los elementos complejos necesarios para la vida. Si alrededor de las nuevas estrellas surgen nuevos mundos, ¿por qué tras miles de millones de años de evolución no puede surgir la vida en ellos, si como existe la posibilidad, están situados en la zona habitable? Las leyes del Universo son las mismas en todas partes y, todas las regiones del Cosmos, por muy alejadas que estén, están sometidas a ellas. Si en el planeta Tierra está presente el agua corriente, una atmósfera y la vida, ¿Por qué sería diferente en otros planetas similares que a millones pululan por nuestro Universo?

Resultado de imagen de La Astrobiología

La Astrobiología es una ciencia que ha surgido en la frontera entre varias disciplinas clásicas: la Astronomía, la Biología, la Física, la Química o la Geología. Su objetivo final es comprender cómo surgió la vida en nuestro Universo, cómo se distribuye y cuál es su evolución primitiva, es decir, cómo pudo establecerse en su entorno.

En otras palabras, trata de comprender el papel de la componente biológica del Universo, conectando la astrofísica y la astroquímica con la biología. Intenta para ello comprende el origen de la vida. : El paso de los procesos químicos prebióticos a los mecanismos bioquímicos y a la biología propiamente dicha.

Naturalmente, en Astrobiología nos planteamos preguntas fundamentales, como la propia definición de lo que entendemos como Vida, cómo y cuándo pudo surgir en la Tierra, su existencia actual o en el pasado en otros lugares o si es un hecho fortuito o una consecuencia de las leyes de la Física. Algunas de estas cuestiones se las viene formulando la humanidad desde el principio de los tiempos, pero ahora por primera vez en la historia, los avances de las ciencias biológicas y de la exploración mediante tecnología espacial, es posible atacarlas desde un punto de vista puramente científico. Para ello, la Astrobiología centra su atención en estudiar cuáles son los procesos físicos, químicos y biológicos involucrados en la aparición de la vida y su adaptabilidad, todo ello en el contexto de la evolución y estructuración, o auto-organización, del Universo.

Gran galaxia espiral NGC 1232

“Las galaxias son fascinantes no sólo por lo que se ve sino también por lo que no se ve.
La gran galaxia espiral NGC 1232captada aquí en detalle por uno de los Very Large Telescopes (telescopios muy grandes), es un buen ejemplo. Lo que se ve está dominado por millones de estrellas brillantes y polvo oscuro atrapadas en un torbellino gravitacional de los brazos espirales que giran alrededor del centro. Esparcidos a lo largo de estos brazos espirales se ven varios cúmulos abiertos que contienen estrellas azules y brillantes así como bandas oscuras de polvo interestelar que se dispersa entre ellas. Menos visiblespero detectables hay miles de millones de estrellas tenues y normales junto con grandes extensiones de gas interestelarque, en conjunto, suponen una masa tan enorme que domina la dinámica de la galaxia más interior. Las principales teorías indican que hay cantidades aún mayores de materia invisible en una forma que todavía no conocemos. Esta materia oscura omnipresente explicaría en parte los movimientos de la materia visible en las regiones más exteriores de las galaxias.”

Astronomía Picture Of The Day

Resultado de imagen de Explosiones supernovas

Muchos son los que postulan que, las galaxias espirales son autogeneradoras a través de las explosiones supernovas y, siembran el espacio interestelar de la semilla creadora de la vida, además, este proceso regenerativo crea entropía negativa  tratando de luchar contra el deterioro de la galaxia como sistema cerrado que de esta forma se mantiene y perdura. Nuevas y energéticas estrellas azuladas pueblan las regiones galácticas que se llenan de promesas futuras de nuevos mundos y nuevas formas de vida.

Como cualquier otra ciencia, la Astrobiología está sujeta a la utilización del método científico y por tanto a la observación y experimentación junto con la discusión y confrontación abierta de las ideas, el intercambio de datos y el sometimiento de los resultados al arbitraje científico. La clave de la metodología de esta nueva ciencia está en la explotación de las sinergias que se encuentran en las fronteras entre las disciplinas básicas mencionadas anteriormente, una región poco definida, cuyos límites se fijan más por la terminología que por criterios epistemológicos.

Un aspecto importante de la investigación en el campo de la Astrobiología es la herramienta fundamental que representa el concepto de complejidad. La vida es un proceso de emergencia del orden a partir del caos que puede entenderse en medios no aislados y, por tanto libres de la restricción de la segunda ley de la termodinámica, como un proceso complejo. En este sentido, la emergencia de patrones y regularidades en el Universo, ligados a procesos no lineales, y el papel de la auto-organización representan aspectos esenciales para comprender el fenómeno de la vida. Transiciones de estado, intercambios de información, comportamientos fuera de equilibrio, cambios de fase, eventos puntuales, estructuras autorreplicantes, o el propio crecimiento de la complejidad, cobran así pleno sentido en Astrobiología.

Muchos han sido, a lo largo de la historia de la Humanidad, los que visionaron el futuro que nos espera: “Yo puedo imaginar un infinito número de mundos parecidos a la Tierra, con un jardín del Edén en cada uno”. Lo afirmaba Giordano Brunoa finales del siglo XVI, antes de ser quemado por orden de la Inquisición Romana. Y, sí, muchas veces nos hicimos esa pregunta…

¿Habrá vida en otros mundos?

Planetas inimaginables ¿que formas de vida acogerán? La pregunta que se plantea encima de la imagen de arriba tiene una fácil contestación: SÍ, hay otras formas de vida en el Universo, en planetas parecidos o iguales que la Tierra. Si no fuese así, la lógica y la estadística dejarían de tener sentido.

Un problema básico de esta ciencia, ya mencionado al principio, es la cantidad de datos disponibles, de sujetos de estudio. No conocemos más vida que la existente en la Tierra y ésta nos sirve de referencia para cualquier paso en la búsqueda de otras posibilidades. La astrobiología trata por ello de analizar la vida más primitiva que conocemos en nuestro planeta así como su comportamiento en los ambientes más extremos que encontremos para estudiar los límites de su supervivencia y adaptabilidad. Por otro lado, busca y analiza las condiciones necesarias para la aparición de entornos favorables a la vida, o habitables, en el Universo  mediante la aplicación de métodos astrofísicos y de astronomía planetaria. Naturalmente, si identificáramos sitios en nuestro sistema solar con condiciones de habitabilidad sería crucial la búsqueda de marcadores biológicos que nos indiquen la posible existencia de vida presente o pasada más allá de la distribución de la vida en el Universo o, en caso negativo, acotaríamos aún más los límites de la vida en él.

Titán más allá de los Anillos

Titán, más allá de los anillos. Ahí podríamos encontrar lo que con tanto afán buscamos: otras formas de vida que, de una vez por todas, nos ofrezca la certeza de que no estamos solos en tan vasto Universo y, dada la conformación y caracterísiticas de ese pequeño mundo, no podríamos extrañarnos de que, la vida, incluso pudiera estar sabasada en otro elemento distinto del Carbono.

Resultado de imagen de Los océanos de la Luna  Europa

Diseñan un robot en forma de calamar para buscar vida en los océanos de la luna Europa.

Las condiciones del gran océano de agua líquida que se encuentra bajo el hielo de Europa podrían ser muy similares a las que se dan en la Tierra.

Resultado de imagen de Encélado

Un equipo de científicos de la NASA descubren energías en la luna Encélado que, en la Tierra es el motor de una diversidad de bacvterias.

Diferentes condiciones ambientales pueden haber dado lugar a la vida e incluso permitido la supervivencia de algunos organismos vivos generados de forma casual, como experimento de la naturaleza. La Astrobiología trata de elucidar el papel de la evolución del Universo, y especialmente de cuerpos planetarios, en la aparición de la vida. En esta búsqueda de ambientes favorables para la vida, y su caracterización, en el sistema solar, la exploración espacial se muestra como una componente esencial de la Astrobiología. La experimentación en el laboratorio y la simulación mediante ordenadores o en cámaras para reproducir ambientes distintos son una herramienta que ha de ser complementada por la exploración directa a través de la observación astronómica, ligada al estudio de planetas extrasolares, o mediante la investigación in situ de mundos similares en cierta forma al nuestro, como el planeta Marte o algunos satélites de los planetas gigantes Júpiter y Saturno, como Europa, Encelado o el de arriba, Titán.

 

Después de un viaje de siete años a través del sistema solar abordo de la nave Cassini, la sonda Huygens de la ESA, pudo con éxito, pasar a través de la atmósfera de Titán (la mayor luna de Saturno) tomar tierra a salvo en su superficie para poder enviarnos datos e imágines que nos dejaron con la boca abierta por el asombro de lo que allí existe y , de lo que pueda estar presente… ¿Vida microbiana?

Resultado de imagen de Via microbiana en TitanResultado de imagen de Resultado de imagen de Via microbiana en Titan

                        Titán puede tener cristales que serían alimento para microbios extraterrestres

La componente instrumental y espacial convierte a la Astrobiología en un ejemplo excelente de la conexión entre ciencia y tecnología. Los objetivos científicos de la Astrobiología, hemos visto, que requieren un tratamiento trans-disciplinar, conectando áreas como la física y la astronomía con la química y la biología. Esta metodología permite explotar sinergias y transferir conocimiento de unos campos a otros para beneficio del avance científico. Pero además, la Astrobiología está íntimamente ligada a la exploración espacial que requiere el desarrollo de instrumentación avanzada. Se necesitan tecnologías específicas como la robótica o los biosensores habilitadas para su empleo en condiciones espaciales y entornos hostiles muy diferentes al del laboratorio. Naturalmente la Astrobiología emplea estos desarrollos también para transferir conocimiento y tecnologías a otros campos de investigación científica y en particular, cuando es posible, incluso al sector productivo.

