Feb
6
Algún día pasará
por Emilio Silvera ~ Clasificado en Catástrofes Naturales ~ Comments (1)
Un asteroide amenaza con impactar sobre la Tierra el 9 de septiembre
El astro en cuestión mide 40 metros y podría chocar contra la superficie terrestre a una velocidad de 44.000 kilómetros por hora.
Ahora está en manos de las Agencias Espaciales (sobre todo de la NASA) buscar la solución al problema que, de hacerse realidad pasará una factura demasiado grande a la HUmanidad.
Feb
6
¡Nuestra curiosidad! Siempre desvelando misterios
por Emilio Silvera ~ Clasificado en Divagando ~ Comments (1)
En cierta ocasión, Leonardo Da Vinci contaba:
“Arrastrado por mi apasionado deseo, anhelante de ver la gran confusión de las variadas y extrañas formas creadas por la ingeniosa Naturaleza, vagué durante un tiempo entre los oscuros acantilados y llegué a la entrada de una gran caverna. Permanecí delante de ella por un tiempo, estupefacto, e ignorante de la existencia de algo semejante, con la espalda curvada y la mano izquierda apoyada en las rodillas, y protegiéndome los ojos con la derecha, con los párpados bajos y semicerrados, inclinándome a menudo de un lado y otro para ver si podía distinguer algo del interior; pero no pude por la gran oscuridad que allí había. Y después de permanecer así un rato, de pronto surgieron en mí dos sentimientos, temor y deseo; temor de la amenazante caverna oscura, y deseo de ver si había dentro algo milagroso.”
La historia es un fiel reflejo metafórico de lo que sentimos cuando, ante nosotros, se nos presenta algo que no llegamos a comprender y que nos da miedo abordar pero, prevalece el deseo y la curiosidad que sentimos por desvelar aquel misterio y llegar a conocer que, se esconce dentro de él. Ese impulso, es el que ha llevado a muchos físicos a realizar descubrimientos que han hecho posible el avance del conocimiento del “mundo”.
Aquí vemos la entrada a otra “Gruta de Leonardo” en la que no sabemos que fuerzas y energías podrían estar presentes y que fuerzas de marea nos arrastrarían hacia quíen sabe que lugares ignotos situados en otros universos o, por el contrario, en lugar de ser la entrada hacia un mundo maravilloso, sólo se trata del camino que nos lleva hacia la destrucción.
“Lo cierto es que cuanto más aprendamos acerca del mundo y cuanto más profundo sea nuestro aprendizaje, tanto más conscientes, específico y articulado será nuestro conocimiento de lo que no conocemos, nuestro conocimiento de nuestra ignorancia. Pues, en verdad, la fuente principal de nuestra ignorancia es el hecho de que nuestro conocimiento sólo puede ser finito, mientras que nuestra ignorancia es necesariamente infinita.” Así lo escribió el gran filósofo de la ciencia, Karl Popper.
Hay una difundida y errónea suposición de que la ciencia se ocupa de explicarlo todo, y que, por ende, los fenómenos inexplicados preocupan a los científicos al amenazar la hegemonía de la visión del mundo. El técnico en bata del Laboratorio, en la película de bajo presupuesto, se queda mirando para el techo, pensativo y, de pronto, se da una palmadita en la frente cuando se encuentra con algo nuevo, y exclama con voz temblorosa, entrecortada: “¡Pero, no hay explicación para esto!”. En realidad, por supuesto, cada científico digno se apresura a abordar lo inexplicado, pues es lo que hace avanzar la ciencia. Son, a veces, los grandes sistemas místicos de pensamientos, envueltos en terminologías demasiado vagas para ser erróneas, los que explican todo, raramente se equivocan y no crecen.
