Mar
5
Es sorprendente, como funciona la Naturaleza
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (2)
+
En cualquier galaxia pueden existir más de cien mil millones de estrellas
El Universo (al menos el nuestro), nos ofrece algo más, mucho más que grandes espacios vacíos, oscuros y fríos. En él podemos ver muchos lugares luminosos llenos de estrellas, de mundos y… muy probablemente de vida. Sin embargo, tenemos la sospecha de que, aparte del nuestro, otros universos podrían rondar por ahí y conformar un todo de múltiples Universos de caracterísiticas diversas y no en todos, serían posible la formación de estrellas y como consecuencia de la Vida.
Cuando me sumerjo en los misterios y maravillas que encierra el Universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, la sorprendente presencia de formas de vida y su variedad, y, sobre todo, que esa materia animada pudiera llegar hasta la consciencia, emitir ideas y pensamientos.
¿Qué “escalera” habrá que subir para llegar a ese otro universo?
Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, hacemos conjeturas y comparaciones con otros que podrìan ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimensiones espacio-temporales, no contamos con las condiciones físico-tecnológicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado mucho más allá de nuestro alcance. Sin embargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para construir esa tecnología futurista que nos llevaría a esos otros horizontes.
¿Quién sabe lo que en otros mundos podremos encontrar?
¡Oh mundo de muchos mundos!
¡Oh vida de vidas!
¿Cuál es tu centro?
¿Dónde estamos nosotros?
¿Habrá algo más de lo que vemos?
¿Debemos prestar atención a las voces que oímos en nuestras mentes?
¿Cómo pudimos llegar a saber de lo muy pequeño y de lo muy grande?
Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.
De los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3.
Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.
Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1.909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerisimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.
El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original.
De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.
Si la estrella tiene la masa del Sol “muere” para convertirse en una nebulosa planetaria y en una enana blanca. Si la estrella que agota su combustible nuclear de fusión es más masiva en varias masas solares, el resultado es el de una Estrella de Neutrones, y, si es súper-masiva, será un agujero negro su destino final.
El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas. Hay estrellas que se componen casi por entero de tales átomos destrozados. La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.
Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.
Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en carbono, el carbono en oxígeno, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.
Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.
Nuestro Sol es la estrella más estudiada en nuestro mundo
La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad! Sin embargo, en el contexto del Universo eso no supone nada si pensamos en su inmensidad. Si eso es así (que lo es), ¿qué somos nosotros comparados con toda esa grandeza? Bueno, si dejamos aparte el tamaño, creo que somos la parte del universo que piensa, o, al menos, una de las partes que puede hacerlo.
Ahí se producen las transiciones de fase que transmutan la materia sencilla en la compleja
Objetos como estos pueblan el universo, e incluso más sorprendentes todavía, como es el caso de los agujeros negros explicado en páginas anteriores de este mismo trabajo. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos.
Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 4.654.600.000 toneladas de hidrógeno en 4.650.000.000 toneladas de helio (las 4.600 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de esta energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).
Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.
En resumen, la masa del Sol supone el 99,9 % de toda la masa del Sistema solar.
Para completar datos diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado -, el Sol es hidrógeno en un 80 por ciento.
Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654.000 toneladas por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más.
Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás. Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.
Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que ahora. El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo.
A medida que el Sol siga radiando, irá adquiriendo una masa cada vez mayor ese núcleo de helio y la temperatura en el centro aumentará. En última instancia, la temperatura sube lo suficiente como para transformar los átomos de helio en átomos más complicados. Hasta entonces el Sol radiará más o menos como ahora, pero una vez que comience la fusión del helio, empezará a expandirse y a convertirse poco a poco en una gigante roja. El calor se hará insoportable en la Tierra, los océanos se evaporarán y el planeta dejará de albergar vida en la forma que la conocemos.
La esfera del Sol, antes de explotar para convertirse en una enana blanca, aumentará engullendo a Mercurio y a Venus y quedará cerca del planeta Tierra, que para entonces será un planeta yermo.
Los astrónomos estiman que el Sol entrará en esta nueva fase en unos 5 ó 6 mil millones de años. Así que el tiempo que nos queda por delante es como para no alarmarse todavía. Sin embargo, el no pensar en ello… no parece conveniente.
