miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cómo pudo surgir la Vida? ¡Es todo tan complejo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

    Podemos leer en las piedras… ¡Cuentan tantas historias!

Con sus tres mil quinientos millones de años de edad, las rocas sedimentarias dispersas por algunas regiones del mundo, por ejemplo, en Australia Occidental (Grupo Warrawoona), nos regalan uno de los primeros atisbos e vida y el en la infancia de la biosfera. Esas rocas contienen estromatolitos y estructuras microscópicas que han sido interpretados como bacterias fósiles, aunque ese extremo aún siga en pleno debate. No obstante, las signaturas químicas proporcionan evidencias sólidas de la antigüedad de la vida, aunque el tipo de biología responsable de ellas siga siendo incierto. En las investigaciones geológicas de la vida primigenia de la Tierra seguimos mirando a través de un cristal oscuro.

Resultado de imagen de Sistemas rocosos que esconden secretos del pasado

                                      Si analizamos el lugar… ¿Qué nos podría contar?

Muchas veces pasamos junto a sistemas rocosos sin pensar que, en ellos, están presentes un sin fin de del pasado que nos hablan de la vida y, son los geólogos los que, pacientemente se internan por lugares perdidos del mundo en busca de esa huella que nos hable del surgir de la vida.

El vestigio geológico, como dijo James Hutton, no presenta “ni vestigios de un principio ni perspectiva de un futuro”. Las perspectivas de un futuro siguen siendo remotas, pero durante las últimas décadas los paleontólogos han desenterrado lo que verdaderamente considerar los vestigios del principio de la vida.

Resultado de imagen de Insecto fosilizadoResultado de imagen de Insecto fosilizadoResultado de imagen de Insecto fosilizadoResultado de imagen de Insecto fosilizado

       Insectos fosilizados de millones de años de edad

”fosil01”

Fósiles de cascarones (a la izquierda) y de manto bacteriano (a la derecha) en los sedimentos de Pilbara, Grupo Warrawoona, 3.446 Ga-© Frances Westall.

Estas estructuras han sido atribuidas a bacterias fosilizadas. La cantidad de carbono restante unida a estos microfósiles es generalmente muy débil ( 0,01-0,5% con puntas excepcionales hasta el 1%) lo que hace particularmente difícil el análisis del carbono orgánico. No obstante, se han podido determinar los isótopos de carbono y presentan un enriquecimiento variable pero así y todo significativo en carbono 12, lo que habitualmente se traduce en un origen biológico. En general, las moléculas biológicas producidas por fotosíntesis se caracterizan por un enriquecimiento en 12C en relación con los carbonatos minerales. Así, la relación 12C/13C pasa de 88,99 en los carbonatos minerales de referencia a valores comprendidos entre 90,8 y 91,7 en las moléculas orgánicas biológicas.

Aunque no son plantas, las cianobacterias son uno de los principales seres vivos capaces de realizar la fotosíntesis, y  están sujetos al mismo intercambio de gases. En ellos los gases fluyen a través de la membrana y la pared celular por transporte pasivo.

Arguyendo un parecido entre las cianobacterias modernas y los microfósiles de Pilbara, William Schopf, de la Los Angeles, ha descrito estos últimos como fósiles de cianobacterias. Estas bacterias ancestrales, pues, ya habrían practicado la fotosíntesis oxigenada. Interpretación muy importante ya que situaría la fotosíntesis oxigenada muy atrás en los tiempos geológicos, mientras que los indicios bioquímicos más antiguos de la fotosíntesis oxigenada encontrados en esquistos carbonados, también en Australia, sólo se remontan a 2.700 millones de años. Según el inglés Martin Brasier, de la Universidad de Oxford, las estructuras contendrían efectivamente carbono orgánico enriquecido en isótopo 12, pero la materia orgánica sería de origen puramente químico y no biológico. Podría proceder de la reacción del hidrógeno con el monóxido de carbono (reacción llamada de Fischer-Tropsch), dos gases presentes en los fluidos de las fuentes hidrotermales. La acumulación de materia orgánica en microestructuras sería debida a la cristalización del cuarzo en la vena hidrotermal, y el importante enriquecimiento en carbono 12 sería el resultado de procesos puramente químicos. La explicación de Brasier, no obstante, no es totalmente convincente porque no es probable que la reacción de Fischer-Tropsch produjera moléculas tan complejas como los kerógenos (materia orgánica compleja, insoluble en los disolventes habituales) depositados en las venas hidrotermales.

Resultado de imagen de Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguasResultado de imagen de Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguasResultado de imagen de Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguasResultado de imagen de Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguas

 

               Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguas

 Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de donde se han encontrado Bacterias fósiles de una antigüedad aproximada de 3.500 millones de años.

Muchas veces hemos oído hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un isótopo raro de Carbono que se produce en natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrógeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.

Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios…del Oxígeno, de la atmósfera, etc. 