La ciencia es básicamente abierta y exploratoria, y comete errores todos los días. En verdad, ese será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorema de Gödel demuestra que la plena validez de cualquier sistema inclusive un sistema científico, no puede demostrarse dentro del sistema. En otras palabras, la comprensibilidad de una teoría no puede establecerse a menos que haya algo fuera de su marco con lo cual someterla a prueba, algo más allá del límite definido por una ecuación termodinámica, o por la anulación de la función de onda cuántica o por cualquier otra teoría o ley. Y si hay tal marca de referencia más amplio, entonces la teoría, por definición, no lo explica todo.En resumen, no hay ni habrá nunca una descripción científica completa y copmprensiva del universo cuya validez pueda demostrarse. Estamos inmersos en una Naturaleza en la que, estará siempre presente ¡la incertidumbre!. Miramos hacia las lejanas estrellas y nos preguntamos sobre la esencia del universo y, algunas veces, incluso hemos pensados que podríamos ser nosotros.
Sí, tratar de saber es bueno. Sin embargo, nunca llegaremos a saberlo todo
Tal planteamiento, al menos como lo veo yo, es bueno y saludable. Pensemos en el infierno que sería un universo pequeñito al que pudiéramos explorar y comprender totalmente. Alejandro Magno, se dice , lloró cuando le dijeron que había infinitos mundos (“¡Y nosotros no hemos conquistado ni siquiera uno!”, exclamó sollozando), pero la situación parece más optimista a quienes se inclinan a desatar, no a cortar, el nudo gordiano de la Naturaleza.
Ningún hombre, o mujer, realmente reflexivo deberían desear saberlo todo, pues cuando el conocimiento y su análisis son completos, el pensamiento se detiene y (cosa que no nos conviene), comienza a desaparecer la curiosidad y el interés por las cosas que, al conocerlas, no encierran ningún misterio que desvelar, con lo cual, la degradación comienza su camino en el interior de nuestras mentes.
La falta de interés nos hace caer en la melancolía, el aburrimiento, nada llama ya nuestra atención
La paradoja del más conocido cuadro de la serie La trahison des images (1928–1929) de René Magritte. Serie sobre la que Foucault escribió un no menos conocido ensayo.
René Magritte, en 1926, pintó un cuadro de una pipa y escribió debajo de él con una cuidadosa letra de escolar (lo que arriba podéis leer) y que, traducido, decía “Esto no es una pipa”. Esta pintura podría convertirse apropiadamente en el emblema de la Cosmología científica. La palabra “Universo” no es el Universo; ni lo son las ecuaciones de la teoría de la supersimetría, ni la ley de Hubble ni la métrica de Friedmann-Walker-Robinson. Generalmente, la ciencia tampoco sirve de mucho para explicar lo que algo es, y mucho menos, lo que el universo entero, realmente “es”.
Una cosa es lo que dice y, otra muy distinta, lo que hace
La Ciencia describe y predice sucesos, pero paga por este poder al tener que, rectificar muchas veces, dado que las predicciones que se hacen, son aproximaciones de la realidad que buscamos y que, poco a poco, tratamos de perfeccionar depurando los defectos de aquellas más viejas con estas otras más nuevas que llevan incorporados nuevos parámetros despuñés descubiertos.
¿Por qué, pues, la Ciencia tiene éxito? La respuesta es que nadie lo sabe. Es un completo misterio-quizá el completo misterio- por qué la mente humana puede comprender algo del vasto universo. Como solía decir Einstein “Lo más incomprensible del universo es que lo podamos comprender”.
Quizá como nuestro cerebro evoluciona mediante la acción de las leyes naturales, éstas resuenan y vibran de alguna manera, por nosotros desconocida en él. La Naturaleza nos presenta una serie de repeticiones -pautas de conducta que reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de conservación, que se aplican de moso universal- y estas pueden proporcionar el vínculo entre lo que ocurre dentro y fuera de nuestras mentes. Pero, el misterio, realmente no es que coincidamos de alguna manera con el universo, sino que en cierta medida estamos en conflicto con él, y sin embargo podemos comprender algo de él. ¿Por qué esto es asó? Sin lugar a ninguna duda es por el simple hecho de que somos “una parte del universo” ¡La que piensa! y, al estar a él conectados con esos hilos invisbles de la Mente, nos llegan mensajes que despiertan la intuición que nos lleva de la mano de los nuevos pensamientos que surgen hacia ese mundo mágico del saber.