Episodio 44. Astrobiología, buscando vida en mundos lejanos

Pero repasemos, para avanzar, cuáles son las áreas científicas propias de la Astrobiología. Como se ha dicho, es una ciencia interdisciplinar para el estudio del origen, evolución y distribución de la vida en el Universo. Para ello requiere una comprensión completa e integrada de fenómenos cósmicos, planetarios y biológicos. La astrobiología incluye la búsqueda y la caracterización de ambientes habitables en nuestro sistema solar y otros planetas alrededor de estrellas más alejadas, la búsqueda y análisis de evidencias de química prebiótica o trazas de vida larvada o extinguida en cuerpos del sistema solar como Marte o en lunas de planetas gigantes como Júpiter y Saturno. Asimismo se ocupa de investigaciones sobre los orígenes y evolución de la vida primitiva en la Tierra analizando el comportamiento de micro organismos en ambientes extremos.

Anhidrobiosis “vida sin agua”

 Hidratación durante 3 h. ¿qué no habrá por ahí fuera? Otros como los Acidófilos: Se desarrollan en ambientes de alta acidez, como el Picrophilus, los organismos de la cuenca del Río Tinto,  en Huelva o la arquea que habita en una mina californiana llamada Iron Mountain, que crece en PH negativo. Los Organismos radiófilo o radiorresistente es aquél capaz de sobrevivir y prosperar en ecosistemas con niveles muy altos de radiaciones ionizantes. Los Halófilosque se Se desarrollan en ambientes hipersalinos, como las del género Halobacterium, que vicven en entornos como el Mar Muerto. Los Termófilos: Se desarrollan en ambientes a temperaturas superiores a 45 °C, algunos de ellos, los Hipertermófilos tienen su temperatura òptima de crecimiento por encima de los 80 °C., como el  Pyrococcos furiosus, donde las chimenes termales submarinas son testigos de ese asombroso hecho. Otros, como los Psicrófilos, que  se desarrollan en ambientes de temperatura muy fría, como la Polaromanas vacuaolata. También tenemos los tasrdígrados, que se deshidratan para quedar como muertos durante cientos de años en condiciones de criptobiosis y pueden resistir en el espacio. Otros viven sin oxígeno, los hay que habitan a muchos metros bajo la superficie, o, algunos que existen con un bajo índice de humedad. En fin, la gama es amplia y nos muestra una enorme lista de protagonistas que, em medios imposible pueden vivir sin el menor problema. Y, si eso es así (que lom es), ?qué problema puede existir para que exista vida en otros planetas?

Monografias.com

Los seres vivos surgen por todo el Universo y en las más extremas condiciones. Simplemente con observar lo que aquí tenemos, en nuestro planeta, nos podemos hacer una idea de lo que encontraremos por ahí fuera. Creo (aunque pudiera haber otras) que la vida en el Universo estará basada, como la nuestra, en el Carbono. El Carbono es el material más idóneo para ello por sus características especiales.

Monografias.com

Desde el punto de vista más astronómico, la Astrobiología estudia la evolución química del Universo, su contenido molecular en regiones de formación estelar, la formación y evolución de discos proto-planetarios y estrellas, incluyendo la formación de sistemas planetarios y la caracterización de planetas extrasolares. En este campo en particular se han producido avances recientes muy importantes con la obtención de imágenes directas de planetas extrasolares y la identificación de algunos de ellos como puntos aislados de su estrella central gracias a técnicas de interferometría.

Resultado de imagen de El vacío de de Eridanus

“El Supervacío de EridanusPunto Frío WMAP o el Punto Frío CMB es una región del Universo descubierta por (o recibida como señal de) microondas que tras su análisis resultó ser extraordinariamente grande y fría en relación con las propiedades esperadas de la radiación de fondo de microondas (CMB). Las fluctuaciones térmicas de la CMB son de aprox. 10-5 K y la temperatura de dicho supervacío es de 70 µK más frío que dicho promedio (aproximadamente 2,7 K).

El radio del supervacío es de unos 5º, se centra en las coordenadas galácticas lII = 207.8°, bII = −56.3°; sus coordenadas ecuatoriales a la vez son: α = 03 h 15 m 05 s, δ = -19º35’02”. Esto quiere decir que se encuentra en el hemisferio sur de la esfera celeste, en una dirección hacia la constelación de Eridanus.”

Resultado de imagen de Inmensas Nubes moleculares

Inmensas Nubes moleculares habitan en las galaxias y, dentro de ellas, al calor de las estrellas se producen transiciones de fase que nos traen la química-biológica para que la vida sea posible.

La caracterización de atmósferas de planetas extrasolares con tránsitos han permitido detectar CO₂ en la atmósfera de otros mundos y se ha descubierto el planeta más parecido a la Tierra por su tamaño y suelo rocoso aunque con un período demasiado corto para ser habitable. El lanzamiento de la misión Kepler de la NASA nos permite abrigar esperanzas de encontrar finalmente un planeta “hermano” del nuestro en la zona de habitabilidad de otra estrella.

El campo de la Astronomía planetaria, la Astrobiología estudia la evolución y caracterización de ambientes habitables en el sistema solar con el fin de elucidar los procesos planetarios fundamentales para producir cuerpos habitables.

A la izquierda Marte a la derecha Riotinto, sólo están separados por las Temperaturas reinantes y la atmósfera. Parece que un día lejano fueron iguales en muchas cosas.

Esto incluye el análisis de ambientes extremos y análogos al de Marte en nuestro planeta, como resulta ser la cuenca del Río Tinto en Huelva, así como la exploración de otros cuerpos del sistema solar, Marte en particular. Y, a propósito de Marte, recuerdo la emoción que sentí cuando la NASA detectó un foco de CH4 en el planeta. Al igual que los eucariotas, muchas bacterias respiran oxígeno. Pero otras bacterias utilizan para la respiración nitrato disuelto (NO3) en lugar de Oxígeno, y aún otras usan iones sulfato (SO42-) u óxidos metálicos de hierro o manganeso. Unos pocos procariotas pueden incluso utilizar CO2, que hacen reaccionar con ácido acético en un proceso que genera gas natural, que es el gas metano CH4detectado en Marte. Dado que el planeta no muestra actividad volcánica, la fuente de dicho metano, ¿por qué no? podría ser bacteriana.

Estructura celular de una bacteria, típica célula procariota. El metabolismo de los procariotas es enormemente variado y resisten condiciones ambientales sorprendentes por lo extremas en parámetros como la temperatura y la acidez, entre otros,

El descubrimiento en Marte de agua en forma de hielo así como las claras evidencias de la existencia de agua líquida en su superficie en el pasado, proporcionadas por la observación de modificaciones de la componente mineralógica atribuidas al agua líquida en el subsuelo. Hoy por hoy, se considera que la presencia de agua líquida es una condición necesaria, aunque no suficiente, para la aparición de la vida ya que proporciona el caldo de cultivo para que las moléculas prebióticas se transformen en microorganismos biológicos.

Resultado de imagen de El Metano de Marte

En estas investigaciones el estudio del satélite Titán de Saturno mediante la sonda europea Huygens ha marcado un hito importante al acercarnos a un entorno prebiótico donde el metano ejerce un papel dominante.

En este sentido la posibilidad de explorar el satélite Europa, alrededor de Júpiter, es un claro objetivo de la Astrobiología dado que la espesa corteza de hielo que lo cubre puede esconder una gran masa de agua líquida.

Finalmente, la Astrobiología también contempla una serie de actividades más próximas al laboratorio en el que se analiza la evolución molecular, desde la química prebiótica, pasando por la adaptación molecular, hasta los mecanismos bioquímicos de interacción y adaptación al entorno. En este campo son muy importantes los estudios centrados en los límites de la biología, como la virología, y herramientas para la comprensión de los mecanismos de transmisión de información, de supervivencia y adaptabilidad, como las cuasi-especies. Entre los últimos avances de la química prebiótica de interés para la Astrobiología se encuentra el análisis de la quiralidad, una preferencia de la química de los organismos vivos por una simetría específica que nos puede acercar al proceso de su formación durante el crecimiento de la complejidad y la jerarquización de los procesos. Naturalmente, los mecanismos de transferencia de información genética resultan críticos para comprender la adaptabilidad molecular y son otro objetivo prioritario de la Astrobiología.

Imagen relacionadaImagen relacionada

Está claro que la historia científica de la creación de la vida puede resultar una narración apasionante que, correctamente explicada en unión de los conocimientos que hoy poseemos del Universo, puede conseguir que comprendamos la inevitabilidad de la vida, no sólo ya en el planeta Tierra (único lugar -de momento-) en el que sabemos que está presente, sino por todos los confines del inmenso Universo. La diversidad biológica que podríamos contemplar de poder observar lo que por ahí fuera existe, nos llevaría más allá de un simple asombro.

                Son formas de vida complejas

                           Extrañas medusas

Si pudiéramos conocer todas las formas de vida que existen la Tierra….

Pero, ¿es realmente cierto que la ignorancia supera al conocimiento como camino más directo hacia el asombro? Bueno, lo que sí sabemos que es cierto es el hecho de que, cuanto más sabemos de las cosas, menos propensos somos al asombro. Y, siendo mucho lo que desconocemos de la historia de la vida y también de la del Universo, podemos decir que sabemos lo suficiente para “saber” que no estamos solos.

Resultado de imagen de La vida fuera de la Tierra

No creo que para encontrar vida en otros mundos tengamos que viajar a travéz de agujeros de gusano… ¡La encontraremos mucho antes de que eso sea posible!

Algún día (espero que no demasiado lejano en el tiempo), encontraremos la prueba irrefutable de la existencia de la vida fuera de la Tierra. Espero que lo que hallemos no difiera exageradamente de lo que aquí existe y de lo que existió, seguramente, en esos otros lugares, el recorrido de la vida habrá sido muy similar al nuestro, y, la mayor diversidad de la vida será microbiana, esas formas primarias de vida que reconocemos como los verdaderos diminutosm arquitectos de los ecosistemas terrestres. Aquí en la Tierra, la historia completa de la vida abarca unos 4.000 millones de años, desde los extraños mundos de los océanos sulfurosos que se extendían bajo una atmósfera asfixiante, pasando por bacterias que respiraban hierro, hasta llegar por fin a nuestro familiar mundo de oxígeno y ozono, de valles boscosos, de animales que nadan, corren o vuelan. Ni Sheherazade podría haber imaginado un cuento más fascinante.