En los materiales más antiguos simplemente no queda suficiente 14C que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que sus secretos muy bien guardados en lo más profundo de los tiempos.

Triceratops.jpg

Escenas que nos llevan hacia atrás en el tiempo (65 millones de años) y, la otra, que nos devuelve al presente

Conforme estudiamos los restos fósiles vamos sabiendo más de tiempos pretéritos. Cada descubrimiento nos retrotrae un poco más en el pasado y nos dice, por ejemplo, que el primer ojo o el primer ser fotosintético se remontan aún más en el tiempo de lo que pensábamos.

Frances Westall, del CNRS francés, y sus colaboradores han analizado unos tapetes microbianos fósiles encontrados en el cinturón Barberton Greenstone sudafricano y llegado a la conclusión de que la fotosíntesis ya existía al menos hace 3300 millones de años.

Estas capas de microbios crecían en una Tierra en la que no había oxígeno libre, una Tierra muy distinta a la que conocemos ahora. Probablemente su hábitat era la línea costera a muy baja profundidad bajo la superficie. Un sitio en el que había agua y la luz del Sol llegaba sin dificultad. Esa tonalidad, probablemente verde-azulada, sería la que cambiaría el planeta gracias a la luz y la evolución.

                ¡La Vida! Que estuvo presente en el pasado… ¡De tantas maneras!

Los microorganismos fósiles más antiguos fueron encontrados en los sedimentos de Barberton, en África del Sur, y de Pilbara, en Australia. Estos sedimentos, de una antigüedad de entre 3.200 y 3.500 millones de años, son ligeramente más jóvenes que las rocas de Groenlandia. Los sedimentos se han conservado bien y muestran la existencia de abundante vida en las aguas litorales de poca profundidad, y quizá incluso cerca de la superficie del agua (algunos biofilms tienen una estructura laminada que parece indicar una vida bacteriana que ya utilizaba energía ). Los microfósiles identificados comprenden estructuras filamentosas con una longitud de entre diez y algunos cientos de micras, bastoncillos de algunas micras de largo y estructuras esféricas y ovoides de aproximadamente 1 micra de diámetro.

Resultado de imagen de microfósilesImagen relacionadaResultado de imagen de microfósilesResultado de imagen de microfósiles

Los trabajos realizados en Orleans, en el Centro de biofísica molecular del CNRS, por Frances Westall podrían aportar una explicación intermedia. Se han observado al electrónico morfologías de microfósiles tales como biofilms, polímeros, cascarones, filamentos, bastoncillos, en las muestras de sílice tomadas en Pilbara en zonas limítrofes con las venas hidrotermales de Schopf, pero nunca en el interior mismo de las venas. Estas morfologías contienen carbono identificado por microanálisis con el microscopio electrónico. Parece, en efecto, que las bacterias ancestrales vivían, y posteriormente fueron fosilizadas, en rocas sedimentarias cercanas a venas hidrotermales. Las venas hidrotermales pueden muy bien haber arrastrado la materia orgánica de las bacterias muertas y/o fosilizadas (por lo tanto, enriquecidas en carbono 12), materia orgánica que habría sido depositada nuevamente más arriba en las venas hidrotermales, para formar las famosas estructuras carbonadas complejas descritas por Schopf. Las estructuras de Schopf, pues, sólo serían restos de materia orgánica bacteriana y no bacterias fosilizadas. Esta explicación, por lo tanto, es intermedia entre el todo bacteriano de Schopf y el todo químico de Brasier. No obstante, afirma la presencia de vida bacteriana hace unos 3.500 millones de años.

”fosil02”

Izquierda: Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de años.

Derecha: Bacterias fósiles de una antigüedad de aproximadamente 3.500 millones de años

Las rocas más antiguas susceptibles de presentar trazas de vida son sedimentos de una antigüedad aproximada de 3.750 millones de años descubiertos en el sudoeste de Groenlandia.

Estos sedimentos demuestran la presencia permanente de agua líquida, de gas carbónico en la atmósfera y contienen kerógenos, moléculas orgánicas complejas. La relación isotópica del carbono está comprendida entre 90,2 y 92,4 en lo referente a la materia orgánica de los sedimentos de Groenlandia. Estos valores sugieren, pero no demuestran de manera cierta, la existencia de actividad fotosintética, y por lo tanto de vida primitiva, hace 3.800 millones de años. En efecto, materia orgánica muy antigua (a veces reducida a cristales de grafito) ha sufrido importantes modificaciones en el curso de la diagénesis.

Resultado de imagen de Moléculas orgánicas complejas en las nebulosas

Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada

               Muchos son los lugares en los que podemos encontrar moléculas orgánicas complejas

El producto final de degradación, los kerógenos, se compone de macromoléculas complejas estables resistentes, que pueden incluso ser transformadas en grafito puro durante el metamorfismo. Todos estos tratamientos pudieron muy bien generar los enriquecimientos en 12C observados. También hay que desconfiar mucho de la contaminación eventual de estas rocas por microorganismos más recientes, contaminación que, evidentemente, falseará los análisis. A causa de las múltiples transformaciones sufridas por estas rocas, hay muy pocas probabilidades de encontrar en ellas vestigios de microfósiles. En efecto, en los sedimentos de Groenlandia no se ha descubierto ninguna estructura parecida a bacterias fósiles.