Claro que, el teorema de Gódel indica que siempre estaremos limitados en el saber del universo u, esos limites subyacen, muy posiblemente en aquella ruptura de las simetrías cósmicas en el momento de la génesis o de lo que fuera lo que allí pasó, si fluctuación de vacío, a un cambio de fase especatacular que, desde otro iniverso, nos envió a éste nuestro creado en la transición.
Ningún hombre, o mujer, realmente reflexivo deberían desear saberlo todo. Es precisamente el no saber lo que nos hace seguir buscando. Siempre he dicho que son muchas más las preguntas que las respuestas.
¡Sabemos tan poco! De hecho, ni sabemos de donde venimos y hacia donde vamos, lo que, por otra parte, nos ofrece un gran campo para la especulación de mlo que fue y de lo que podría ser.
emilio silvera
Feb
6
Biología cuántica: Ciencia que es y no es
por Emilio Silvera ~ Clasificado en Conjeturas ~ Comments (0)
Imagen de una estructura de ADN molecular en el Museo de Ciencias de Oxford. Allispossible.org.uk (CC)
Los científicos estudian ai los seres vivos utilizan las extrañas propiedades de la física cuántica en sus procesos biológicos, pero aún no lo tienen claro.
Circula por ahí un chiste sobre los ordenadores cuánticos, esas máquinas del futuro de las que se hablan maravillas: “Los ordenadores cuánticos son extremadamente potentes, y al mismo tiempo aún no funcionan”, cuenta a EL ESPAÑOL el físico Franco Nori, director del Grupo de Investigación en Materia Condensada Cuántica del Instituto RIKEN, en Japón. El chiste es una parodia del famoso experimento mental del gato de Schrödinger, que estaba vivo y muerto al mismo tiempo.
Y es que la física cuántica es así: paradójica, contraria a la intuición de los seres grandes como nosotros, que nos regimos por la lógica de la mecánica clásica y la relatividad einsteniana. En nuestra experiencia cotidiana, algo no puede aparecer al mismo tiempo en dos estados incompatibles entre sí. Las reglas de la cuántica sólo operan en lo extremadamente diminuto; e incluso a esa escala, no siempre funcionan. Pero sobre todo, aún no ha logrado tenderse el puente en el que los físicos cuánticos y los relativistas puedan darse la mano; no hay una teoría que ligue ambos ingredientes en una sola salsa.
Sin embargo, es evidente que las partículas subatómicas son la base de todo, así que podríamos decir, apunta Nori, que “todo en el universo es cuántico… porque todo está hecho de átomos”. Pero aclara: “Sin embargo, no describimos cómo se mueven los satélites o cómo fluye el agua utilizando mecánica cuántica, porque para esto no necesitamos la parte cuántica. Muchos átomos se pueden describir bien clásicamente”. De hecho, añade, “pocos fotones requieren un tratamiento de óptica cuántica; no se necesita”.
Y dado que lo ocurrido en los círculos cuánticos no deja rastro aparente en eso que los no-físicos llamarían el mundo real, ¿cómo podría tener alguna importancia para la vida? Debería quedar perfectamente zanjado que las enormes moléculas en las que se basan los procesos biológicos no pueden enterarse ni de lejos de lo que sucede al minúsculo nivel de los electrones de sus átomos, por mucho que dependan de ello. ¿O sí?
¿Qué es la vida?
En 1944 Erwin Schrödinger, el del gato, publicó un ensayo de divulgación titulado What is Life? (¿Qué es la vida?), basado en una serie de conferencias públicas que había pronunciado el año anterior en el Trinity College de Dublín. En su obra, Schrödinger ataba la relación entre química y biología, y por tanto entre física y biología, en una época en que aún no se conocía que la herencia genética residía en una sustancia ya conocida llamada ADN.