Espero que al lector de este trabajo, encargado por la Asociación Cultural “Amigos de la Física 137, e/hc”, les esté entreteniendo y sobre todo interesando los temas que aquí hemos tratado, siempre con las miras puestas en difundir el conocimiento científico de temas de la naturaleza como la astronomía y la física. Tratamos de elegir temas de interés y aquellos que han llamado la atención del público en general, explicándolos y respondiendo a preguntas que seguramente les gustaría conocer, tales como: ¿por qué la Luna muestra siempre la misma cara hacia la Tierra?
La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira hacia la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra.
Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.
Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).
La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.
Luna roja sobre el Templo de Poseidon
Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación. Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.
Siempre nos muestra la misma cara
Esto, a su vez, congela los abultamientos en una aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento. La Luna es un caso relativamente simple. En ciertas condiciones, el rozamiento debido a las mareas puede dar lugar a condiciones de estabilidad más complicadas.
Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercan al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.
Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? ¿Hay algo más excitante que el descubrir y saber?
emilio silvera
Mar
4
2019 es el Año Internacionalo de la Tabla Periódica
por Emilio Silvera ~ Clasificado en Alquimia ~ Comments (0)
Un siglo y medio de la tabla periódica que reunió a todos los elementos
En 1869 el químico ruso Dimitri Mendeléiev presentó su sistema de ordenación de los elementos que, con el paso del tiempo, se ha convertido en un icono de la ciencia y la cultura. Para conmemorar su siglo y medio de vida, Naciones Unidas ha declarado 2019 como el Año Internacional de la Tabla Periódica, con un programa repleto de actividades en el que participan activamente los químicos españoles.
- Fuente: SINC y más información en…
- tabla periódica
- elementos químicos
- Mendeléiev
La tabla periódica más grande del mundo está en la fachada de la Facultad de Química de la Universidad de Murcia. / UM
Los elementos de la naturaleza se han agrupado de diversas formas a lo largo de la historia, pero fue hace 150 años cuando el ruso Dimitri Ivánovich Mendeléiev (Tobolsk, 1834 – San Petersburgo, 1907) presentó una tabla periódica para reunirlos a todos, incluso a los que estaban por descubrir. Con las aportaciones de otros científicos esta tabla se ha convertido en el colorido corazón de la química que conocemos hoy.
¿Qué es un elemento químico?
Elementos químicos que se fusionan en las estrellas. Otros se crean en explosiones supernovas, y, los artificiales, los que están más alla del Uranio, se crean en laboratorios. Se llaman Transuranidos.
Es la parte de la materia constituida por átomos de la misma clase y que no puede ser descompuesta en otras más simples mediante una reacción química. Cualquier ser, vivo o inerte, está constituido por elementos químicos. Por ejemplo, en un teléfono móvil se pueden encontrar alrededor de 30 distintos, y en el cuerpo humano casi el doble: 59 elementos.
Hasta ahora se han descubierto y confirmado 118 elementos químicos. Los cuatros últimos son nihonio, moscovio, teneso y oganesón. Grandes laboratorios de Japón, Rusia, EE UU y Alemania compiten por ser los primeros en obtener los siguientes: el 119 y el 120.
¿Qué es la tabla periódica?
Es una tabla donde todos los elementos se ordenan por su número atómico (número de protones), una disposición que muestra tendencias periódicas y reúne a aquellos con un comportamiento similar en una misma columna o grupo. Se trata de una herramienta única, que permite a los científicos predecir la apariencia y las propiedades de la materia en la Tierra y el resto del universo. Más allá de su papel crucial en química, la tabla periódica trasciende a otras disciplinas, como la física y la biología, y se ha convertido en un icono de la ciencia y de la cultura universales.
¿Cómo se hizo?
A mediados del siglo XIX ya se conocían 63 elementos, pero los químicos no se ponían de acuerdo sobre la terminología y cómo ordenarlos. Para resolver estas cuestiones se organizó en 1860 el primer Congreso Internacional de Químicos en Karlsruhe (Alemania), una reunión que resultaría trascendental.
Allí el italiano Stanislao Cannizzaro estableció de forma clara el concepto de peso atómico (masa atómica relativa de un elemento), en el que se inspirarían tres jóvenes participantes en el congreso (William Odling, Julius Lothar Meyer y Dimitri Ivánovich Mendeléiev) para crear las primeras tablas.