También aquí hay que rendirse a la evidencia: la esperanza de encontrar pequeños autómatas químicos fosilizados hace 4.000 millones de años, o incluso moléculas orgánicas constitutivas de tales autómatas, es prácticamente nula. De hecho, tres factores han contribuido a borrar sus indicios sobre la Tierra: la historia geológica accidentada de la Tierra (y en particular la tectónica de placas), la erosión debida a la presencia permanente de agua líquida y la propia vida, que produce enormes cantidades de oxígeno, un veneno para las moléculas orgánicas reducidas. Por lo tanto, podemos temer que las primeras páginas del libro de la historia de la vida queden para siempre en blanco.

                 Mapa de Australia con la región de Pilbara coloreada en rojo.

”fosil01”

Fósiles de cascarones (a la izquierda) y de manto bacteriano (a la derecha) en los sedimentos de Pilbara, Grupo de Warrawoona, 3.446 Ga-
© Frances Westall

El grupo Warrawoona

En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental . La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.

Son células que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares cálidos y son el resultado de la unión de seres unicelulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.

En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a identificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron. Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.

Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos. Actualmente, estos restos están cuestionados tanto por su origen biológico por su edad.

Puede parecer sorprendente que las bacterias puedan dejar fósiles. Sin embargo, un grupo particular de bacterias, las cianobacterias o “algas azul-verdosas”, han dejado un fósil que se extiende en el Precámbrico – las cianobacterias más viejas, como fósiles conocidos tienen casi 3.500 millones años, son los fósiles más antiguos actualmente conocidos. El grupo muestra lo que probablemente es el conservacionismo más extremo de morfología de cualquier organismo. Aparte de las cianobacterias, las bacterias fósiles identificables no son muy frecuentes. Sin embargo, bajo ciertas condiciones del medio químico, pueden reemplazarse células bacterianas con minerales, muchas veces pirita o siderita (carbonato férrico), formando réplicas de las células que una vez estuvieron vivas.

Cianobacterias esenciales en la historia y el futuro del planeta

Decíamos, en la datación de objetos más antiguos situados en las profundidades de la historia de la Tierra, el 14C no sirve, y, nos tenemos que valer de otros materiales cuya vida media sea más larga. ello, necesitamos un reloj mucho más imponente: un radioisótopo cuya vida media se mida en muchos millones de años o incluso, en miles de millones de años. El Potasio 40 (40k) se identificó inicialmente como un candidato prometedor para la geocronología. Este isótopo inestable se desintegra formando o bien Calcio 40 (40 Ca), que desafortunadamente no distinguierse de los iones de Calcio ya presentes en el mineral, o bien Argón (40 Ar), que só piede distinguierse. La Vida Media del 40K es de 1250 millones de años. Además, el Potasio es abundante y está ampliamente distribuido en los minerales que forman las rocas.

       Mineral de Circón

Sin embargo, lo que realmente necesitamos para datar las rocas muy antiguas es un sistema que funcione como las “cajas negras” de los aviones: un isótopo que no se pierta fácilmente en un mineral que no se altere fácilmente. Los circones, unos minerales que contienen uranio y se encuientran en los granitos y otras rocas ígneas, son las cajas negras de la geología precámbrica. De hecho, el uranio enlazado a los cristales de circón en el de su formación nos proporcionan dos cronómetros fiables: el 238U se desintegra en Plomo 206 (206Pb) con una vida media de unos cuatro mil quinientos millones de años (la edad de la Tierra), mientras el isotopo 235U, abundante ( un 7 por mil), se desintegra en 207Pb con una vida media de algo más de setecientos millones de años. peculiaridad nos permite verificar por dos métodos las edades medidas en las rocas más antiguas de la Tierra y, podemos saber la edad de los fósiles hallados en ellas.

Imagen relacionada

La Era Arcaica también conocida como  Precámbrico; es la era más antigua y la más extensa,  ya que se origina con el nacimiento de la Tierra hace 4.500 millones de años, y se extiende hasta hace 500 millones de años aproximadamente.

A  comienzos del  Arcaico, el flujo de calor de la Tierra era casi tres veces superior al que es hoy  y se comenzarían a  formar los continentes.

LA VIDA EN LA TIERRA

Los seres unicelulares, las bacterias y algas verde azules (células procariotas), surgieron hace unos 3.500 millones de años, en el Periodo Arcaico.