Aunque el austríaco no fue el primero en suponer que la información genética de los seres vivos debía de codificarse en enlaces químicos, sus ideas influyeron en la posterior investigación de la estructura del ADN por James Watson y Francis Crick. Pero Schrödinger hizo algo más: acuñó el término “teoría cuántica de la biología”, refiriéndose al hecho de que las mutaciones son saltos en la herencia, del mismo modo que la energía de las partículas salta de un valor discreto a otro (está cuantizada). “El mecanismo de la herencia está estrechamente relacionado con, o mejor dicho, está fundado sobre, la misma base de la teoría cuántica”, escribía el físico.
Con todo, Schrödinger se quedó corto: además de no extender su idea más allá de los genes, se centró únicamente en cómo la asimetría de las moléculas y sus múltiples formas podían servir para codificar toda la diversidad de la información genética. En cambio, negó expresamente que las transiciones en los átomos pudieran tener alguna influencia en la biología: “La indeterminación cuántica no juega ningún papel biológicamente relevante”, escribió.
A la biología cuántica aún le aguardaba una larga espera. Al menos, hasta 2007. Aquel año, un equipo de la Universidad de California en Berkeley dirigido por el físico Graham Fleming demostraba algo que otros científicos llevaban tiempo barruntando: la fotosíntesis, ese proceso cuasimágico por el que muchos organismos consiguen producir oxígeno a partir del dióxido de carbono, funciona gracias a la física cuántica.
Los investigadores aislaron los centros fotosintéticos de dos microbios, la bacteria verde del azufre Chlorobium tepidum y la bacteria púrpura Rhodobacter sphaeroides, y los bombardearon con pulsos láser para estudiar cómo la energía de los fotones se transfería desde los pigmentos que recogen la luz hasta el centro de reacción, donde se cuece esa química necesaria para la vida. Los mensajeros de esta transferencia son los electrones, que corren alimentados por esa poción mágica de la energía fotónica. Pero ¿cómo encuentran su camino entre el desorden molecular para evitar perderse y desperdiciar esa energía?
Fleming y su equipo descubrieron que lo hacen como ondas, no como partículas. De este modo, la onda se dispersa para encontrar el mejor camino sin tener que recorrerlos todos uno a uno. Y esta capacidad de estar en distintos lugares al mismo tiempo, o de tener dos estados incompatibles entre sí, es el privilegio de la física cuántica; por fin había nacido la biología cuántica.
Un caos húmedo y caliente
La catarata de sangre
Los análisis químicos y biológicos indican que hay un extraño ecosistema subglacial de bacterias autótrofas que metaboliza iones de azufre y hierro. Según la geomicrobióloga Jill Mikucki, en las muestras de agua existen como mínimo 17 tipos diferentes de microbios, que viven prácticamente sin oxígeno. Nunca antes se había observado en la naturaleza el proceso metabólico mediante el cual los microbios utilizan un sulfato como catalizador para respirar con iones férricos y metabolizar la materia orgánica microscópica atrapada con este compuesto químico.
Pero no tan aprisa. Fleming y su equipo llevaron a cabo sus experimentos en condiciones típicas de la física cuántica; por ejemplo, por debajo de los 100 grados bajo cero. Y está claro que las bacterias no suelen vivir a esas temperaturas. Para un físico, una célula es la peor de sus pesadillas: caliente, húmeda, ruidosa y desordenada. En tan miserables condiciones es imposible que ninguna tarea importante pueda confiarse a la extrema levedad de los fenómenos cuánticos. “Muchos científicos creen que estos fenómenos son tan frágiles que sólo aparecen en sistemas muy simples, compuestos por muy pocas partículas y donde el ruido molecular se congela a temperaturas cercanas al cero absoluto”, resume a EL ESPAÑOL el genetista molecular de la Universidad de Surrey (Reino Unido) Johnjoe McFadden.