La de Mendeléiev fue la más rompedora al hacer predicciones y dejar huecos de elementos que se descubrirían después, como el galio (1875), el escandio (1879), el germanio (1887) y el tecnecio (1937). Para algunos autores, la versión definitiva de la tabla se consiguió gracias a la ley periódica que presentó el británico Henry Moseley a comienzos del siglo XX.
Tabla periódica original y su autor, Mendeléiev. / Archivo/Wiki
¿Cuándo completa Mendeléiev su tabla?
La fecha oficial –tomada como referencia para el aniversario de este año– es el 1 de marzo de 1869 según el calendario gregoriano, porque según el calendario juliano utilizado en Rusia en aquella época sería el 17 de febrero, como aparece en su documento titulado La experiencia de un sistema de elementos basados en su peso atómico y similaridad química.
Cuenta la leyenda que la idea del sistema periódico de los elementos le vino aquel día a Mendeléiev durante un sueño, pero el químico ruso replicó una vez: “Llevo pensando en esto desde hace 20 años, aunque creas que estaba sentado y de repente… ya está”.
¿Quién promueve la celebración del Año Internacional de la Tabla Periódica?
150 años de la tabla periódica
La Asamblea General de Naciones Unidas es la que ha proclamado 2019 como Año Internacional de la Tabla Periódica de los Elementos Químicos (IYPT2019), gestionado y promovido a través de la UNESCO. En su sede de París se celebrará la ceremonia de apertura el próximo 29 de enero.
Entre los ponentes estará el químico británico Sir Martyn Poliakoff, muy popular por sus vídeos en Youtube y el que propuso inicialmente organizar el IYPT2019 a la profesora rusa Natalia Tarásova, mientras fue presidenta de la Unión Internacional de Química Pura y Aplicada (IUPAC) en 2016.
La IUPAC, que también celebra en 2019 su propio centenario, es otra de las organizaciones que apoya esta iniciativa. Es la autoridad mundial en nomenclatura química, la encargada de denominar los nuevos elementos de la tabla periódica de forma oficial.
Otras asociaciones que promueven el IYPT2019 son la Unión Internacional de Física Pura y Aplicada (IUPAP), la Sociedad Europea de Química (EuChemS), el Consejo Internacional para la Ciencia (ICSU), la Unión Astronómica Internacional (IAU) y la Unión Internacional de Historia y Filosofía de la Ciencia y la Tecnología (IUHPS).
¿Qué actividades se desarrollarán en España?
Ya se han celebrado algunas previas, como la VII Escuela de verano dedicada a este tema en la Universidad de la Rioja y la conferencia Mitología y arte en la tabla periódica de los elementos químicos impartida en la Residencia de Estudiantes, pero son numerosas las previstas para 2019.
El sello de Correos destaca los tres elementos químicos descubiertos por españoles.
Se pueden consultar en la sección de eventos de la Real Sociedad Española de Química y, junto a las de otros países, en la web del IYPT2019. Entre las actividades figuran el Simposio Internacional sobre la Mujer y la Tabla Periódica organizado en la Universidad de Murcia en febrero, diversas conferencias y cine-forum en la Universidad de Jaén y el concurso Apadrina un elemento dirigido a estudiantes de Bachillerato, ciclos formativos de FP grado medio y de 2º ciclo de ESO.
Además, este año Correos emite el 9 de enero un sello conmemorativo destacando los elementos descubiertos por investigadores españoles; y los décimos del sorteo de la Lotería Nacional del 2 de marzo tendrán como imagen protagonista la fachada de la Facultad de Química de la Universidad de Murcia, donde se encuentra la tabla periódica más grande del mundo.
¿Cuántos elementos han descubierto los científicos españoles?
Tres, o dos y medio: el platino (Pt), el wolframio (W) y, a medias según algunos autores, el vanadio (V). El naturalista y militar Antonio de Ulloa y de la Torre Giral descubrió el platino en América, en la región de Esmeraldas (entre Colombia y Ecuador), un preciado elemento que describió en 1748.
Medio siglo después se dio a conocer el wolframio, el único elemento aislado en España, un logro alcanzado en 1783 por los hermanos Juan José y Fausto Delhuyar en el Real Seminario Patriótico Bascongado de Bergara (Guipúzcoa).