Resultado de imagen de Seres unicelulares

En la actualidad, nuestro conocimiento de la vida en ambientes arcaicos es a un tiempo frustrante y emocionante: frustrante porque tenemos muy pocas certezas, emocionante porque sabemos algo, por poco que esto sea. Además, es estimulante, pues el compañero de la ignorancia es la oportunidad. Así que nos quedan preguntas importantes que realizar sobre las rocas de Warrawoona y las de otros lugares que nos muestran fósiles que, no siempre sabemos descifrar. Si las rocas más antiguas que hemos podido identificar nos indican la presencia de organismos complejos, ¿qué clase de células vivían en tiempos aún más lejanos? Y, en última instancia, ¿cómo pudieron surgir? ¿Cuál es el origen de la vida?

El origen de la vida Tabla Figura

¿Quién puede contestar esa pregunta?

La vida fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Nosotros (creo), junto con la inmensa diversidad de clases de vida que en la Tierra han sido, estábamos presentes en las que el Universo tenía impresas en la evolución de Gaia. Sin embargo, la vida es muy distinta a todo lo demás porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un papel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida, y, esa evolución bioquímica de la materia para hacer posible la vida, se gestó, primero en las estrellas, más tarde en laas explosiones supernovas que hicieron posible la transmutación de materiales sencillos en más complejos y, finalmente, en las Nebulosas donde se formaron nuevas estrellas y planetas que, cargados con estos materiales prebióticos, sólo tuvieron que esperar que, en algún plameta como la Tierra, situado en la Zona habitable de su estrella (el Sol) dejara que el Tiempo, con su transcurrir, hiciera el trabajo.

                     Muchos son los planetas situados en la zona habitable de “sus estrellas”

A grandes rasgos entendemos como pueden haber evolucionado las moléculas biológicas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de forma tan compleja hasta llegar a “fabricar” una “máquina” tan maravillosa como nuestro cerebro de cuyas funciones, simplemente conocemos una muy superficial.

Imagen relacionada

   Una maraña formada por más de 100.000 millones de neuronas que generan ideas y pensamientos

Si pensamos en cómo se pudo conformar el cerebro humano, una estructura de tal complejidad que, posiblemente, nada en el Universo se le pueda igualar, toda vez que, llegar a transiciones de fase que pasan por sucesos que parten la materia inerte y llegan hasta los pensamientos y los sentimientos…, no existe nada que se le pueda igualar.

¿Conoceremos algún día la verdadera Historia? Esperemos que, al menos, en su mayor parte sí.

emilio silvera

Preguntamos pero… ¡No siempre nos saben contestar!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Origen de las cosas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                     Todo es materia, es decir, está conformado por Quarks y Leptones

Los astrónomos han confirmado mediante observaciones espectroscópicas que los átomos son realmente los mismos en cualquier lugar del Cosmos, Un átomo de Carbono en la galaxia Andrómeda es exactamente igual que un átomo de Carbono de la Galaxia Vía Láctea, son idénticos y también, idénticos, a los átomos de Carbono de la Tierra. Cinco elementos químicos desempeñan un papel estelar en la Biología terrestre:

Carbono

Oxígeno

Hidrógeno

Nitrógeno, y

Fósforo

Estos elementos están entre los más abundantes del Universo. Sin embargo, no siempre fue asíHubo un tiempo, antes de que nacieran las primeras estrellas, que en el Universo todo era Hidrógeno y Helio, los materiales primordiales a partir de los cuales, pudieron surgir todos los demás en los hornos nucleares de las estrellas y en las explosiones supernovas.

Arriba tenemos el oxígeno, el agua y un átomo de carbono, y, sin ellos la vida tal como la conocemos no sería posible en nuestro Universo.

Todas las leyes de la física nos muestran que la existencia y sostenimiento de la vida se asientan en equilibrios y medidas o cantidades específicas. La estructura general del universo, el lugar de la Tierra en el mismo, las características materiales de ésta –aire, luz, agua, etc.–, se basan en propiedades esenciales para nuestra supervivencia y, sobre todo eso… ¡El Carbono!

El Carbono es el elemento auténticamente vital. Merece un lugar de honor debido a una propiedad química única: los átomos de Carbono (como tantas veces expliqué aquí) pueden unirse para formar moléculas de cadena extendida, o polímeros, de variedad y complejidad ilimitadas. Las Proteínas y el ADN son dos ejemplos de dichas moléculas de cadena larga.

Si no fuera por el Carbono, la vida como la conocemos sería imposible. Probablemente sería imposible cualquier cualquier tipo de vida. Soy muy remiso (aunque no descarto nada), a que existan formas de vida que no estén basadas en el Carbono.

Cuando el Universo “empezó” con el “Big Bang”, el Carbono estaba completamente ausente. El intenso calor del nacimiento cósmico impedía cualquier núcleo atómico compuesto. En lugar de ello, el material cósmico consistía en una sopa de partículas elementales tales como protones y neutrones que pudieron conformar los núcleos de átomos de hidrógeno. Sin embargo, a medida que el universo se expandía y enfriaba durante los primeros minutos, las reacciones nucleares transmutaron parte del hidrógeno en helio.