O al menos eso parecía, hasta que en 2010 dosestudios demostraron que lo dicho para la fotosíntesis en el frío glacial era válido también a temperatura ambiente. Pero, de hecho, éste no es el único sistema biológico en el que la física cuántica puede marcar las reglas, ni siquiera el primero en el que sospechó algo semejante: durante décadas, los biofísicos intuyeron que las enzimas, esos mediadores que convencen a las moléculas para que reaccionen, funcionan según un conocido mecanismo cuántico llamado efecto túnel que permite a una partícula, en este caso un protón, pasar de un estado a otro sin saltar la barrera de energía que los separa, excavando un túnel. En 1989 se mostró por primera vez el efecto túnel en las enzimas.
Con todo esto, parece que la biología cuántica debería ser ya un miembro de pleno derecho del club de las disciplinas científicas. Y sin embargo, ni sus propios patrocinadores se atreven a ir tan lejos. Regresando al chiste del comienzo, Nori aplica a la biología cuántica esa misma doble condición del gato vivo y muerto: “Es a la vez un campo excitante para estudiarlo con precaución en el futuro, y también en el que muchas cuestiones importantes aún no están demostradas”.
“Muchos científicos aún no están convencidos de que estos efectos requieran la mecánica cuántica para explicarse”, apunta a EL ESPAÑOL el físico de la Universidad de Surrey Jim Al-Khalili, coautor junto con McFadden del libro Life on the Edge: The Coming of Age of Quantum Biology (Bantam Press, 2014). El obstáculo esencial es esa diferencia de pulcritud entre los experimentos cuánticos y el aparente caos de una célula viva, que suscita el escepticismo de no pocos expertos. Para el físico de la Universidad de Viena Markus Arndt, este es “un rasgo de la ciencia de la vida, no tan limpia como los laboratorios de física o los tubos de ensayo de la química”. “¿Pueden estas acciones sobrevivir en las escalas macroscópicas de tiempo y tamaño de los medios biológicos? Esta cuestión todavía está abierta”, comenta Arndt a este diario.”
La brújula de las aves
La escala temporal que menciona Arndt es uno de los factores que levantan las cejas de los físicos. Un posible ejemplo de biología cuántica muy de actualidad es el sistema que guía a las aves migratorias, basado en el fenómeno de entrelazamiento cuántico. Según estudios en el petirrojo europeo, la luz dispara en la retina un par de electrones gemelos que responden al magnetismo terrestre, como la aguja de una brújula. Un estudio reciente ha prestado nuevo crédito a esta hipótesis. Pero un problema es que este entrelazamiento duraría unos pocos microsegundos. Para los físicos, esto es una eternidad jamás lograda ni de lejos en un laboratorio, y no digamos a una temperatura a la que el petirrojo no se convierta en un fósil congelado.
Sin embargo, el nuevo estudio no es experimental, sino una simulación por ordenador. “Todavía necesitamos pruebas experimentales de que la teoría es correcta”, dice Al-Khalili. El obstáculo principal al que se enfrenta la biología cuántica es la dificultad de llevar sus predicciones al laboratorio. “Los experimentos adecuados para evaluar estas cuestiones son complicados y difíciles de interpretar”, señala Nori. Otra pega es que los científicos aún se resisten a creer que estos mecanismos cuánticos en la biología tengan realmente un significado evolutivo; es decir, que existan porque los seres vivos han encontrado en la cuántica una ventaja aprovechable. “¿Por qué la naturaleza habría seleccionado estas superposiciones cuánticas? ¿Qué propósito tienen?”, se pregunta Nori.
Los expertos no ven demasiado claro que las tecnologías actuales vayan a ofrecer respuestas “en muchos años o unas pocas décadas”, estima Arndt. Y menos en casos todavía más aventurados y difíciles de testar: en 1996, el biofísico del University College de Londres Luca Turin lanzó una idea que trataba de dar respuesta a un enigma clásico de la biología del olfato: ¿Cómo puede nuestra nariz, con un repertorio grande pero limitado de receptores olfativos, detectar más de un billón de olores? La audaz hipótesis de Turin es que los receptores son capaces de distinguir las vibraciones de las moléculas de olor mediante un mecanismo de efecto túnel, lo que ampliaría la gama olfativa. Sin embargo, la propuesta no ha ganado el aplauso general. “La mayoría de la literatura no apoya el modelo de Turin”, dice Arndt.