Finalmente, en 1801 el científico hispano-mexicano Andrés Manuel del Río Fernández encontró el elemento 23 (el que tiene ese número atómico en la tabla periódica) en una mina de plomo mexicana. Lo llamó eritronio (entre otros nombres) por tornarse rojizo al calentarse y entregó unas muestras a su amigo Alexander von Humboldt para que las analizara el químico francés Hippolytte Victor Collet-Descotils. Este, equivocadamente, le respondió que era un compuesto de cromo, así que pensó que su descubrimiento era erróneo.
Tres décadas más tarde, en 1830, el químico sueco Nils Gabriel Sefström redescubrió el colorido elemento y lo denominó vanadio en honor a la diosa de la belleza Vanadis de la mitología escandinava. Al año siguiente, su colega alemán Friedrich Wöhler confirmó que se trataba del mismo elemento que ya había encontrado Del Río.
Antonio de Ulloa, los hermanos Juan José y Fausto Delhuyar, y Andrés Manuel del Rio. / Fotos: Andrés Cortés y Aguilar/Correos/Anónimo
¿Alguna mujer ha descubierto un elemento químico?
Más de una. La más conocida es Marie Curie, científica polaca nacionalizada francesa que recibió un premio Nobel en 1903 (de Física) y otro en 1911 (de Química) por el descubrimiento del polonio (Po) y el radio (Ra), pero hay más.
Las físicas austriacas Berta Karlik y Lise Meitner descubrieron, respectivamente y en colaboración con otros investigadores, el astato (At) y un isótopo del protactinio (Pa).
Por su parte, la química y física alemana Ida Noddack identificó el renio (Re) y la química francesa Marguerite Perey descubrió el francio (Fr). Algunas de las actividades del Año Internacional de la Tabla Periódica recordarán las aportaciones y el ejemplo que dieron estas científicas.
Marie Curie, Berta Karlik, Lise Meitner, Ida Noddack y Marguerite Pere. / Créditos fotos: Tekniska museet/© Archiv der ÖAW/Smithsonian Institution/Dome_de/© Gobonobo
Información elaborada con la colaboración de Pascual Román, catedrático de Química Inorgánica en la Universidad del País Vasco (UPV/EHU); Inés Pellón, profesora de Química en la Escuela de Ingeniería de Bilbao de la UPV/EHU; y Bernardo Herradón, investigador del Instituto de Química Orgánica General del CSIC. Los tres son miembros de la Real Sociedad Española de Química (RSEQ), que participa activamente en Año Internacional de la Tabla Periódica.
Un gran logro de la Humanidad.
Mar
4
Más allá del Modelo Estándar
por Emilio Silvera ~ Clasificado en Mecánica cuántica ~ Comments (0)
T. Kaluza
Las dimensiones mas altas fueron introducidas en una teoría unificada por primera vez en 1919, en Alemania, por Theodor Kaluza. Kaluza le escribió a Einstein sugiriéndole que su sueño de hallar una teoría unificada de la gravitación y el electromagnetismo podía realizarse si elaboraba sus ecuaciones en un espaciotiempo de cinco dimensiones. Einstein al principio se burlo de la idea, mas tarde, pensando y estudiando la sugerencia con mas frialdad y examen mas profundo, lo reconsideró y ayudo a Kaluza a que pudiera publicar su articulo.
Oskar Klein
Pocos años mas tarde, el físico sueco Oskar Klein publico una version del de Kaluza que lo mejoraba dejando un diseño matemático mas fino, de mas calidad y que explicaba de manera mas contundente lo que la teoría quería significar al elevar la teoría a cinco dimensiones y lograr unificar la gravedad con el magnetismo. Desde entonces, la teoría es conocida como de Kaluza-Klein y, aunque parecía muy interesante, en realidad nadie sabia que con ella hasta los años setenta, cuando resulto beneficioso trabajar en la supersimetria.
Pronto Kaluza-Klein estuvo en los labios de todo el mundo (los físicos mas destacados del hablaron de esa teoría). Aunque la teoría de cuerdas en particular y la supersimetría en general apelaban a mas dimensiones, las cuerdas tenían un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la teoría de cuerdas solo seria eficaz en, diez, once y veintiséis dimensiones, y solo invocaba dos posibles grupos de simetría: SO(32) o E8 x E8. Cuando una teoría apunta algo tan tajantemente, los científicos prestan atención, y a finales de los años ochenta había muchos físicos que trabajaban en “las cuerdas”.