3d view outer space earth 2000x1287 wallpaper_www.wallpaperhi.com_89

Muchos serán los lugares que, como en el planeta Tierra, la Vida esté presente de muchas formas y diversas estructuras físicas y diferentes mofologías, distintos metabolismos y, también, como en nuestro planeta, serán, en algunos casos, criaturas inteligentes y con sentimientos.

Hace poco NASA publicó esta foto de una de las lunas de Júpiter. Es volcánica, y genera océanos de lava y azufre. ¿Quién sabe lo que ahí pueda estar presente? Desde luego yo no puedo afirmar ni negar nada. Sin embargo, según lo descubierto aquí en la Tierra, mejor dejar la respuesta para más adelante.

Hemos alcanzado un nivel de desarrollo intelectual muy aceptable y, puesto que somos grandes animales, se nos puede perdonar que tengamos una visión del mundo que tiende a celebrar lo nuestro, pero la realidad es que nuestra perspectiva es errónea. Tenemos un concepto de nosotros mismos que, habiendo sido elaborado en nuestro cerebro tiende a ser tan irreal que, incluso llegamos a creernos especiales, y, la verdad es que, lo que tenemos de especial queda reducido al ámbito familiar, social y poco más. En el contexto del Universo, ¿que somos?

Creer que en un Universo “infinito” sólo existen unos seres que habitan un minúsculo objeto redondo, un grano de tierra de una simple Galaxia de entre cien millones…Parece, al menos, pretencioso. Dejemos que la Astrobiología nos indique el camino a seguir, que nuestros ingenios espaciales nos abran el camino y, cuando llegue el momento, partamos a conocer a nuestros hermanos.

Resultado de imagen de Volumen 23, número 3 de 2009 de la Revista de Física  de la Real Sociedad Española de Física

La Fuente:

Volumen 23, número 3 de 2009 de la Revista Española de Física, donde se publicó un magnifico trabajo de  D. Álvaro Giménez,  del Centro de Astrobiología INTA-CSIC. También tiene su parte aquí Andrew H. Knoll, reconocido paleontólogo que, en su libro La vida en un planeta joven, nos ofrece una apasionante narración sobre la vida, y, finalmente, lo poco que por mi parte he podido aportar.

¡La Vida! ¿Qué será? ¿De dónde vino?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La Vida en el Universo

En alguno de mis trabajos, alguna vez escribí:

“Si el Universo es un océano,
De materia y pensamientos,
Nuestro mundo es un lago,
de Alegrías y sufrimientos.

Existen seres que saben que son,
Existen las cosas que son y no saben,
Pero todos bailan al mismo son,
del ritmo que el Universo impone.

La Materia es Energía,
En el Universo cambiante,
La Vida, como la luz del día,
Es su perla deslumbrante.

¡Si pudiéramos saber, lo que la Vida es!

Resultado de imagen de La vida en nuestro planeta

Lo cierto es que, no había aquí ningún cronista que pudiera haber tomado nota de aquellos acontecimientos que nos trajeron hasta ser conscientes de Ser. La Vida en nuestro planeta se debe a una gran cantidad de procesos que dieron lugar, con el paso de los miles de millones de años, desde que nació el Universo, a que la Evolución de la materia, al surgir de “algo” animado que, en forma de pequeños “seres”, primero sencillos y más tarde más complejos (procariotas y eucariotas), dieron lugar a que la aventura de la vida comenzara en nuestro planeta.

Está claro (ahora), que la sucesión de acontecimientos, tales como: cambios ambientales, catástrofes, actividad volcánica, movimientos de placas tectónicas, huracanes y terremotos, movimiento de los continentes y otros muchos, han tenido mucho que ver con las formas de vida que actualmente pueblan nuestro planeta.

Ahora sabemos que el Big Bang que dio comienzo al surgir de nuestro Universo, no era apto para la vida. Tuvieron que pasar algunos cientos de millones de años para que se formaran las primeras estrellas, una vez que pasó la época de la radiación y leptónica, los Quarks formaron los primeros átomos y, al juntarse, se formó la materia.

En las estrellas, mediante la fusión nuclear, se fusionaron los elementos sencilloss existentes en aquellos primeros momentos (Hidrógeno y Helio) en otros más complejos como Berilio, Carbono, Pxígeno, Nitrógeno… y muchos más hasta el Hierro. Más tarde, en las Supernovas, se fraguaron elementos más pesados como el Uranio.

Lo cierto es que, la química de las estrellas presentes en nuestro Mundo (y en otros), hizo posibloe la presewncia de la Vida en el Universo. Aunque sólo tenemos conocimiento de que la Vida habita el planeta Tierra, las probabilidades de que también, esté presente en muchos otros es muy alta. El Universo es el mismo en todas partes y, las mismas leyes y constantes rigen las regiones lejanas a la nuestra, y, siendo así (que lo es)… ¿Por qué sólo habría vida en nuestro planeta?

Resultado de imagen de El arcaico temprano: Las BacteriasImagen relacionada

Los organismos dominantes de la vida en el Arcaico temprano fueron bacterias y arqueas, que coexistieron formando alfombras microbianas y estromatolitos (las llamadas esteras microbianas). Ahí tenemos que buscar la evolución temprana de la Vida en nuestro planeta. Más tarde, llegó la era del oxígeno y todo cambio, aquel “veneno” eliminó a muchos de los seres primarios que, anaeróbicos en su forma de existencia, no pudieron soportar el oxígeno, y, surgieron los “seres” aeróbicos (adaptados al aire) que dieron lugar a las especies que ahora conocemos, incluida la nuestra.

Claro que, para que eso llegara muchas cosas tuvieron que pasar antes, y, el camino, desde la oxigenación de la atmósfera terrestre no ha sido nada fácil, Comenzó hace unos 2.500 millones de años y, allí podemos encontrar la evidencia más temprana eucariota (las células más complejas con sus organelos y mitocondrias), aquello dio lugar a la célula múltiple y más compleja que la evolución llevó hasta nosotros.

Ciclo de vida de los helechos y afines (Pteridophyta) - esporofito raíz tallo hojas, esporangio espora gametofito.svg

Hace unos 450 millones de años que surgieron las primeras plantas en nuestro planeta, a las algas marinas se les atribuye una edad mayor que podría alcanzar los 1400 millones de años. Lo cierto es que, sólo tenemos que contemplar nuestro mundo para comprobar el éxito que han tenido las Plantas en él.

Las, Paprocie

Las plantas contribuyeron a la extinción del Devónico tardío. Los animales invertebrados aparecieron durante el período Ediacárico, mientras que los vertebrados se originaron hace ahora alrededor de 500 millones de años durante la explosión Cámbrica.

 Resultado de imagen de Durante el período Pérmico, los sinápticos, entre los que se encontraban los ancestros de los mamíferos

                                      No siempre las cosas fueron de la misma forma y manera

Durante el período Pérmico, los sinápticos, entre los que se encontraban los ancestros de los mamíferos,  dominaron la tierra pero el evento de extinción del Pérmico-Triásico hace 251 millones de años estuvo a punto de aniquilar toda la vida compleja sobre la Tierra.

Resultado de imagen de extinción del Pérmico-Triásico hace 251 millones de años

Esta fue la cuarta extinción a gran escala que padeció la Tierra

No fue fácil que la Tierra se recuperara de tal catástrofe. Sin embargo, los arcosaurios se convirtieron en los vertebrados terrestres más abundantes, desplazando a los trápsidos a mediados del Triásico. Un grupo de arcosaurios, los dinosaurios, dominaron los períodos Jurásico y Cretásico, con los antepasados de los mamíferos que sobrevivieron sólo como pequeños insectívoros.

Yellow-billed stork kazinga.jpg

Después de la extinción masiva del Cretásico-Terciario hace ahora unos 65 millones de años que eliminó a los Dinosaurios (no aviarios), los mamíferos aumentaron de tamaño y diversidad sin aquellos enemigos temibles que antes lo podían devorar.

Resultado de imagen de La extinción de los dinosaurios, cuestión de ‘mala suerte’

Aquel suceso de hace ahora unos 65 millones de años, ¿Fue mala o buena suerte… ¡para nosotros!?

Aunque la extinción de los Dinosaurios se adjudica al meteorito caído en el Yucatán (México), algunos postulan que fue el oxígeno el que acabó con ellos. Algunas otras teorías circulan por ahí pero, es la del meteorito la que tiene más credibilidad.

   Los océanos se llenaron de fitoplacton y la materia orgánica natural proveniente de organismos que antes estruvieron vivos, sembró la tierra dando lugar a la proliferación tal como de plantas y animales y sus productos y residuos. Las estructuras básicas están formadas de celulosa, tanino, cutina y lignina, junto a otras proteínas, lípidos y azúcares. Todo ello de inmensa importancia en el movimiento de nutrientes en el medio ambiente que juega un importante papel en la retención de agua en la superficie del planeta.

Resultado de imagen de Los meteoritos más antiguos encontrados en la Tierra

Todas las investigaciones llevadas a cabo nos dicen que las rocas más antiguas dse la Tierra datan de hace ahora unos 3800 millones de años, mientras que los meteoritos más antiguos son de hace 4.540 millones de años. En la época en el que la Tierra estaba siendo continuamente bombardeada por los meteoritos, los expertos lo denominan el eón Hádico (nombre que significa infierno), ya que, eso parecía la Tierra por aquel entonces.

Todos los indicios nos indican que relativamente poco tiempo después de su formación, la Tierra ya solidificó su corteza terrestre, se formaron los océanos y la atmósfera que posibilitaron la presencia por evolución de la “materia inerte” de alguna clase de vida primigenia.

estromatolitos

Imagen relacionada

Encontrar algún tipo de vida de la época sería algo complicado, pues el afloramiento de rocas arcaicas de la Tierra es inusual. Sin embargo, han habido algunos recientemente. El pasado año 2006 ya se identificaron células fósiles en estromatolitos en la costa australiana con 3400 millones de años de edad.