En resumen, y pese a lo que afirman McFadden y Al-Khalili en el título de su libro, realmente no parece que la biología cuántica esté pasando a la madurez, sino sufriendo aún un larguísimo parto. Y eso que sus aplicaciones podrían ser provechosas, más allá de responder a la pregunta de Schrödinger. Por ejemplo, dominar el efecto cuántico de la fotosíntesis permitiría diseñar células solares más eficientes. Los dos autores subrayan que la manipulación a nanoescala abriría la puerta a logros como la creación de nanorrobots que depositen un fármaco en la célula que lo necesita.
Y cómo no, también está el futuro de los ordenadores cuánticos: lo que hace el electrón en la fotosíntesis no es otra cosa que computar la mejor solución a un problema sin tener que realizar las operaciones una por una. La naturaleza ya sabe cómo hacerlo. Curiosamente, Arndt sugiere que los ordenadores cuánticos, a su vez, generarían modelos detallados que darían una respuesta definitiva a las incógnitas sobre biología cuántica.
Por algo la ventaja de los ordenadores cuánticos es que son extremadamente potentes. Si no fuera porque aún no funcionan.
Reportaje
Feb
6
Algo se destruye y muere para que algo nuevo surja a la vida
por Emilio Silvera ~ Clasificado en Catástrofes Naturales ~ Comments (0)
La isla Hunga Tonga-Hunga Ha’apai , en el Pacífico sur, vista desde el aire – NASA
Visitan la extraña Isla que la NASA vio surgir de la nada hace cuatro años. La expedición ha descubierto que Hung Tonga-Hunga Ha’apai, en el Pacífico Sur, es diferente a lo que mostraban los satélites.
Así vieron la erupción desde el Espacio
En diciembre de 2014, un volcán submarino en el Reino de Tonga, en el Pacífico sur, estalló escupiendo al aire una enorme cantidad de rocas, cenizas y vapor. Los satélites captaron una nube de material de 30.000 pies de altitud (9 km) que obligó a desviar el tráfico aéreo en la zona. Unas semanas más tarde, en enero de 2015, esas cenizas se asentaron dando lugar a una nueva isla con una cumbre de 120 metros. La isla nació en medio de otras dos más antiguas y fue bautizada como Hunga Tonga-Hunga Ha’apai por el nombre combinado de sus vecinas. Casi cuatro años después, una expedición científica ha viajado a ese extraño mundo efímero y ha descubierto que es algo diferente a lo que se percibía en las imágenes satelitales.
La «isla bebé» de Tonga es bastante inusual. Es la tercera originada por erupción en los últimos 150 años que ha sobrevivido a la erosión de las olas del océano más de unos pocos meses. La mayoría desaparecen muy pronto, pero los investigadores creen que esta podrá durar entre seis y 30 años. Además, resulta fascinante porque su formación puede dar pistas sobre cómo los paisajes volcánicos interactuaban con el agua en el antiguo Marte.
La nueva isla volcánica (centro) vista desde un dron – Woods Hole
Dan Slayback, del Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, es uno de los investigadores que ha estado observando la nueva isla desde su nacimiento. Su objetivo es tratar de hacer un modelo 3D de su forma y volumen a medida que cambia con el tiempo para comprender cómo consigue ser tan resistente a la erosión del océano. Pero las imágenes de satélite no podían contarle todo, así que se embarcó en una expedición para ver la isla con sus propios ojos, explican en un blog de la NASA.
A su llegada el pasado octubre el científico se encontró con algo inesperado. La isla resultó ser algo diferente a lo que creía. Las observaciones satelitales parecían mostrar que en su lado sur tenía playas poco profundas donde poder atracar. Sin embargo, las calas resultaron ser demasiado empinadas y las olas demasiado grandes para llegar con facilidad. Por este motivo, el equipo navegó por la costa del norte más tranquila y tomó mediciones GPS de la ubicación y elevación de rocas y otras formaciones erosivas visibles en la imagen del satélite.