El Modelo estándar se nos quedó pequeño, iremos más lejos
La cuerda es cuántica y gravitatoria, de sus entrañas surge, por arte de magia, la partícula mensajera de la fuerza de gravedad: el gravitón. Funde de natural las dos teorías físicas más poderosas de que disponemos, la mecánica cuántica y la relatividad general, y se convierte en supercuerda -con mayores grados de libertad- es capaz de describir bosones y fermiones, partículas de fuerza y de materia. La simple vibración de una cuerda infinitesimal podría unificar todas la fuerzas y partículas fundamentales.
Parece que todo está hecho de cuerdas, incluso el espacio y el tiempo podrían emerger de las relaciones, más o menos complejas, cuerdas vibrantes. La materia-materia, que tocamos y nos parece tan sólida y compacta, ya sabíamos que está conformada por grandes espacios vacíos, pero no imaginábamos que era tan sutil como una cuerda de energía vibrando. Los átomos, las galaxias, los agujeros negros, todo son marañas de cuerdas y supercuerdas vibrando en diez u once dimensiones espaciotemporales.
Lo cierto es que, andamos un poco perdidos y no pocos físicos (no sabemos si de forma interesada), insisten una y otra vez, en cuestiones que parecen no llevar a ninguna parte y que, según las imposibilidades que nos presentan esos caminos, ¿no sería conveniente elegir otros derroteros para indagar nuevas físicas mientras tanto?, para dejar que avanzasen las tecnologías, se adquieran más potentes y nuevas formas de energías que nos puedan permitir llegar a sondear las cuerdas y poder vislumbrar si es cierto, que puedan existir esas cuerdas vibrantes que, con sus resonancias crean las partículas y la materia.
Nos queda mucho poder oír las vibraciones de esas “cuerdas” que la física trata de encontrar, y, mientras tanto, oiremos vibrar esas otras que nos ofrece el violín en las manos expertos del músico con experiencia. Mientras tanto, esas otras cuerdas cuya existencia intuimos y soñamos, si es cierto que están ahí, seguirán silenciosas vibrando y creando materia a partir de esa ínfima sustancia que no hemos podido observar… ¡por el momento!
Quedaba mucho y duro trabajo por hacer, pero las perspectivas eran brillantes. y, de entre todos ellos, los mas destacados fueron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten. Ellos fueron los artífices de un gran periodo de aventura intelectual que desembocó en la más moderna versión de la teoría de cuerdas que elaboro E. Witten con el de Teoría M. Esta teoría de más altas dimensiones nos ha llevado a una enorme profundidad matemática en el campo de la topología y, desde luego, ha dejado un panorama muy optimista en el horizonte.
Tal optimismo, luego, podría ser equivocado, ya que, de momento, solo contamos con el aparato teórico de la teoría y su verificación experimental se nos escapa al requerir disponer de la energía de Planck de 1019 GeV para comprobarla y, de momento, dicha energía fuera del alcance humano.
nadie las ha podido ver, las imaginamos de mil maneras y, de las dimensiones extra nos imaginamos modelos que quieren (pero no pueden) significar esas dimensiones que no podemos contemplar en el Universo
Einstein, como todos sabeis, dedico buena de la segunda mitad de su vida a intentar hallar una teoría de campo unificada de la gravitación y el electromagnetismo, con expectativas populares tan altas que las ecuaciones de su labor en marcha eran expuestas en escaparates a lo largo de la Quinta Avenida de Nueva York, donde eran escudriñadas por multitud de curiosos que no las entendían. En aquel tiempo, Einstein desconocía que las matemáticas precisas desarrollar una teoria asi, aun no existían. De ahi su fracaso en el intento. Él paradógicamente, había ignorado los principios cuánticos, a pesar de haber sido uno de los padres de la teoría.
, retomemos las cuerdas. Los críticos del concepto de supercuerda señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoría no había siquiera repetido los logros del Modelo Estándar, ni había hecho ni una sola predicción que pudiera someterse a prueba mediante experimentos. Una teoría así, más que teoría era una gran conjetura a la que le quedaba mucho camino por andar.