Fósiles con trazas de bacterias en Pilbara.

Los primeros organismos fueron identificados en un corto periodo de tiempo y relativamente sin rasgos, sus fósiles parecen pequeñas varillas, que son muy difíciles de distinguir de las estructuras que surgen a través de procesos físicos abióticos. La más antigua evidencia indiscutible de vida en la Tierra, interpretadas como bacterias fosilizadas, datan de hace 3000 millones de años.

Mientras que esto no pruebe que las estructuras encontradas tengan un origen no biológico, no puede ser tomado como una clara evidencia de la presencia de vida. Marcas geoquímicas en las rocas depositadas hace 3400 millones de años han sido interpretados como evidencia de vidaque, en realidad, están llenas de incertidumbre.

El árbol filogenético mostrando la divergencia de las especies modernas de su ancestro común en el centro. Los tres dominios están coloreados de la siguiente forma; las Bacterias en azul, las Arqueas en verde, y los eucariotas de color rojo.

Según todos los indicios, todos los seres vivos sobre la Tierra tenemos un antepasado c´común universal. La razón biológica para ello, está determinada por el hecho cierto de que, sería prácticamente imposible que dos o más linajes separados pudieran haber desarrollado de manera independiente los muchos complejos mecanismos bioquímicos comunes a todos los organismos vivos. Todos ellos (dicho sea de paso), están basados en el Carbono.

PANSPERMIA

Nuestra imaginación (casi tan grande como el Universo), cuando no sabe sobre la certeza de alguna cuestión, suele inventar cómo podría haber sido, y, el tema de la Vida en la Tierra, no podía ser una excepción, así que, ya desde el siglo V a.C., corría la idea de que la vida en la Tierra había sido “sembrada” desde el Espacio Exterior.

La idea tomó cuerpo por el siglo XX, cuando el fisico-químico Svante Arrhenius, propuso  que la vida llegó a la Tierra mediante la Panspermia, es decir, del Espacio Exterior. Otros muchos después siguieron nsus pasos como los Astrónomos Fred Hoyle, Chandra Wickramasinghe y el biológo molecular Francis Crick y el Químico Leslie Orgel.

vida

Lo cierto es que, con plena certeza científica, nadie lo sabe. Circulan tres versiones o principales hipótesis sobre las “semillas de otros lugares” a través de choques de fragmentos caidos en la Tierra en su lejano pasado:

“1) En otras partes de nuestro sistema solar a través de choques de fragmentos en el espacio por el impacto de un gran meteorito, en cuyo caso la única fuente creíble es Marte;2) Por visitantes extraterrestres, posiblemente como resultado de una contaminación interplanetaria accidental por microorganismos que trajeron con ellos, 3) Fuera del sistema solar, pero por medios naturales. Los experimentos sugieren que algunos microorganismos pueden sobrevivir al shock de ser catapultados dentro del espacio y también que algunos pueden sobrevivir a la exposición a la radiación durante varios días, pero no hay ninguna prueba de que puedan sobrevivir en el espacio por períodos mucho más largos. Los científicos creen principalmente en dos ideas; sobre la probabilidad de que la vida surgiera de forma independiente en Marte, o en otros planetas en nuestra galaxia.”

 

Resultado de imagen de La Vida surgió en los océanos con la ayuda de los húmeros negrosResultado de imagen de La Vida surgió en los océanos con la ayuda de los húmeros negros

Por mi parte, soy poco partidario de la Panspermia, creo que, en nuestro planeta, están todos los ingredientes necesarios para el surgir de la vida. Siendo muchísimas especies las que se han extinguido (sólo el 1% vive en la actualidad), y, sin embargo, no dejan de aparecer nuevas especies.

La Química de las estrellas estaba en aquella Nebulosa que hace miles de millones de años formó una desconocida explosión Supernova, y, en aquellos materiales en la Nube existentes, estaban todos aquellos necesarios para que, con el paso del Tiempo, en un planeta jóven situado a la distancia adecuada de su estrella, pudiera desarrollar los mecanismos necesarios para que la Vida, hiciera acto de presencia.

emilio silvera

 

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Seres de luz humano
   También nosotros somos cuantos de luz

¡El Universo! Gracias a la Astronomía, la Astrofísica y otras disciplinas y estudios relacionados, estamos desvelando cada día lo que en realidad es nuestro Universo del que, todavía, nos quedan muchos secretos por desvelar. El futuro a medida que avanza la ciencia nos tiene deparadas muchas, muchas sorpresas y maravillas que ni podemos imaginar. ¡Son tantas las cosas que aún tenemos que aprender de éste Universo Inmenso! Podríamos decir, sin temor a equivocarnos que, estamos en una fracción infinitesimal de un “infinito” inalcanzable, y, desde esta región situada en la periferia de una de los cien mil millones de galaxias que pueblan el Universo, pretendemos saberlo todo y llegar a todas las regiones, por muy alejadas que estas puedan estar. Lo cierto es que, nuestros telescopios, han captado objetos que nacieron poco después del “hipotético”  Big Bang.

galaxias

“Las mejoras de los equipos técnicos y de los conocimientos científicos hacen que cada vez podamos medir con más precisión todo lo que nos rodea. Y no solo eso, pues según los datos anunciados en el última reunión anual de la Sociedad Astronómica Americana, un grupo internacional de investigadores ha conseguido medir con una precisión del 1% la distancia a galaxias situadas a más de 6.000 millones de años luz de la Tierra. Es decir, con una precisión sin precedentes.

Como apunta  David Schlegel, investigador principal del proyecto y físico del Laboratorio Nacional Lawrence Berkeley (LBNL),  “no hay muchas cosas en nuestra vida cotidiana que conozcamos con una precisión del 1%, ahora conozco el tamaño del universo mejor que el de mi casa”. De hecho, en astronomía solo algunos cúmulos y  unos pocos cientos de estrellas están lo suficientemente cerca para que las distancias medidas tengan esa precisión.”

 

                         Las primeras estrellas aparecieron después de cientos de millones de años

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y se liberaron los fotones para que apareciera la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos que se juntaron para conformar moléculas y éstas lo hicieran para construir cuerpos.

Resultado de imagen de Imágenes de las galaxias más lejanas

Simulaciones por ordenador han ido facilitando el conocimiento necesario para saber cuando y cómo nacieron aquellas primeras estrellas en nuestro temprano universo. Para que comenzaran a brillar aquellos primeros astros hicieron falta el paso de algunos millones de años.

Resultado de imagen de Imágenes de las galaxias más lejanas

Sobre unos doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

            Cuando en el Universo se rompieron las simetrías… ¡Comenzó a ser bello! Y, comprensible.

             Einstein decía: “Lo incomprensible del Universo es, que lo podamos comprender”

Creo que ningún hombre, o mujer, realmente reflexivo, deberían desear saberlo todo, pues cuando el conocimiento y sus análisis son completos, el pensamiento se detiene, la curiosidad desaparece y, hasta la imaginación se frena al no tener nada nuevo que imaginar ¿Saberlo Todo? ¡Qué aburrido! Sería el camino más certero hacia la decadencia y el hastío. El ansia de saber nos mantiene vivos, y, hace que perdure la emoción por descubrir.

Resultado de imagen de El placer de descubrir lo desconocido

“El placer de descubrir” nos decía Richard Feynman

La Ciencia describe y predice sucesos que, muchas veces están por llegar y, con la observación y el experimento, con el estudio de la Naturaleza, se llega a saber y comprender el por qué de los comportamientos que podemos ver en una estrella, una galaxia, en las Nebulosas y en objetos más exóticos como los púlsares y los agujeros negros. Lo cierto es que, como nuestros cerebros evolucionaron mediante la acción de las leyes de la Naturaleza, estas resuenan dentro de él, y, de esa manera podríamos llegar a comprender el por qué, a pesar de su complejidad, podemos comprender el vasto Universo. La ünica explicación plausible es que, nosotros, hemos desarrollado esa herramienta que forma parte de ese inmenso todo que llamamos Cosmos.

 Se repiten las sencillas piedras del río y también, las complejas galaxias del espacio “infinito”

La variación y el cambio son etapas inevitables e ineludibles por las cuales debe transitar todo sistema complejo para crecer y desarrollarse. Cuando esta transformación se consigue sin que intervengan factores externos al sistema, se denomina “auto-organización.

La auto-organización se erige como parte esencial de cualquier sistema complejo. Es la forma a través de la cual el sistema recupera el equilibrio, modificándose y adaptándose al entorno que lo rodea y contiene. En esta clase de fenómenos es fundamental la idea de niveles. Las interrelaciones entre los elementos de un nivel originan nuevos tipos de elementos en otro nivel, los cuales se comportan de una manera muy diferente. Por ejemplo, entre otros, las moléculas a las macromoléculas, las macromoléculas a las células y las células a los tejidos. De este modo, el sistema auto-organizado se va construyendo como resultado de un orden incremental espacio-temporal que se crea en diferentes niveles, por estratos, uno por encima del otro.

La espiral de Fibonacci que podríamos decir es una aproximación a la espiral aurea generada dibujando arcos circulares conectando las esquinas opuestas de los cuadrados ajustados a los valores de sucesión adosando sucesivamente cuadrados de lado 0, 1, 1, 2, 3, 5, 8, 13, 21 y 34.

 Resultado de imagen de Figuras geometricas de la sucesión de Fibonacci

En matemáticas, la sucesión o serie de Fibonacci hace referencia a la secuencia ordenada de números descrita por Leonardo de Pisa, matemático italiano del siglo XIII:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,…

A cada uno de los elementos de la serie se le conoce con el nombre de número de Fibonacci. Esto mismo se da en muchas de las figuras que la naturaleza ha creado en diferentes ámbitos

Resultado de imagen de Figuras geometricas de la sucesión de FibonacciResultado de imagen de Figuras geometricas de la sucesión de FibonacciResultado de imagen de Figuras geometricas de la sucesión de Fibonacci

Sabíamos que la fachada del Partenón está construida sobre rectángulos áureos, que también estarían presentes en algunas esculturas y en otras figuras …

La Naturaleza nos presenta una serie de repeticiones  -pautas de conducta que  reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de conservación, que se aplican de modo universal- y éstas pueden proporcional el vínculo entre los que ocurre dentro y fuera del cerebro humano que, a través del conocimiento, ha podido llegar a generar algo que llamamos Mente y que está, directamente conectada con el inmenso Universo que, de esa manera, podemos comprender… ¡aunque sólo en parte! Nos queda una gran asignatura pendiente de poder contestar qué es la Vida.

