Mar
9
Los secretos que la Naturaleza esconde
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son.
“Las unidades de Planck o unidades naturales son un sistema de unidades propuesto por primera vez en 1899 por Max Planck. El sistema mide varias de las magnitudes fundamentales del universo: tiempo, longitud, masa, carga eléctrica y temperatura. … El uso de este sistema de unidades trae consigo varias ventajas.”
Al dar valor 1 a las cinco constantes fundamentales, las unidades de tiempo, longitud, masa, carga y temperatura se definen así:
En estas ecuaciones se significa el Límite de Planck, la Masa de Planck, el Tiempo de Planck y la Temperatura de Planck
Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño. La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33 centímetros, más joven que el tiempo de Planck, 10-43 segundos y supere la temperatura de Planck de 1032 grados. Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.
En los intentos más recientes de crear una teoría nueva para describir la naturaleza cuántica de la gravedad ha emergido un nuevo significado para las unidades naturales de Planck. Parece que el concepto al que llamamos “información” tiene un profundo significado en el universo. Estamos habituados a vivir en lo que llamamos “la edad de la información”. La información puede ser empaquetada en formas electrónicas, enviadas rápidamente y recibidas con más facilidad que nunca antes. Nuestra evolución en el proceso rápido y barato de la información se suele mostrar en una forma que nos permite comprobar la predicción de Gordon Moore, el fundador de Intel, llamada ley de Moore, en la que, en 1.965, advirtió que el área de un transistor se dividía por dos aproximadamente cada 12 meses. En 1.975 revisó su tiempo de reducción a la mitad hasta situarlo en 24 meses. Esta es “la ley de Moore” cada 24 meses se obtiene una circuiteria de ordenador aproximadamente el doble, que corre a velocidad doble, por el mismo precio, ya que, el coste integrado del circuito viene a ser el mismo, constante.
Transmitir información a la velocidad de la luz
“El idioma ya no sería una barrera para el mundo. Travis, es un dispositivo parecido a un control remoto que conectado a Internet puede traducir hasta 80 idiomas y 20 sin conexión. Pero no es el único, también está Pilot, de la compañía Waverly Labs. Esto avance tecnológico acerca más a las personas sin importar su idioma.”
Seguimos dando pasos importantes hacia un futuro que… ¡Ni podemos imaginar!
Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros. Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2. Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.
No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.
α = 2πe2 / hc ≈ 1/137 |
αG = (Gmp2)2 / hc ≈ 10-38 |
La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala. La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.
Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck). Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.
Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.
Para poner un ejemplo de nuestra ignorancia poco tendríamos que buscar, tenemos a mano miles de millones.
Me acuerdo de León Lederman (premio Nobel de Física) que decía:
“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben. En el cartel sólo pondría esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.
Emisión estimulada (en la cual los fotones se “clonan” a sí mismos) fue predicho por Einstein en su derivación de E=hν, y condujo al desarrollo del láser.
Este número 137 guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba. La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón, por el producto de la velocidad de la luz y la constante de Planck. Tanta palabrería y numerología no significan otra cosa sino que ese solo numero, 137, encierra los misterios del electromagnetismo (el electrón, e–), la relatividad (la velocidad de la luz, c), y la teoría cuántica (la constante de Planck, h).
Lo más notable de este número es su dimensionalidad. La velocidad de la luz, c, es bien conocida y su valor es de 299.792.458 m/segundo; la constante de Planck racionalizada, ћ, es h/2π = 1’054589×10 julios segundo; la altura de mi hijo, el peso de mi amigo, etc, todo viene con sus dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa ¡se borran todas las unidades! El 137 está solo: se escribe desnudo a donde va. Esto quiere decir que los científicos del undécimo planeta de una estrella lejana situada en un sistema solar de la galaxia Andrómeda, aunque utilicen Dios sabe qué unidades para la carga del electrón y la velocidad de la luz y qué versión utilicen para la constante de Planck, también les saldrá el 137. Es un número puro. No lo inventaron los hombres. Está en la naturaleza, es una de sus constantes naturales, sin dimensiones.
La física se ha devanado los sesos con el 137 durante décadas. Werner Heisember (el que nos regaló el Principio de Incertidumbre en la Mecánica Cuántica), proclamó una vez que todas las fuentes de perplejidad que existen en la mecánica cuántica se secarían si alguien explicara de una vez el 137.
¿Por qué alfa es igual a 1 partido por 137?
Esperemos que algún día aparezca alguien que, con la intuición, el talento y el ingenio de Galileo, Newton o Einstein, nos pueda por fin aclarar el misterioso número y las verdades que encierra. Menos perturbador sería que la relación de todos estos importantes conceptos (e–, h y c) hubieran resultado ser 1 ó 3 o un múltiplo de pi… pero ¿137?
Arnold Sommerfeld se percibió que la velocidad de los electrones en el átomo de hidrógeno es una fracción considerable de la velocidad de la luz, así que había que tratarlos conforme a la teoría de la relatividad. Vio que donde la teoría de Bohr predecía una órbita, la nueva teoría predecía dos muy próximas.
Esto explica el desdoblamiento de las líneas. Al efectuar sus cálculos, Sommerfeld introdujo una “nueva abreviatura” de algunas constantes. Se trataba de 2πe2 / hc, que abrevió con la letra griega “α” (alfa). No prestéis atención a la ecuación. Lo interesante es esto: cuando se meten los números conocidos de la carga del electrón, e–, la constante de Planck, h, y la velocidad de la luz, c, sale α = 1/137. Otra vez 137 número puro.
Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.
Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundo-brana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.
Las fuerzas fundamentales
Tipo de Fuerza | Alcance en m | Fuerza relativa | Función |
Nuclear fuerte | <3×10-15 | 1041 | Une Protones y Neutrones en el núcleo atómico por medio de Gluones. |
Nuclear débil | < 10-15 | 1028 | Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z– |
Electromagnetismo | Infinito | 1039 | Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones. |
Gravitación | Infinito | 1 | Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón. |
Todos estos conceptos que hemos repasado más arriba nos lleva a pensar que, con el Tiempo, si no lo estropeamos nosotros mismos, nuestra especie puede llegar a desentrañar grandes secretos que aún permanecen escondidos en lo más profundo de la niebla que nos impide ver y que llamamos… ¡Ignorancia!
emilio silvera