Hemos podido ver otras muchas cosas …, ni fotinos ni selectrones han aparecido nunca
puedo admirar la imagen de un púlsar o un magnetar, me siento transportado a regiones lejanas del espacio en las que, ese magnetar o magnetoestrella (que es una estrella de neutrones alimentada con un campo magnético extremadamente fuerte y, simplemente se trata de una variedad de púlsar cuya característica principal es la expulsión, en un breve período -equivalente a la duración de un relámpago-, de enormes cantidades de alta energía en de rayos X y rayos gamma. ), ha surgido a partir de una estrella masiva y se ha conformado un extraño objeto exótico que nos produce sorpresa y admiración al ver como, a partir de una cosa totalmente diferente, por medio de transiciones de fase de diversa índole, se llega a formar otro objeto totalmente distinto del que fue.
“Mucha gente opina que si la supersimetría no se observa en el LHC del CERN, el modelo estándar se convertirá en una teoría aburrida y con pocas sorpresas. Todo lo contrario, hay muchos problemas en el modelo estándar para los que la supersimetría no aporta ninguna solución. La física de precisión de baja energía, que ya dio la sorpresa al descubrir que los neutrinos tienen masa en reposo, es un portal que permitirá acceder a física más allá del modelo estándar fuera del alcance de los grandes aceleradores de partículas. Parafraseando a Feynman “There’s Plenty of Room at the Bottom.”
La supersimetría ordenaba que el Universo debía contener familias enteras dee nuevas partículas, entre ellas “selectrones” (equivalente supersimétrico del electrón) y “fotinos” (equivalentes del fotón), pero no especificaba las masas hipotéticas de tales partículas. La ausencia de pruebas aducidas en búsquedas preliminares de partículas supersimétricas, como las realizadas en el acelerador PEP de Stanford y el PETRA de Hamburgo, por lo tanto no probaban nada; siempre se podia imaginar que las partículas eran demasiado masivas para ser producidas en esas maquinas y habría que esperar a otras mas adelantadas del futuro que, como el LHC, nos pueda sacar a la luz, algunas de esas partículas supersimétricas que confirmarían la teoría.
¡Fotinos y selectrones! ¿Dónde? El LHC con sus 14 TeV ha llegado (según nos cuentan) al Bosón de Higgs pero… ¡cuerdas!
Cuando Edgar Witten expuso ante la Comunidad Científica su Teoría M, algunos escucharon extasiados sus explicaciones, otros no podían comprender lo que estaba diciendo pero, todos, sin excepción comprendieron que se había estrado en otro capítulo de la física que habría que verificar.
La Teoria M que antes mencionaba, es una version mas adelantada, en 11 dimensiones, nos ha dejado un cuadro que ilusiona y, luego, si finalmente se puede verificar lo que predice, estaríamos ante una teoría cuántica de la gravedad y, desde luego, nos explicaría el Universo como nunca antes se pudo hacer. Claro que, nosotros, pobres mortales e ignorantes, nos seguimos haciendo las mismas preguntas:
¿Donde, pues, hemos de buscar ese universo hiperdimensional de la simetría perfecta? El mundo en el que vivimos esta lleno de simetrías rotas, y solo tiene cuatro dimensiones. La respuesta llega de la Cosmología, la cual nos dice que el universo supersimétrico, si existió, pertenece al pasado. La implicación de esto es que el universo empezó en un de perfección simétrica, del que evoluciono al universo menos simétrico en el que vivimos. Si es así, la búsqueda de la simetría perfecta es la búsqueda del secreto del origen del universo, y la atención de sus acólitos puede, volverse con buenas razones, como las caras de las flores al alba, hacia la blanca luz de la génesis cósmica.
¡Nos queda tanto por saber!
emilio silvera
Mar
4
¿Lo que pasó? ¿Lo que pasará? o, simple imaginación
por Emilio Silvera ~ Clasificado en Lo que creemos que sabemos ~ Comments (0)
¿Cómo podríamos resolver la estructura del Universo?
“Imaginaos ahora este instante en que los murmullos se arrastran discretamente y las espesas tinieblas llenan el navío del Universo.”
Esas palabras de Chakesperare en Enrique V (acto IV, esc. 1), nos podría valer ahora a nosotros para estrapolarlas a este tiempo y haciendo un ejercicio de imaginación, convertir esas tinieblas en la “materia oscura”, esa clase de materia que postulan los cosmólogos, que no podemos ver, que no emite radiación, que no sabemos de qué está hecha y, en realidad, tampoco sabemos donde está (sólo lo suponemos) pero, nos soluciona, de un plumazo, todos los problemas de la estructura del Universo. Esa clase de materia “transparente” que sí emite la fuerza gravitatoria podría explicar el ritmo a grandes escalas que hemos podido observar en el comportamiento de nuestro universo y que antes de la llegada de la “materia oscura”, no sabíamos, a qué era debido… “¡ahora sí lo sabemos!”. Bueno, al menos, eso dicen algunos pero, lo tienen que demostrar.