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

http://img.webme.com/pic/r/recursosbiologiauct/celula.gif

¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información1. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo – nos preguntamos-la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.

No siempre, nuestras mentes, llegan a poder asimilar que, partiendo de Quarks y Leptones, se puedan conformar objetos tan grandes las estrellas y los mundos y, mientras que algunos son descomunales, como la estrella VY Canis Majoris que, si la comparamos con el Sol, deja a este casi invisible por su pequeñes en comparación y, sin embargo, para nosotros, el Sol es descomunal. Esto quiere decir que no hay nada grande ni pequeño, las medidas de las cosas irán en función de su importancia local, es decir, de la función que esté desempeñando en su medio.

Resultado de imagen de Para comprender lo muy grande tuvimos ue saber de lo muy pequeño

Estas son las medidas de lo pequeño, y, si damos un gran salto hacia lo muy grande, podríamos decir que el tamaño actual del Universo visible ≈ 1060 Longitudes de Planck

Lo cierto es que, para llegar a comprender lo muy grande, tuvimos que saber de lo muy pequeño que, cuando se junta, es lo que conforma todo lo que podemos observar en el Universo. Son tan complejos esos “Universos” de lo muy pequeño que llamamos mecánica cuántica que, en realidad, más que con palabras la tenemos que contar con número. Los números, las matemáticas es el lenguaje de la Física, la que realmente expresa lo que queremos decir y que las palabras no pueden. El lenguaje ordinario de las palabras no es suficiente para contar todo lo que ocurre en ese micho mundo de la materia.

Claro que el misterio no es que coincidamos con el Universo, sino que en cierta medida estamos en conflicto con él, y sin embargo, podemos comprender algo de él. ¿Por qué esto es así? En busca de una respuesta, detengámonos otra vez, a beber en la fuente burbujeante de la simetría. La simetría, recordemos, no sólo implica la existencia de una invariancia bajo una transformación, la base de toda Ley natural, sino que también una “debida proporción” entre la invariancia y un marco de referencia mayor y más inclusivo.

              Einstein decía que la Mente, funciona como un paracaídas, ¡sólo funciona si se abre!

La Mente, con sus limitaciones intrínsecas, forma un marco dentro del cual nuestras ideas pueden juguetear; hasta la teoría más amplia está enmarcada en un bocabulario matemático, verbal o visual específico. Luego ponemos a prueba nuestras ideas comparándolas con una parte del mundo externo, que sin embargo, tiene a su vez un marco a su alrededor. Este proceso es útil mientras no lleguemos a un campo sin marco, sin límites. El Teorema de Gödel indica que esto nunca ocurrirá, que una teoría, por su misma naturaleza, requiere para su verificación la existencia o contemplación de un marco de referencia mayor. Es la condición límite, pues, la que brinda la distinción esencial entre la Mente y el Universo; Los Pensamientos y los Sucesos están limitados, aunque la totalidad no lo es´te (Ideas como esta aparecieron en Grecia, cuando el pensamiento griego, como el de Filolao de Tarento escribió, alrededor de 460 a.C.: “La Naturaleza, en el Cosmos, armonizó lo Ilimitado y lo limitado, el orden de la totalidad de todas las cosas dentro de ella”-.

http://2.bp.blogspot.com/-p0p6McBnPMc/VKpWonI9fcI/AAAAAAAALnk/uFWA-UPPZg8/s1600/20140816_083215.jpg

Cuando miramos el Horizonte, nos encontramos con un límite que no podemos traspasar, y, ese límite nos habla de nuestras carencias. No podemos ir más allá de los límite que la Naturaleza nos impone y, para evitar eso, nos valemos de ingenios que hemos inventado y que nos permiten llegar mucho más lejos de lo que nuestras condiciones  físicas nos permiten.

¿Y de dónde provienen los límites? Muy posiblemente de la ruptura de simetrías cósmicas en el momento de la Génesis. Contemplamos un paisaje cósmico hendido por las líneas de fracturas de simetrías rotas, y tomamos de sus esquemas y metáforas que aspiran a ser tan creativas, si no siempre tan agrietadas, como el universo que se propone describir.

Vivímos en un mundo tridimensional y, cuando queremos escenificar ese mundo de más dimensiones… ¡No podemos! Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero … ¡Nuestro UniversoAsimétrico!

Sólo las matemáticas lo consiguen dibujar. La última parada antes de que tal cosa suceda se llama “supergravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿qué es la supergravedad? Meternos en esos berengenales matemáticos sería algo engorroso y (para muchos) aburrido.

“Todas las metáforas son imperfectas”, decía el poeta Robert Prost, y en eso reside su belleza.

 

 

Puede ser, pues, que el universo sea comprensible porque es defectuoso, que gracias a que renunció a la perfección del no ser por el revoltijo del ser existimos nosotros, percibimos la embrollada e imperfecta realidad y la sometemos a prueba con el fantasmal espectro del pensamiento de la simetría primordial que la precedió. Somos, por lo tanto pensamos. (O, como dice el cuentista Jorge Luis Borge: “Pese a uno mismo, uno piensa”.

La Ciencia es un proceso, no un edificio, y se despoja de los viejos conceptos a medida que crece.”Las teoría -decía Ernest Mach- son como hojas marchitas, que caen después de haber permitido al organismo de la ciencia respirar por un tiempo”. El proceso depende del error -como señala Popper, una teoría es valiosa sólo si es susceptible de ser refutada-, como para dar testimonio de la ubicuidad y eficacia de la imperfección cósmica. Claro que, el error, a menudo puede ser fértil (ya lo explicaré en otro momento).

Acordáos que Einstein decía que la Mente era como un paracaídas que sólo funciona cuando se abre. Así que, no pocas físicos siguen ese consejo y abren sus mentes a cuestiones que no han podido ser demostradas y, elaboran teorías, unas más complicadas que otras que, en definitiva persiguen saberl del Universo y buscar, algunas respuestas a preguntas planteadas que nadie ha sabido contestar. Así, para burlar la velocidad de la Luz nos agarramos a los Agujeros de Gusano, para saber de cómo es en realidad la Naturaleza surgen Teorías como las de Súpercuerdas que nos llevan a un Universo de 11 dimensiones donde, la Gravedad de Einstein y la mecánica cuántica de Planck, pueden convivir tan ricamente.

Esta era la fotografía que nos hacían en  el el colegio del Estado cuando yo era niño. Los de mi época, (todos tienen la suya), y, desde entonces, el mundo ha cambiado tanto que, ni nuestros padres, si estuvieran aquí, podrían reconocerlo. No digamos ya de nuestros abuelos que, al ver el mundo de hoy, se volvían a morir del susto.

Resultado de imagen de La ciencia es muy joven

La cienca es muy jóven y le queda mucho por avanzar, y, que sobreviva el tiempo suficiente para llegar a vieja, dependerá de nuestras conductas, cordura, coraje y vigor, y como siempre se debe añadir que debemos sortear el peligro nuclear, Y, también ahora, el que suponen los avances de la Inteligencia Artificial que podría conducirnos a nuestra propia destrucción.

Resultado de imagen de Robot asesinos

                                                        El peligro de crear máquinas inteligentes

“Nada que sea grandioso entra en la vida de los mortales sin una maldición” Decía Sófocles, y el conocimiento de cómo brillan las estrellas es muy grande, y su lado oscuro es, en verdad, muy oscuro. Es innecesario decir que la Ciencia misma no nos librará de los peligros a los que su conocimiento nos ha expuesto, y, está en nosotros, sólo en nosotros, el tener la racionalidad necesaria para que su uso no se vuelva contra nosotros…

 

 

Resultado de imagen de vida y muerte, luz y oscuridad

Si nos adentramos dentro de nosotros mismos, si miramos hacia atrás en el tiempo, si estudiamos de manera detenida y pormenorizada todo lo que hemos hecho desde la noche de los Tiempos, si hacemos ese viaje al interior de nuestro Ser más profundo… ¡Contemplamos un escenario frío y caliente, oscuro y de cegadora luz! Somos capaces de lo mejor y de lo peor, estamos agarrados por dos fuertes manos: Una es la Vida y la otra es la Muerte. Nosotros, en medio de esa verdad, no hemos podido superar todavía, esa realidad de la extinción, de una vida perecedera. Nuestras vidas, como nuestro planeta, oscilan suspendidas en una dualidad mitad luz y mitad oscuridad y sombra. Si imploramos a la Naturaleza será en vano; ella es indiferente a nuestro destino, y su costumbre es ensayarlo todo y ser implacable con la competencia. El 99 por ciento de todas las especies que han vivido en la Tierra han desaparecido, y, desde luego, ninguna estrella titilará en nuestro homenaje cuando nos vayamos de este mundo.

Epicteto, el ex esclavo señalaba que:

“Toda cuestión tiene dos asas, por una de las cuales se la puede coger, y por la otra no.

Si tu hermano te ofende, no aborde la cuestión por este lado, que él te ofende, pues de esa asa no se puede coger la cuestión. En cambio, abordala por el otro lado, que él es tu hermano, tu amigo nato; y podrás dominarla, por el asa que soporta su cogida”.

 

Por lo tanto,  decimos  -hablamos como seres vivos y (creemos) como seres pensantes, como conquistadores del fuego-, por lo tanto, pues, elegimos la vida. Claro que, la elección nunca podrá estar en nuestras manos y, lo único que podremos hacer con ayuda de la Ciencia, será alargárla lo más posible para poder dejar, en este mundo, la mayor huella posible de nuestro efímero paso por él.