Resultado de imagen de Proceso Triple Alfa

Muchos millones de años más tarde, en las estrellas, por algo que se llama “proceso triple Alfa”, surgió el Carbono en el Universo. No siendo el tema aquí el de explicar como se llega en las estrellas al Carbono a partir del helio, seguiremos hablando de la química cósmica.

La Química es algo más que unos tubos de ensayo, y, está presente de manera natural por todo el espacio interestelar. Allá por los 70 me llamó poderosamente la atención el descubrimiento de moléculas de amoníaco y de agua en el espacio exterior. ¿Cómo llegaron a llí? Bueno, todos conocemos esas inmensas nubes estelares que llamamos Nebulosas y, en ellas, se producen, a partir de materiales sencillos, esos cambios que tan poderosamente llaman nuestra atención.

El timo de átomo más común en el universo, después del hidrógeno y el helio, es el oxígeno. El oxígeno puede combinarse con hidrógeno para formar grupos grupos oxhidrilos (HO) y moléculas de agua (H2O), que tiene una marcada tendencia a unirse a otros grupos y moléculas del mismo tipo que encuentren por el camino, de forma que poco a poco se van constituyendo pequenísimasm partículas compuestas por millones y millones de tales moléculas. Los grupos oxhidrilo y las moléculas de agua pueden llegar a constitur una parte importante del polvo cósmico. Allá por el año 1965 se detectó por primera vez grupos oxhidrilo en el espacio y se comenzó a estudiar su distribución. desde entonces, se han encontrado allí, moléculas más, complejas que contienen átomos de carbono, de hidrógeno y de oxígeno. También átomos de calcio, sodio, potasio y hierro han sido detectados al observar la luz que dichos átomos absorben.


     En regiones como la que arriba podemos ver, están presentes elementos que no siempre sospechamos

Actualmente, la lista de las moléculas descubiertas en el espacio es larga y más de cien sustancias químicas la adornan, siendo muchas de esas moléculas interestelares orgánicas. La más abundante es el monóxido de carbono, pero también hay abundancia de acetileno, formaldehido y alcohol. También se han detectado moléculas orgánicas más complejas, tales como aminoácidos y HAP (hidrocarburos aromáticos policíclicos). Ahora está claro que no sólo abunda en todo el Universo elementos que favorecen la Vida, sino que también lo hacen muchas de las moléculas orgánicas realmente utilizadas por la vida. Con miles de millones de años disponibles para que la química cósmica pudiera generar dichas sustancias, ha habido tiempo más que suficiente para que estas se formen en las nubes moleculares gigantes de las que emergen las estrellas y los sistemas solares como el nuestro.

Nubes Moleculares Gigantes  en este caso (NGC 7822 en Cefeo). Colapsos gravitacionales, estrellas nuevas, vientos estelares, abundante radiación ultravioleta, todas esas fuentes de energías que dan lugar al nacimiento de estrellas nuevas, hacen también posible que, los materiales se mezclen y sufran mutaciones de simples a complejos y, a partir de ellos, nacen los nuevos sistemas planetarios y…¡la Vida!

Que en un principio, sin temor a equivocarnos podemos decir que la génesis de la vida ha sido posible a partir de lo que en el espacio pasó, ¿qué duda nos puede caber? Incluso, no se descarta que los materiales que trajeron la vida al planeta Tierra, fuera deposita por cometas.

Cometas: West

     El cometa West, con sus colas de plasma y polvo

Los Cometas que a pesar de todo lo que sabemos de ellos, siguen siendo algo enigmáticos, incluso algunos que han sido minuciosamente observados durante siglos. Muchos son los que dicen que llevan la semilla de la Vida con ellos y, de vez en cuando, la siembran en algún planeta que, como la Tierra, recibe sus esporádicas visitas.

Mucho se podría hablar aquí de cómo llegaron a formarse los cometas a partir de aquella Nebulosa planetaria pero, no siendo el tema de hoy, lo dejaremos en lo que ya hemos explicado y que, de manera muy simple y general, os dará una idea de lo que en el Universo puede pasar y de cómo, todo se confabula para que la vida, sea posible.

En la parte primera hemos hablado de los supermicrobios y de otras cuestiones que nos acercan al saber, al menos, de cómo hemos tratado de conocer el origen de la Vida en nuestro mundo, uan pregunta que más o menos ha quedado contestada pero, a medias, toda vez que, contestar a la pregunta primera de… ¿qué es la vida? no he podido, me faltan conocimientos para ello.

Para documentarme, he leído sobre el misterioso origen de la vida, he tratado de saber qué es la vida, he buceado en la historia de las moléculas antiguas, he dado un largo paseo por el Edén de los microbios y sus dominios, he tratado de estudiar lo que es el principio de generación biológica y química, a todo ello, he añadido meros conocimientos del hueco de entropía y la Gravedad como fuente de Orden, He querido saber sobre el árbol de la vida y me he querido enterar de qué hallaron los expertos en las rocas antiguas, qué fósiles había allí como huella de la vida del pasado, también procuré saber si era posible la generación expontánea y sobre “la sopa primordial”. Me interesé sobre el Azar en relación con el Origen de la Vida.