Sitios como este, en nuestro planeta, los tenemos en multitud de lugares
No pocas veces me encuentro mirando al cielo nocturno estrellado desde la orilla del Atlántico cuya superficie brilla con millones de luces titilando al reflejar el resplendor de la Luna, la inmensidad del océano que se pierde en el horizonte y, la infinitud del firmamento me podrían hacer sentir insignificante. Sin embargo, no es así como lo siento. He dicho alguna vez que todo lo grande está hecho de cosas pequeñas, y, esa afirmación, nos dá la respuesta. Formamos parte de algo muy grande: El Universo.
Estamos en un punto, o en un nivel de sabiduría aceptable pero insuficiente, es mucho el camino que nos queda por recorrer y, como dijo el sabio, la energía necesaria para explorar la décima dimensión es mil millones de veces mayor que la energía que puede producirse en nuestros mayores colisionadores de átomos. La empresa resulta difícil para seres que, como nosotros, apenas tenemos medios seguros para escapar del débil campo gravitatorio del planeta Tierra.
Nada puede surgir de la “nada”, si surgió, es porque había
Energías del tal calibre, que sepamos, solo han estado disponibles en el instante de la creación del Universo, en su nacimiento, en eso que llamamos Big Bang. Solamente allí estuvo presente la energía del Hiperespacio de diez dimensiones y, por eso se suele decir que, cuando se logre la teoría de cuerdas sabremos y podremos desvelar el secreto del origen del Universo.
A los físicos teóricos siempre les resultó provechoso introducir dimensiones más altas para fisgar libremente en secretos celosamente escondidos.
Según esa nueva teoría, antes del Big Bang nuestro cosmos era realmente un universo perfecto de diez dimensiones, decadimensional, un mundo en el que el viaje interdimensional era posible. Sin embargo, ese mundo decadimensional era inestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro y otro universo de seis dimensiones.
El Universo en el que vivimos nació en ese cataclismo cósmico. Nuestro Universo tetradimensional se expandió de forma explosiva, mientras que nuestro universo gemelo hexadimensional se contrajo violentamente hasta que se redujo a un tamaño casi infinitesimal.
Surgió la sustancia cósmica de la que, miles de millones de años más tarde, nacería la consciencia
Eso podría explicar el origen del Big Bang, y, si la teoría es correcta, demuestra que la rápida expansión del Universo fue simple consecuencia de un cataclismo cósmico mucho mayor, la ruptura de los propios espacio y tiempo. La energía que impulsa la expansión observada del Universo se halla entonces en el colapso del espacio-tiempo de diez dimensiones. Según la teoría, las estrellas y las Galaxias distantes están alejándose de nosotras a velocidades astronómicas debido al colapso original del espacio y el tiempo de diez dimensiones.
Esta teoría predice que nuestro Universo sigue teniendo un gemelo enano, un universo compañero que se ha enrollado en una pequeña bola de seis dimensiones (en la escala de Planck) muy pequeña para ser observada.
Ese Universo decadimensional, lejos de ser un apéndice inútil de nuestro mundo, podría ser en última instancia, nuestra salvación. Claro que, si las galaxias siguen alejándose las unas de las otras, será la muerte térmica del universo, y, en ese escenario, ni los átomos tendrán movimiento alguno.
Todo quedará quieto, congelado en los -273 ºC
Para el cosmólogo, la única certeza es que el Universo morirá un día. Algunos creen que la muerte final del Universo llegará en la forma del big crunch. La gravitación invertirá la expansión cósmica generada por el big bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial. A medida que las estrellas se contraen, las temperaturas aumentan espectacularmente hasta que toda la materia y la energía del universo están concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del Universo tal como lo conocemos.
Si realmente eso llega, será el final del Universo, ya que, a esa temperatura de -273,15 ºC, ni los átomos se pueden mover, todo quedaría paralizado pero, yo me pregunto que es lo que pasaría entonces con la expansión del Espacio, y, si nada se mueve, el Tiempo también “morirá”.