De todas las maneras, cuando el sabio dijo: “Mientras haya muerte, hay esperanzas”, dijo una gran verdad. Es necesario que cuando nuestro ciclo se acabe, cuando no tengamos fuerzas para seguir, dejemos el paso libre a los que más jóvenes, seguirán nuestras huellas y nuestras obras. De esa manera, nuestra especie, seguirá su camino hacia adelante.

 El cerebro es capaz de inventar recuerdos de hechos que nunca ocurrieron y visitar lugares que, ¡no sabemos si existirán en alguna parte! Los cien mil millones de neuronas que no dejan de titilar produciendo fogonazos que hacen saltar las ideas que nos llegan, no pocas veces sin saber de dónde, es aún un gran misterio que los estudiosos tratan de resolver. No se ha podido llegar a saber cómo funciona el cerebro humano y su complejidad es tal que, sólo el universo mismo se le podría comparar.

La capacidad humana para aprender, inventar, buscar recursos, y sobre todo, adaptarse a las circunstancias es bastante grande. A lo largo de los últimos milenios Civilizaciones del pasado han demostrado que desarrollarse y constituir sociedades que apuntan maneras de querer hacer bien las cosas. Bueno, al menos esas son las sensaciones que yo he podido percibir.

Cúmulo de estrellas alfombrilla de ratón

Constituido por innumerables galaxias de estrellas, nuestro Universo,  no sólo es asombroso, sino que, es mucho más de lo que nuestras pobres mentes pueden imaginar. multitud de Nebulosas de las que “nacen” nuevas y brillantes estrellas y mundos, una inmensidad de objetos exóticos de una rica variedad que subyacen en las estrellas de neutrones como púlsares y magnétares, o, los agujeros negros misteriosos y, todo ello, en un espacio de una magnitud inimaginable para nuestras mentes que, percibe continuados mensajes que les envían los sentidos provenientes de los objetos y las cosas cotidianas que nos rodean pero, con una limitación inconmensurable que nos deja inmersos en una nube de ignorancia que, desde hace mucho tiempo, tratamos de desterrar… ¡Sin conseguirlo!

El camino hacia la total comprensión de la Naturaleza comenzó cuando fuímos conscientes de que nuestros conocimientos eran limitados y nuestra ignorancia infinita. Ya nos lo dijo Sócrates: “Solo se que no se nada”, después de él, muchos han sido los filósofos que de una u otra manera han dicho lo mismo en variadas versiones.

No puedo desechar la idea de que, con los “universos” ocurre lo mismo que ocurre con los mundos, con las estrellas y con las galaxias: ¡Que son infinitos! Dentro de un Multiverso mayor al que no hemos podido tener acceso, toda vez que, nuestras limitaciones, en este caso… ¡Son infinitas. Hablamos de ir a otros mundos sin pararnos a pesar en la complejidad que dicho viaje conlleva. Una cosa es enviar ingenios robotizados y, otra muy distinta, que sean personas las que intenten esa empresa que, al menos en los próximas décadas… ¡Será imposible de concretar!

Sin embargo, como nos pasa con las teorías, hablamos, imaginamos y planteados “mundos” ilusorios y viajes imposibles que, si alguna vez son una realidad, esa estará situada muy lejos en el tiempo que está por venir. Sin embargo, nuestra manera de ser, nos lleva a no pararnos ante nada, hacemos como que, las barreras no existen y nos imaginamos haciendo cosas que… “nunca podremos”.

Mientras tanto… ¡Sigamos soñando!

emilio silvera

¿Será único nuestro Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Multiverso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

« 

Quinteto de Stephan

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, realizamos conjeturas y comparaciones con otros que podrían ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimenciones espacio-temporales, no contamos con las físicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado en ese “vacío” que no hemos llegado a comprender. Sin embargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para ello… ¡Ah! ese otro universo podría ser de antimateria.

Resultado de imagen de Un Universo paralelo al nuestro pero de antimateria

Claro que si fuera ese otro universo de antimateria, los presuntos pobladores allí presentes, no podrían saludarlos… ¡Si alguna vez podemos contactar con ellos!

Imagen relacionada

                                     ¿Cómo sería ese otro universo que los científicos intuyen?

Es curioso como un equipo de astrónomos y cosmólogos estudiante la expansión del Universo y tratando de buscar la verdadera causa de dicho comportamiento (las galaxias se alejan las unas de las otras sin una razón aparente, toda vez que, la cantidad de materia bariónica percibida, no sería suficiente para arrastrarlas de esa manera), de manera denodada y pertinaz buscan el por qué se expande el universo de esa manera que no pueden explicar y, en dicha tarea, dicen haber percibido, más allá del supuesto “borde de nuestro Universo” la presencia de algo grande.

Lo único que se me ocurre pensar es en la presencia de otro universo que tira del nuestro por la fuerza de gravedad que genera y, al final del camino, como ocurre con las galaxias, terminarán fusionándose los dos universos. Es simplemente lo que ocurre con las galaxias pero, a escala mayor.

Imagináis la grandiosidad que está presente en una sola Galaxia como la nuestra. Así el poeta, hablando consigo mismo exclamó:

¡Oh mundo de mundos!

¡Oh vida de vidas!

¿Cuál es tu centro?

¿Dónde estamos nosotros?

¿Habrá más de lo que vemos?

¿Debemos prestar atención a las voces que oímos en nuestras mentes?

El Universo (al menos el nuestro), nos ofrece algo más, mucho más que grandes espacios vacíos, oscuros y fríos. En él podemos ver muchos lugares luminosos llenos de estrellas, de mundos y… muy probablemente de vida. Sin embargo, tenemos la sospecha de que, aparte del nuestro, otros universos podrían rondar por ahí y conformar un todo de múltiples Universos de caracterísiticas diversas y no en todos, sería posible la de estrellas y como consecuencia la Vida.

En nuestras ánsias de querer saber sobre “esa verdad” que incansables perseguimos, hemos realizados innumerables excursiones por todos los senderos conocidos y otros nuevos que hemos dejado abiertos intentanto llegar a entender y explicar si, las fuerzas fundamentales de la Naturaleza y, las Constantes Universales pudieran estar presentes, en otros Universos de la misma manera que en el nuestro. La conclusión ha sido que no. Otros Universos (si existen) podrían ser iguales al nuestro y también, muy diferentes y todo dependería de su momento inicial que es el que determina la de Universo quen será cualquier universo que pudiera llegar a existir.

No es fácil imaginar cómo serían esos otros universos y como llegar

Hemos visto como los cosmólogos contemplan activamente la naturaleza de “otros mundos” en los que las constantes harían la vida imposible. Esto nos plantea la cuestión más profunda de si estos otros mundos “existen” en algún sentido y, si es así, qué los hace diferentes del mundo que vemos nosotros. También ofrece una alternatica al vijeo argumento de que el aparente buen ajuste del mundo para que posea todas aquellas propiedades requeridas para la vida es de alguna forma de un diseño especial. Pues si existen todas las alternativas posibles, debemos encontrarnos necesariamente habitando en una de las que permiten que exista la vida. Y podríamos ir aún más lejos y aventurar la conjetura de que podríamos esperar encontrarnos en el tipo más probable de Universo que sustenta la vida.

Imagen relacionada

“Si pudiéramos saber que nuestro propio Universo era sólo uno entre un número indefinido de ellos, con propiedades cambiantes, quizá podríamos invocar una solución análoga al principio de la selección natural; que sólo en ciertos universos, entre los que se incluye el nuestro, se dan las condiciones apropiadas para el surgir de la vida, y a menos que se satisfaga esta condición en otros universos no podría existir observadores para advertir tal hecho.”

 

¡No saben lo que se pierden! ¡Pobres universos!

Una de las dificultades de concebir siquiera semejantes multiversos de todos los universos posibles es que hay muchas cosas que podrían ser diferentes. De nuestro estudio de las matemáticas sabemos que existen lógicas diferentes a la que utilizamos en la práctica, en la que los enunciados son o verdaderos o falsos. Análogamente, hay diferentes estructuras matemáticas; diferentes leyes de la Naturaleza posible ; diferentes valores para las constantes de la Naturaleza; diferentes números de dimensiones de espacio y de tiempo; diferentes de partida para el Universo; y diferentes resultados aleatorios para secuencias complejas de sucesos. Frente a ello, la colección de todos los mundos posibles tendría que incluir, como mínimo, todas las permutaciones y combinaciones posibles de estas diferentes cosas. Obtener una comprensión de todo este maremagnum sería pedirnos demasiado (al menos por el momento).

Claro que, concebir Universos con más que el nuestro…se nos hace muy cuesta arriba. Nuestras mentes son tridimensionales y, hemos al añadido de esa cuarta dimensión temporal que nos trajo la relatividadespecial pero, cuando tratamos de ir más allá, no asimilamos bien y la visión de ese “mundo” de domensiones extra, no caben en nuestra cabeza. Sin embargo, los números sí lo permiten y pueden configurar mundos de 10, 11 y hasta 26 dimenciones y, en ese mundo teórico-matemático, sí pueden convivir todas las fuerzas de nuestro Universo y allí podemos respuestas que, en nuestro Universo cotidiano cuatridimensional, no podemos hallar.

Resultado de imagen de mUNDOS CON TRES SOLES

                                  ¿Cómo encontrar vida en un planeta rodeado por tres soles?

Lo cierto es que, ya hemos visto lo que puede suceder si se realizaran algunos de esos otros mundos posibles, mundos con más dimensiones u otros valores de las constantes cruciales. Sin embargo, no sabemos si estos diferentes mundos son realmente posibles. Está muy bien contemplar cambios en las constantes de la Naturaleza y las cantidades que definen la forma y el tamaño del Universo. Pero ¿hay realmente universos alternativos permitidos o son tan posibles como los círculos cuadrados? Podría ser que la “Teoría de Todo” sea muy restrictiva cuando se trate de dar permiso de planificación para otros universos.