Resultado de imagen de ARN y el ADN

También sobre las células replicantes que nos trajeron la vida, el código genético de la reproducción, el ARN y el ADN. No me olvidé del Polvo de Estrellas y de la Química cósmica para hacer posible una génesis a partir del espacio exterior y, en fin, muchos espacios y muchas razones más que me han llevado a conocer, lo que creemos que la vida es. Sin embargo, a pesar de todo eso, con algunos conocimientos más de los que tenía hace veinte años sobre el tema pero, sigo sin saber contestar la pregunta:

¿Qué es la Vida?

emilio silvera

La persistencia de los enigmas

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando miramos atrás contemplamos mundos de fascinante y exótica belleza que nos hablan de lo que fue. Pero también,  hace ya muchos siglos que existieron ciudades modernas donde floreció la cultura, las artes, las letras, la medicina, las matemáticas y la astronomía. Hombres del pasado, pensadores de ingenio y visión futurista, pusieron los cimientos de lo que hoy llamamos el saber, el conocimiento de las cuestiones del mundo, de los secretos de la Naturaleza y del Universo mismo.

 

 

 

 

 

Lo cierto es que cuando miramos hacia atrás en el tiempo, y,  sí que tenemos motivos para el asombro

 

Los orígenes del conocimiento quedan lejos y se pierde en la noche de los tiempos: Sumeria, Babilonia, Egipto, China, La India, Persia y más tarde Grecia y el Islam, Toda América y sus Civilizaciones y Europa. Nos tenemos que guiar por los vestigios dejados por aquellos pueblos que, desgraciadamente, el tiempo se ha encargado de borrar en la mayor parte de los casos y sólo hemos podido recuperar pequeñas obras y destruidas construcciones. De las más importantes en volumen, se ha conservado una gran colección por todo el mundo que nos habla de lo que fueron aquellos pueblos.

 

 

Un equipo de científicos ha diseñado un test para descubrir si el universo primitivo poseía una sola dimensión espacial. Este concepto alucinante es el núcleo de una teoría que el físico de la Universidad de Buffalo, Dejan Stojkovic y sus colegas proponen y que sugiere que el Universo primitivo tuvo solo una dimensión antes de expandirse e incluir el resto de dimensiones que vemos en el mundo actualmente. De ser válida, la teoría abordaría los problemas importantes de la física de partículas. Han descrito una prueba que puede probar o refutar la hipótesis de la “fuga de dimensiones”.

¿Cómo sería el universo primitivo? En cosmología es aquel que se estudia en un tiempo muy poco después del big bang. En realidad, las teorías del Universo primitivo han dado lugar a interacciones muy beneficiosas entre la cosmología y la teoría de partículas elementales, especialmente las teorías de gran unificación.

Debido a que en el universo primitivo había temperaturas muy altas, muchas de las simetrías rotas en las teorías gauge se vuelven simetrías no rotas a esas temperaturas. A medida que el universo se enfrió después del big bang se piensa que hubo una secuencia de transiciones a estado de simetrías rotas.

Combinando la cosmología con las teorías de gran unificación se ayuda a explicar por qué el universo observado parece consistir de materia y no de antimateria. Esto significa que uno tiene un número bariónico no nulo para el universo. La solución se encuentra en el hecho de que hubo condiciones de no equilibrio en este universo primitivo debido a su rápida expansión después del big bang.

Resultado de imagen de Universo inflacionario

El Universo en expansión, lleno de galaxias y estructura compleja que vemos hoy, surgió de un estado más pequeño, más caliente, más denso, más uniforme que pasó por un proceso inflacionario para convertirse en el Universo que hoy podemos observar.

Una idea importante en la teoría del universo primitivo es la de inflación: la idea de que la naturaleza del estado de vacío dio lugar, después del big bang, a una expansión exponencial del universo. La hipótesis del universo inflacionario soluciona varios problemas muy antiguos de la cosmología, como la planitud y la homogeneidad del universo.

Nosotros, los habitantes de este mundo, hemos logrado armar un cuadro plausible de un universo (mucho) mayor. Hemos logrado entrar en lo que podríamos llamar la “edad adulta”, con lo que quiero significar que, a través de siglos de esporádicos esfuerzos, finalmente hemos empezado a comprender algunos de los hechos fundamentales del Universo, conocimiento que, presumiblemente, es un requisito de la más moderna pretensión de madurez cosmológica.