Origen desconcertante
«Todos parecíamos niños mareados», afirma Slayback sobre su visita. Pronto se dieron cuenta de que el terreno, cubierto por una molesta grava negra que les hacía daño al caminar, no era tan plano como parecía por satélite. También les llamó la atención la arcilla que sale del cono, de color claro y pegajosa. «No sabíamos realmente qué era, y todavía me desconcierta de dónde viene. Porque no es ceniza», señala. Además, los investigadores pudieron observar cómo la vegetación ha comenzado a echar raíces en el istmo que conecta la isla con su vecina, y los parches probablemente sembrados por excrementos de aves en el flanco del cono volcánico. Una lechuza hizo una aparición sorpresa (probablemente llegó de una de las islas más antiguas y con vegetación) y también pudieron verse cientos de charranes que se habían refugiado en los acantilados que rodean el lago del cráter.
Vegetación en el istmo plano de Hunga Tonga-Hunga Ha’apai. El cono volcánico está en el fondo – Dan Slayback. Al final de la catástrofe la vida surge imparable.
Toda la isla se derrumba
Utilizando una unidad de GPS de alta precisión, los investigadores tomaron alrededor de 150 mediciones para tratar de averiguar cuál es la auténtica elevación de la isla. «Realmente me sorprendió lo valioso que era estar allí en persona para esto», explica Slayback. Una característica que resultó reveladora fueron los profundos barrancos de erosión que corren por el lado del cono volcánico. «La isla se está erosionando por la lluvia mucho más rápido de lo que había imaginado. Nos centramos en la erosión en la costa sur, donde las olas se están derrumbando, lo que está sucediendo. Pero toda la isla está cayendo. Es otro aspecto que queda muy claro cuando estás parado frente a estos enormes barrancos. Bueno, esto no estaba aquí hace tres años, y ahora tiene dos metros de profundidad», señala.
Los acantilados del lago del cráter – Dan Slayback
De vuelta en Goddard, los investigadores está procesando los nuevos datos y desarrollando un modelo 3D más realista de la isla, que usarán para averiguar su volumen y la cantidad de ceniza y material volcánico que brotó del respiradero a lo largo del borde de la caldera submarina abajo. Todavía quedan grandes preguntas, por ejemplo, cómo se ve el fondo marino poco profundo alrededor de la isla y si los procesos hidrotérmicos pueden solidificar el material y permitirle resistir la erosión durante las próximas décadas. Slayback espera volver el próximo año para encontrar más respuestas
Dan Slayback, en la playa de Hunga Tonga-Hunga H
Fuera de reportaje habrá que decir que, siempre ha sido de la misma manera: Las erupciones volcánicas han destruído y, al mismo tiempo, han creado cosas y vida nueva.
Fuente: Noticias de la NASA
Feb
6
Cada día se aprende algo nuevo
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
La ilustración muestra cuál sería el aspecto real de nuestra galaxia vista desde fuera – Chen Xiaodian
Descubren que nuestra Galaxia está “deformada y retorcida”. Un equipo de investigadores elabora, por primera vez, un mapa detallado en ED de las regiones externas de la Vía Láctea.
“El primer mapa en 3D de nuestra galaxia, la Vía Láctea, ha revelado a los científicos cuál es su verdader forma. Y no es la que imaginábamos. De hecho, lejos de ser ese disco plano de estrellas formando una bella espiral alrededor de su región central, la Vía Láctea, nuestro hogar en el espacio, está deformada y retorcida. Especialmente en sus regiones más externas.
El hallazgo, que acaba de publicarse en Nature Astronomy, ha sido posible gracias al esfuerzo de un equipo de astrónomos de la Universidad Macquairie, en Australia, y la Academia de Ciencias de China, que han utilizado 1.339 estrellas para cartografiar en tres dimensiones la galaxia en que vivimos.”