                        Por imaginar que no quede. Nuestras mentes construyen escenarios que…

El hecho de que podamos concebir muchos universos alternativos, definidos por otros valores de las constantes de la Naturaleza, quizá sea simplemente un reflejo de nuestra ignorancia acerca de “la prisión” en la quen está confinada la consistencia lógica que exige una Teoría de Todo. Cuando se trata de comntemplar otros universos tenemos dos formas de abordar el problema. Existe la aproximación conservadora que produce mundos alternativos haciendo pequeños cambios en las propiedades de nuestro mundo; pequeños cambios en los valores de algunas de las constantes de la Naturaleza, propiedades ligeramente diferentes del Universo astronómico, quizá, pero no cambios en las propias leyes de la Naturaleza. Normalmente estos muestran que si “los pequeños cambios” son demasiado grandes hay consecuencias adversas para la existencia de la vida tal como la conocemos. Nuestro tipo de vida puede seguir existiendo si hubiera un cambio de una parte en cien mil millones en el valor de la constante de estructura fina, pensamos nosotros, pero no si hubiera un cambio de una parte entre diez.

 

¿Quién sabe? Con unas constantes diferentes podríamos tener cualquier clase de Universo incluso ¿Alguno en la sombra? Claro que grandes cambios pueden alterar otras cosas como las leyes, la lógica matemática subyacente o el de dimensiones del espacio tiempo. Tiene que concebir tipos de “vida” que ni podemos imaginar, serían completamente nuevos y que podrían existir en ambientes tan diferentes al nuestro que, incluso, teniéndolos a nuestro lado, no lo podríamos ver y, claro, al llegar a este punto nos suscita tener que hacer un examen más detallado de qué entendemos por vida, dado que esa vida de ese otro universo, sería tan vida como la del nuestro.

Ante todas estas ideas… al contemplar escenas de nuestro mundo como la que arriba podemos ver, no puedo dejar de imaginar lo que pensarían seres de otros mundos que nos pudieran estar contemplando. Fabricamos “colmenas” que nos sirven de habitad y que están adecuadas a las de nuestro mundo. En otros mundos mucho mayores, de tener presente la vida, dada su enorme gravedad, ésta tendría que ser pequeña ¿De insectos quizá?

 

No sería nada visitar otro Universo en cuyos mundos sólo vivieran insectos de dos metros, o, aquellos otros que, poblados de sofisticados robots tuvieran una Sociedad constituida sobre una continuada replicación y su único objetivo sería el de poblar mundos y más mundos en los que, como sería lógico pensar, no cabrían otros seres que, como nosotros, venimos de un origen natural que serían, seguramente los seres primigenios del planeta que construyeron a los que hoy dominan esos mundos.

Resultado de imagen de mUNDOS CON TRES SOLES

Haber podido conquistar algunos conocimientos que nos hablan de la inmensidad del Universo, de la diversidad de infinitas estrellas y de la multiplicidad de mundos que existen en las galaxias que pueblan el Cosmos, no podemos dejar de imaginar los mundos que, con propiedades diferentes a las de la Tierra, puedan albergar a criaturas que, unas veces habrán alcanzado la consciencia y otras no. Cuando podamos alcanzar la tecnología necesaria para visitar otros mundos que orbitan a estrellas similares y diferentes al Sol, entonces, y sólo entonces, podremos comprender que la vida en el Universo es de muchas maneras y que no estamos solos en tan vasto espacio.

cluster-galaxias

No lo podemos negar y, hasta es muy probable que sí puedan existir esos otros Universos. Sin embargo, yo me quedo con el nuestro que, poco a poco,  se va dejando descorrer el velo que esconde sus secretos y estamos llegando a un nivel aceptable de comprensión de lo que su Naturaleza pudiera ser. Ningún Universo como el nuestro para vivir y tratar de llevar a cabo nuestros proyectos de futuro. Y, si finalmente nos vemos abocados a tener que “mudarnos” a uno de esos otros Universos, lo esencial será comprobar antes que, las son exactas o muy parecidas a las del nuestro,

Resultado de imagen de El UNiverso evoluciona como todo

Este escenario evolutivo de nuestro Universo tiene la característica clave de que las físicas en el pasado no eran las mismas que las actuales o las futuras. Hubo épocas en que la vida no podía existir porque había demasiado calor para los átomos; hubo épocas previas a las estrellas y habrá un tiempo en el que todas las estrellas hayan muerto. En este escenario hay un intervalo preferido de la historia cósmica durante el que es más probable que los observadores evolucionen por primera vez y hagan sus observaciones del Universo y, si hemos hecho nuestra tarea, también sabremos de esos otros universos que nos pudieran acoger en ese momento final del nuestro.

¡Es todo tan complicado! ¡Sabemos tan poco!

 

¿Estaría programada la presencia de los seres vivos inteligentes en el Universo?

Por fuerza la cosmología conduce a cuestiones fronterizas entre ciencia experimental, filosofía y religión. No es solo el caso de los sabios antiguos. También los físicos de hoy se plantean preguntas de esa clase, sobre todo a propósito del llamado “principio antrópico”. A partir de los conocimientos actuales, este principio señala que las leyes y magnitudes físicas fundamentales parecen cuidadosamente afinadas para que la formación y el desarrollo del universo pudieran dar lugar a la vida en la Tierra y en otros planetas idóneos para acogerla.

El “Principio Copernicano”, invocado frecuentemente en la Cosmología moderna, insiste en la homogeneidad del Universo, negando cualquier primacía de posición o propiedades asociadas con la existencia humana. En cualquier parte del Universo podrán estar presentes los seres vivos.

El “Principio Copernicano” como habréis deducido ya, toma su nombre de la propuesta de Copérnico (ya anteriormente formulada por Aristarco) de desplazar a la Tierra de la posición central ocupada en el sistema de Tolomeo, aunque tal centralidad se debiese a la falta de paralaje estelar y no a una sobrevaloración de nuestra existencia en el planeta.

El paso siguiente lo dio Shapley hace un siglo, al mostrar que tampoco el Sol ocupa el centro de la Via Láctea. Finalmente, el Universo “finito pero ilimitado” de Einstein niega la posibilidad de encontrar un centro en su volumen tridimensional, y afirma la equivalencia de posición de todos los puntos del espacio. No tiene sentido preguntar dónde estamos en el continuo expandirse de un Universo que contiene probablemente más de 100.000 millones de galaxias, y que vuelve a la insignificancia aun la majestuosa estructura de la Vía Láctea, nuestra ciudad cósmica.

Sin embargo, a partir de la década de los años 30, se da una reacción interesante, que afirma, cada vez con argumentos más fuertes y detallados, que el Hombre está en un tiempo y un lugar atípicos y privilegiados en muchos respectos, que obligan a preguntarnos si nuestra existencia está ligada en un modo especial a características muy poco comunes en el Universo. Esta pregunta adquiere un significado especial al considerar las consecuencias previsibles (según las leyes físicas) de cualquier alteración en las condiciones iniciales del Universo. Con un eco de las palabras de Einstein¿tuvo Dios alguna alternativa al crear?. No solamente debemos dar razón de que el Universo exista, sino de que exista de tal manera y con tales propiedades que la vida inteligente puede desarrollarse en él. Tal es la razón de que se formule el Principio Antrópico, en que el Hombre (entendido en el sentido filosófico de “animal racional”, independientemente de su hábitat y su morfología corporal) aparece como condición determinante de que el Universo sea como es.

No hemos logrado ese contacto pero…llegará

Las primeras sugerencias de una conexión entre vida inteligente y las propiedades del Universo en su momento actual aparecen en las relaciones adimensionales hechas notar por Eddington: la razón de intensidad entre fuerza electromagnética y fuerza gravitatoria entre dos electrones, entre la edad del Universo y el tiempo en que la luz cruza el diámetro clásico de un electrón, entre el radio del Universo observable y el tamaño de una partícula subatómica, nos da cifras del orden de 10 elevado a la potencia 40. El número de partículas nucleares en todo el cosmos se estima como el cuadrado de ese mismo número. ¿Son éstas coincidencias pueriles o esconden un significado profundo?. La hipótesis de los grandes números sugiere que el Hombre solamente puede existir en un lugar y momento determinado, cuando tales coincidencias se dan, aunque nadie hasta el momento ha podido dar una explicación de estas relaciones.

        Arthur Eddintong

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida. La implicación de que el universo fue de alguna manera diseñado para hacer posible de la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, que recorre senderos muy alejados de los que están presentes en la fe.

Si la carga del electrón, la masa del protón o la velocidad de la luz, variaran tan sólo una diesmilésima parte… ¡La vida tal como la conocemos no existiría! Es decir, estamos ante el problema del ajuste fino que significa que las las constantes fundamentales de un modelo físico para el universo deben ser ajustados de forma precisa para permitir la existencia de vida. Sobre estas constantes fundamentales no hay nada en la teoría que nos indique que deban tomar esos valores que toman. Podemos fijarlas de acuerdo con las observaciones, pero esto supone fijarlas de entre un rango de valores colosal. Esto da la impresión de cierta arbitrariedad y sugiere que el universo podría ser una realización improbable entre tal rango de valores. He ahí el problema.

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la naturaleza y entrar en el juego virtual de ¿qué hubiera pasado si…? Ya hemos hablado aquí muchas otras veces de lo que pasaría si el valor de las constantes fueran diferentes.

                                ¿Viviríamos en un mundo de revés?

Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal o cual manera para ocurrir de esta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para nosotros y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual; sólo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto. Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza. ¿Quién sabe lo que pasará mañana?

 

                 ¿Serán ellos y no nosotros los que dominen el futuro?

Siempre estamos imaginando el futuro que vendrá. Los hombres tratan de diseñarlo pero, finalmente, será el Universo el que tome la última palabra de lo que deba ser. Por mucho que nosotros nos empeñemos, las estructuras del Universo nunca podrán ser cinceladas por nuestras manos ni por nuestros ingenios, sólo las inmensas fuerzas de la Naturaleza puede transformar las estrellas, las galaxias o los mundos…lo demás, por muy bello que pudiera ser, siempre será lo artificial.