La Nebulosa del Capullo desde CFHT

La Nebulosa del Capullo,  catalogada como IC 5146, es una nebulosa particularmente hermosa situada a unos 4.000 años-luz de distancia hacia la constelación del Cisne (Cygnus). Un hermoso complejo de Luz y nebulosidad oscura que rodea a un cúmulo muy disperso que, a su derecha, está custodiado por estrellas masivas de intensa radiación UV.

Sabemos, por ejemplo, dónde estamos, que vivímos en un planeta que gira alrededor de una estrella situada en la parte interior de uno de los brazos de la Galaxia (el Brazo de Ortión). La Vía Láctea, una galaxia espiral, está a su vez situada cerca de las afueras de un supercúmulos de galaxias, cuya posición ha sido determinada con respecto a varios supercúmulos vecinos que, en conjunto albergan a unas cuarenta mil galaxias extendidas a través de un billón de de años-luz cúbicos de espacio.

Resultado de imagen de Via Lactea.jpg

             Vivímos en la periferia de la Galaxia, a 30.000 años-luz del centro galáctico

En el interior del Brazo de Orión (señalada con la línea) está el Sistema Solar, a 30.000 años-luz del Centro Galáctico en una región bastante tranquila que nos permite contemplar (con nuestros ingenios) lo que que ocurre en otras regiones lejanas y las fuerzas desatadas que azotan aquellos lugares.

También sabemos (más o menos), cuando hemos entrado en escena, hace cinco mil millones de años que se formaron el Sol y sus planetas, en un universo en expansión que probablemente tiene una edad entre dos y cuatro veces mayor. Hemos determinado los mecanismos básicos de la evolución en la Tierra, hallado pruebas también de la evolución química a escala cósmica y aprendido suficiente física como para investigar la Naturaleza en una amplia gama de escalas, desde los saltarines quarks hasta el vals de las galaxias.

Resultado de imagen de Las civilizaciones del pasado

Hay realizaciones de las que la Humanidad puede, con justicia, sentirse orgullosa. Desde que los antiguos pueblos sumerios, egipcios, hindúes, chinos, persas, griegos y árabes pusieron el mundo en el camino de la Ciencia, nuestra medición del pasado se ha profundizado desde unos pocos miles de años a más de diez mil millones de años, y la del espacio se ha extendido desde un cielo de techo bajo no mucho mayor que la distancia real de la Luna hasta el radio de más de doce mil millones de años-luz del universo observable. Tenemos razones para esperar que nuestra época sea recordada (si finalmente queda alguien para recordarlo) por sus contribuciones al supremo tesoro intelectual de toda la sociedad, su concepto del Universo en su conjunto.

Resultado de imagen de La Polis Griega y la Democracia

      La Polis griega que trajo la Democracia, se discutía en las plazas públicas sobre la política

Sin embargo, cuando más sabemos sobre el universo, tanto más claramente nos damos cuenta de cuan poco sabemos. Cuando se concebía  el Cosmos como un pulcro jardín, con el cielo como techo y la Tierra como suelo y su historia coextensa con la del árbol genealógico humano, aún era posible imaginar que podíamos llegar algún día a comprenderlo en su estructura y sus detalles. Ya no puede abrigarse esa ilusión. Con el tiempo, podemos lograr una comprensión de la estructura cósmica, pero nunca comprenderemos el universo en detalle; resulta demasiado grande y variado para eso. Y, tal inmensidad, siempre tendrá secretos por desvelar.

                              Una de las salas de la Biblioteca de Harvard

Si poseyésemos un atlas de nuestra galaxia que dedicase una sola página a cada sistema estelar de la Vía Láctea (de modo que el Sol y sus planetas estuviesen comprimidos en una página), tal atlas tendría más de diez mil millones de volúmenes de diez mil páginas cada uno. Se necesitaría una biblioteca del tamaño de la de Harvard para alojar el atlas, y solamente ojearlo al ritmo de una página por segundo requieriría más de diez mil años. Añádanse los detalles de la cartografía planetaria, la potencial biología extraterrestre, las sutilezas de los principios científicos involucrados y las dimensiones históricas del cambio, y se nos hará claro que nunca aprenderemos más que una diminuta fracción de la historia de nuestra galaxia solamente, y hay cien mil millones de galaxias más.

     Bellos y extraños objetos que están presentes en el universo y tratamos de comprender

Ya nos lo dijo el físico Lewis Thomas: “El mayor de todos los logros de la ciencia del siglo XX ha sido el descubrimiento de la ignorancia humana”. Nuestra ignorancia, por supuesto, siempre ha estado con nosotros, y siempre seguirá estando. Lo nuevo es nuestra conciencia de ella, nuestro despertar a sus abismales dimensiones, y es esto, más que cualquier otra cosa, lo que señala la madurez de nuestra especie. El espacio puede tener un horizonte y el tiempo un final, pero la ventura del aprendizaje es interminable.