Durante su estudio, los investigadores descubrieron que el disco central de estrellas de la Vía Láctea se deformaba y retorcía cada vez más cuanto mas lejos estaban las estrellas de su centro. «Por lo general -afirma Richard de Grijs, coautor de la investigación- pensamos que las galaxias espirales son bastante planas, como Andrómeda, que se puede ver facilmente a través de un telescopio». Pero nuestra propia galaxia no parece seguir ese patrón.
Lo cierto es que, podemos tomar imágenes de Galaxias situadas muy lejos de la nuestra, y, sin embargo, no podemos hacerlo de la Vía Láctea, ya que nos encontramos dentro de ella y, necesitaríamos estar fuera, verla con perspectiva y de lejos para poder tomar una imagen fidedigna de su figura.
De hecho, el disco de estrellas de la Vía Láctea es de todo menos estable y plano. Desde una gran distancia, nuestra galaxia se vería como un delgado disco de estrellas que orbitan una vez cada pocos cientos de millones de años alrededor de su región central, donde cientos de miles de millones de estrellas, junto con una gran masa de materia oscura, proporcionan el «pegamento» gravitacional que lo mantiene todo junto. Pero veríamos también cómo ese disco se retuerce y dobla en sus extremos.
El «tirón» de la gravedad se debilita cuanto más lejos estemos de las regiones internas de la Vía Láctea. Por eso, en el lejano disco exterior, los átomos de hidrógeno que forman la mayor parte del disco galáctico ya no están confinados a un plano delgado, sino que le dan al disco una apariencia de «S» distorsionada. En palabras de Richard de Grijs «en las regiones exteriores de la Vía Láctea encontramos que el disco estelar en forma de S está deformado en un patrón en espiral que se retuerce progresivamente».
El primer mapa 3D preciso de las lejanías
Saber lo que se dice saber como es la Vía Láctea… ¡No lo sabemos! Y, los datos de los que podemos disponer nos dan aproximaciones de que debería ser una Galaxia en la que hemos pasado toda la vida desde que nuestra especie surgió y evolucionó en el planeta en la que está confinada.
«Es muy difícil determinar las distancias entre el Sol y las zonas exteriores de la Vía Láctea sin tener una idea clara de cómo es ese disco en realidad», asegura por su parte Chen Xiaodian, autor principal del artículo. «Sin embargo, recientemente publicamos un nuevo catálogo de estrellas variables, de comportamiento conocido, las Cefeidas clásicas, para las que se pueden determinar distancias con un margen de error de solo entre el 3 y el 5%».
Gracias a esa base de datos, el equipo de astrónomos logró desarrollar la primera imagen tridimensional precisa de las regiones más alejadas de nuestra Vía Láctea.
Las Cefeidas clásicas son estrellas jóvenes que tienen entre cuatro y 20 veces la masa de nuestro Sol y que pueden llegar a ser hasta 100.000 veces más brillantes. Masas estelares tan altas implican que estas estrellas viven rápido y mueren jóvenes, quemando su combustible nuclear muy deprisa, a veces en apenas unos pocos millones de años. Estas estrellas emiten pulsaciones regulares, que se observan como cambios en su brillo. Combinado con el brillo observado de una Cefeida, su período de pulsación puede usarse para obtener una distancia altamente confiable.
Repetimos imagen por no habernos facilitado una buena diversidad de ella
El nuevo mapa muestra que el disco deformado de la Vía Láctea también contiene estrellas jóvenes. Y confirma que el patrón espiral deformado es causado por la torsión que produce el giro del enorme disco interno de estrellas de la Vía Láctea.
El hallazgo recuerda a los investigadores observaciones anteriores de una docena de galaxias que también mostraban patrones en espiral progresivamente retorcidos. Según Liu Chao, coautor del estudio, «combinando nuestros resultados con esas otras observaciones llegamos a la conclusión de que el patrón en espiral deformado de la Vía Láctea está causado, probablemente, por la torsión del disco interno masivo. Esta nueva morfología proporciona un mapa actualizado que resulta crucial para los estudios de los movimientos estelares dentro de nuestra galaxia y los orígenes del disco de la Vía Láctea».