Lo que ocurra en la naturaleza del universo está en el destino de la propia naturaleza del cosmos, de las leyes que la rigen y de las fuerzas que gobiernan su mecanismo sometido a principios y energías que, en la mayoría de los casos se pueden escapar a nuestro actual conocimiento.

Lo que le pueda ocurrir a nuestra civilización, además de estar supeditada al destino de nuestro planeta y de nuestro Sol, incluso de nuestro Sistema Solar y de  la Galaxia, de alguna manera,  también está en manos de los propios individuos que forman esta civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual de libre albedrío. Fijaos hoy mismo lo que puede dar de sí esa insensata polémica (que dura ya milenios) entre los palestinos y los israelitas.

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser si… Lo que en la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

Cuando el Sol agote todo su combustible nuclear, estará acercándose el final de la Tierra como planeta que albergó la vida. Los cambios serán irreversibles, los océanos se evaporarán y sus aguas hirvientes comenzarán a llenar la atmósfera de gases. La Gigante roja engullirá a los planetas Mercurio, Venus y probablemente se quedará muy cerca de la Tierra calcinada y sin vida.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de hidrógeno, helio, carbono, etc, para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro. Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

En el inmenso Universo, eso es lo que podría quedar de nuestro Sol, una insignificante Nebulosa Planetaria y, la consecuencia de tal transición de fase será, una Tierra sin vida y un Sistema solar de objetos muertos.

Pero el problema no es tan fácil y se extiende a la totalidad del universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un universo abierto y eterno, o el más horroroso de los infiernos, si estamos en un universo cerrado y finito en el que, un día, la fuerza de gravedad, detendrá la expansión de las galaxias que comenzarán a moverse de nuevo en sentido contrario, acercándose las unas a las otras de manera tal que el universo comenzará, con el paso del tiempo, a calentarse, hasta que finalmente, se junte toda la materia-energía del universo en una enorme bola de fuego de millones de grados de temperatura, el Big Crunch. Eso daría lugar a otro Big Bang, a otro universo. Sin embargo, según los datos de que se dispone hoy, no parece que el Big Crunchpueda suceder.

     Un universo replegándose sobre sí mismo…no parece probable


El irreversible final está entre los dos modelos que, de todas las formas  que lo miremos, es negativo para la Humanidad (si es que para entonces aún existe). En tal situación, algunos ya piensan en la manera de escapar a tan terrible futuro. Claro que, ahora no podemos saber si finalmente, nuestro Universo se fundirá con otro como consecuencia de la expansión (el otro también se expande hacia nosotros) y, como se fusionan las galaxias, también deben hacerlo los universos. Si eso es así (que no se sabe), quizá todo diera lugar a un nuevo “amanecer” para la Humanidad.

Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso, esto es, que existen infinidad de universos conectados los unos a los otros. Unos tienen constantes de la naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Este sistema de inflación autorreproductora nos viene a decir que cuando el universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible. Cada burbuja será un nuevo universo, o mini-universo en  los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

Imagen relacionada

                           ¿Quién puede saber de lo que seremos capaces mañana?


El posible escenario futuro ha sido explorado y el resultado hallado es que, podrían exisitr otros universos en cada uno de esos universos, puede haber muchas cosas diferentes; pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la naturaleza, pudiendo unos albergar la vida y otros no. ¡Qué locura!

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferenta universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados, diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista. Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la gravedad-cosmos) y la mecánica cuántica de Planck (el cuanto-átomo), no será posible contestar a ciertas preguntas.

La teoría de cuerdas tiene un gancho tremendo. Te transporta a un mundo de 11 dimensiones, universos paralelos, y partículas formadas por cuerdas casi invisibles vibrando a diferentes frecuencias. Además, te dice que no se trata de analogías sino de la estructura más profunda de la realidad, y que ésta podría ser la teoria final que unificara por fin a toda la física. ¿No estaremos hablando de Filosofía?

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, sólo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10, 11 ó 26 dimensiones. Allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del universo y de las fuerzas que en él actúan.

Científicamente, la teoría del hiperespacio lleva los nombres de Teoría de Kaluza-Klein y supergravedad. Pero en su formulación más avanzada se denomina Teoría de Supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo: diez dimensiones. Así pues, trabajando en dimensiones más altas, esta teoría del hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas. Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida (sin tener las herramientas matemáticas necesarias para ello).

Es cierto, los mejores siempre han buscado el Santo Grial de la Física. Una Teoría que lo pueda explicar todo, la más completa que, mediante una sencilla ecuación, responda a los misterios del Universo. Claro que tal hazaña, no depende siquiera de la inteligencia del explorador que la busca, es más bien un problema de que las herramientas necesarias (matemáticas) para hallarla, aún no han sido inventadas.

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al cosmos: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil. Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado. Sin embargo, la teoría del hiperespacio permite la posibilidad de explicar todas las fuerzas de la naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo. De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del hiperespacio.

 

             Queremos llegar a manejar los mundos, las galaxias, el universo…

Antes mencionábamos los universos burbujas nacidos de la inflación y, normalmente, el contacto entre estos universos burbujas es imposible, pero analizando las ecuaciones de Einstein, los cosmólogos han demostrado que podría existir una madeja de agujeros de gusano, o tubos, que conectan estos universos paralelos.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el hiperespacio puede proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos, de la muerte de este universo cuando al final llegue el frío o el calor.

Esta nueva teoría de supercuerdas tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas. Podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de gusano que unan partes distantes de nuestro universo. Por desgracia, los resultados son desalentadores. La energía requerida excede con mucho cualquier cosa que pueda existir en nuestro planeta. De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos. Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Que aún tardará mucho? Sí, pero el tiempo es inexorable, la debacle del frío o del fuego llegaría.

             ¿Doblar el Hiperespacio…? ¡Encontrar la manera de burlar la velocidad de la luz!

No existen dudas al respecto, la tarea es descomunal, imposible para nuestra civilización de hoy, ¿pero y la de mañana?, ¿no habrá vencido todas las barreras? Creo que el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, sólo necesita tiempo:

¡El Tiempo! ¿Tendremos mucho por delante? ¿Sabremos aprovecharlo?

emilio silvera

El “universo” fascinante de lo muy pequeño

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

« 

 »

Muchas veces hemos hablado del electrón que rodea el núcleo del átomo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el .

El núcleo atómico es la parte central de un átomo tiene carga positiva, y concentra más del 99.99% de la masa total del átomo.  fuerza es la responsable de mantener unidos a los nucleones (protón y neutrón) que coexisten en el núcleo atómico venciendo a la repulsión electromagnética  los protones que poseen carga eléctrica del mismo signo (positiva) y haciendo que los neutrones, que no tienen carga eléctrica, permanezcan unidos entre sí y también a los protones.

Hasta ahí, lo que es el nucleo. Sin embargo, la existencia de los átomos que  las moléculas y los cuerpos -grandes y pequeños- que conforman los objetos del universo, es posible gracias a los electronesque, rodean el núcleo atómico y, al tener carga negativa similar a la positiva de los protones, crean la estabilidad necesaria  que todo nuestro mundo sea como lo podemos observar.

            Los cuantos  cosas bellas y útiles como el ozono atmosférico

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos  a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Según la física clásica, la energía radiada debería ser igual  todas las longitudes de onda, y al aumentar la temperatura, la radiación debería ser uniformemente más intensa. Para explicar esto, Planck supuso que cada una de las partículas que constituyen la materia, está oscilando y emitiendo energía en forma de radiación electromagnética; esta energía emitida no  tomar un valor cualquiera, sino que debe ser múltiplo entero de un valor mínimo llamado cuanto o paquete de energía.

La energía de un cuanto viene dada por la expresión:
donde:
v (ni) es la frecuencia de la radiación emitida; y h es una constante llamada constante de acción de Planck, cuyo valor es:
La hipótesis de Planck introduce el concepto de discontinuidad en la energía, igual que hay discontinuidad en la materia.

Resultado de imagen de La radiación tienen un origen electromagnético

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º  cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Lo que Planck propuso fue simplemente que la radiación  podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una  constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva , el resultado coincidió perfectamente con las observaciones.

 Sabemos que la corriente eléctrica es el movimiento de electrones, siendo éstos portadores de cargas eléctricas negativas. Cuando los electrones se mueven, se origina una corriente eléctrica. La corriente es igual al  de cargas en movimiento entre un intérvalo de tiempo.

Un diagrama ilustrando la emisión de los electrones de una placa metálica, requiriendo de la energía que es absorbida de un fotón.

“El fecto fotoeléctrico consiste en la emisión de electrones por un material al incidir sobre él una radiación electromagnética (luz visible o ultravioleta, en general).​ A veces se incluyen en el término otros tipos de interacción entre la luz y la materia.”

Poco tiempo después, en 1905, Einstein formuló  teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los  de luz deberían verse como una clase de partículas elementales: el fotón. Todas  demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza.

También en el movimiento de los átomos dentro del núcleo,  presente la simetría y la belleza de la Naturaleza como en la bailarina están presentes los movimientos y la gracia del duro ensayo diario.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger  cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro  todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero  los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se  determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir , y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica que, dicho sea de paso, con la que no todos están de acuerdo.

 

 leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual  rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y , por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a  exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran  de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planckh, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma  cualquier objeto en cualquier sitio, es decir, debe ser una constante universal, no importa en qué galaxia la podamos medir.

Resultado de imagen de Einstein y Schrödinger creían que hay más de lo que se veResultado de imagen de Einstein y Schrödinger creían que hay más de lo que se ve

 Einstein y otros pioneros de la M.C., tales como Edwin Schrödinger…, creían que hay más de lo que se ve

 reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a  interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos  se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se  calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de  completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

Ninguna teoría física de variables ocultas locales puede reproducir todas las predicciones de la mecánica cuántica. Cuando entramos en el “universo” de lo muy pequeño, el asombro nos acompañará, allí pueden pasar las cosas más extrañas.

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel,  el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

emilio silvera