Hay una difundida y errónea suposición de que la ciencia se ocupa de explicarlo todo, y que, por ende, los fenómenos inexplicados preocupan a los científicos al amenazar la hegemonía de su visión del mundo. El técnico en bata del laboratorio, en la película de bajo presupuesto, se da una palmada en la frente cuando se encuentra con algo nuevo, y exclama con voz entrecortada: “¡Pero…no hay explicación para esto!” En realidad, por supuesto, cada científico digno se apresura a abordar lo inexplicado, pues es lo que hace avanzar la ciencia. Son los grandes sistemas místicos de pensamiento, envueltos en terminologías demasiado vagas para ser erróneas, los que explican todo, raramente se equivocan y no crecen.

           Los grandes pensadores como Aristarco de Samos que tenían ideas certeras sobre el mundo. Él les dijo a los pensadores de su pueblo que el Sistema solar estaba regido por el Sol rodeado por los planetas. Nadie, en aquellos tiempos, le prestó atención y la idea quedó dormida hasta que, unos siglos más tarde, llegó Copérnico y se la apropió.

La ciencia es intrínsecamente abierta y exploratoria, y comete errores todos los días. En verdad, éste será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorema de Gödel demuestra que la plena validez de cualquier sistema, inclusive un sistema científico, no puede demostrarse dentro del sistema. En otras palabras, la comprensibilidad de una teoría no puede establecerse a menos que haya algo fuera de su marco con lo cual someterla a prueba, algo más allá del límite definido por una ecuación termodinámica, o por la anulación de la función de onda cuántica o por cualquier otra teoría o ley. Y si hay tal marco de referencia más amplio, entonces la teoría, por definición, no lo explica todo. En resumen, no hay ni habrá nunca una descripción científica completa y comprensiva del universo cuya validez pueda demostrarse.

El Creador (si en verdad existe un “creador”) debe haber sido afecto a la incertidumbre, pues Él nos la ha legado para siempre. La cual, diría yo, es una conclusión saludable y debe de alegrarnos. Mirar esa imposibilidad de saberlo todo, esa incertidumbre cierta que llevamos con nosotros y que nos hace avanzar a la búsqueda incansable de nuevos conocimientos, es, en realidad, la fuente de la energía que nos mueve.

                               Busto de Alejandro Magno

 Podemos recordar aquí lo que cuentan de Alejandro Magno: Él lloró cuando le dijeron que había infinitos mundos (“¡Y nosotros no hemos conquistado ni siquiera uno!”), pero la situación parece más optimista a quienes se inclinan a desatar, no a cortar, el nudo gordiano de la Naturaleza. Ningún hombre o mujer, realmente reflexivos, deberían desear saberlo todo, pues cuando el conocimiento y el análisis son completos, el pensamiento se detiene y llega la decadencia.

René Magritte, en 1926, pintó un cuadro de una pipa y escribió debajo de él sobre la tela, con una cuidadosa letra de escolar, las palabras: “Ceci nést pas une pipe” (Esto no es una pipa). Esta pintura podría convertirse apropiadamente en el emblema de la Cosmología científica. La palabra “universo” no es el universo; ni lo son las ecuaciones de la teoría de la supersimetría, ni la ley de Hubble ni la métrica de Friedman-Walker-Robinson. Generalmente, la ciencia tampoco sirve de mucho para explicar lo que es algo, y mucho menos lo que el Universo entero, realmente “es”. La Ciencia describe y predice sucesos.

http://lamemoriacelular.com/blog/wp-content/uploads/2010/04/celula.png

¿Cuantos secretos se esconden en ese laberinto de conexiones sin fin?

Si la Ciencia tuviera que tener un símbolo, yo escogería éste de arriba que nos señala el lugar donde habita la Mente, dónde se fraguan las ideas. Una configuración de átomos de energía donde residen todos los secretos del Universo, toda vez que, la podríamos considerar la obra suprema del Universo

Resultado de imagen de La Mente humana y el vasto Universo

       Indisolublemente unidad

¿Por qué, pués, la ciencia tiene éxito? La respuesta es que nadie lo sabe. Es un completo misterio -por qué la mente humana…, puede comprender algo del vasto universo-. Como solía decir Einstein: “Lo más incomprensible del universo es que sea comprensible”. Quizá como nuestro cerebro evolucionó mediante la accion de las leyes naturales, éstas resuenan de algún modo en él. La Naturaleza presenta una serie de repeticiones  -pautas de conducta que reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de la conservación, que se aplican de modo universal- y éstas pueden proporcional el vínculo entre lo que ocurre dentro y fuera del cráneo humano. Pero el misterio, realmente, no es que coincidamos con el universo, sino que en cierta medida estamos en conflicto con él, y sin embargo podemos comprender algo de él. ¿Por qué esto es así?

Habrá que seguir buscando respuestas. Desde tiempos inmemoriales, el hombre pregunta a las estrellas si el Universo es eterno e infinito y el cielo le responde cada noche. Pero, ¿sabemos oir la respuesta?

¡Es todo tan complejo! ¡Es todo tan hermoso!

emilio silvera