Todas las formas de vida serán borradas de la faz de los mundo que las pudieran contener: evaporadas por las enormes temperaturas o aplastadas, ¡qué más dá! No habrá escape. Y, sabiendo lo que ahora sabemos, conociendo la historia del universo mismo que, durante miles de millones de años ha estado fabricando materiales en las estrellas para que los seres vivos conscientes pudieran venir, ¿cómo imaginar un final así? ¿Para qué tánto trabajo y tanto tiempo perdido? Seguramente, para cuando eso puede ir llegando, si es que la inteligencia sigue aquí, habrá buscado ya la manera de escapar a tal desastre y, las especies inteligentes se salvarán saltanto a otros universos, o, incluso, ¿por qué no? viajando hacia atrás en el Tiempo, hacia otras épocas de tiempos más benignas para tener otros miles de millones de años por delante y hacer las cosas, de manera diferente. ¡Una segunda oportunidad!
Bertrand Russell
Científicos y filósofos, como Charles Darwin y Bertrand Russell, han escrito lamentándose de la futilidad de nuestras míseras existencias, sabiendo que nuestra civilización morirá inexorablemente cuando llegue el fin de nuestro mundo. Las leyes de la física, aparentemente, llevan la garantía de una muerte final e irrevocable para todas las formas de vida, inteligente o no, del Universo.
Yo, como Gerald Feinberg, físico de la Universidad de Columbia (ya desaparecido), creo que sí puede haber, quizá sólo una esperanza de evitar la calamidad final. Ese atisbo de esperanza está en nosotros mismos, es decir, si somos capaces de no destruirnos antes, si procuramos comprender los mensajes que el universo nos envía continuamente, si desvelamos secretos de la Naturaleza que nos posibilitarán para hacer cosas, ahora inimaginables, entonces y solo entonces, habrá alguna esperanza.
Poder escapar a universos conexos que, como el nuestro, nos de cobijo
Gerald Feinberg especuló que la vida inteligente, llegando a dominar los misterios del espacio de más dimensiones (para lo que contaba con un poderoso aliado, el Tiempo de miles de millones de años), sabría utilizar las dimensiones extras para escapar de la catástrofe del Big Crunch. En los momentos finales del colapso de nuestro Universo, el Universo hermano se abriría de nuevo y el viaje interdimensional se haría posible mediante un túnel en el Hiperespacio hacia un Universo alternativo, evitando así la pérdida irreparable de la inteligencia de la que somos portadores.
Si algo así es posible, entonces, desde su santuario en el espacio de más dimensiones, la Humanidad, podría ser testigo de la muerte del Universo que la vio nacer y florecer.
Son muchas las cosas que no sabemos
Aunque la teoría de campos demuestra que la energía necesaria para crear estas maravillosas distorsiones del espacio y el tiempo está mucho más allá de cualquier cosa que pueda imaginar la civilización moderna, esto nos plantea dos cuestiones importantes:
¿cuánto tardaría nuestra civilización, que está creciendo exponencialmente en conocimiento y poder, en alcanzar el punto de dominar la teoría de hiperespacio?
¿Y qué sucede con otras formas de vida inteligente en el Universo, que puedan haber alcanzado ya este punto?
Lo que hace interesante esa discusión es que científicos serios han tratado de cuantificar el progreso de la civilización en un futuro lejano, cuando los viajes por el espacio sean una rutina en los sistemas estelares o incluso las galaxias vecinas hayan sido colonizadas. Aunque la escala de energía necesaria para manipular el Hiperespacio es astronómicamente grande, estos científicos señalan que el crecimiento del conocimiento científico aumentara, sin ninguna duda, de forma exponencial durante los siglos y milenios próximos, superando las capacidades de las mentes humanas para captarlo (como ocurre ahora con la teoría M, parada en seco, esperando que alguien vea las matemáticas necesarias para continuar su desarrollo).
En la celebración mundial del Año Internacional de la Astronomía, pude prestar mi modesta colaboración y, en aquellos días conocí a grandes astrónomos con los que pude intercambiar algunas ideas y, por aquellos días, pude aprender muchas cosas.
Somos conscientes de que el Tiempo inexorable sigue su implacable caminar y la Entropía, que sabe hacer bien su trabajo, lo transforma todo, lo que ayer era una cosa, hoy se ha convertido en otra distinsta, irreconocible, y, sin embargo, ese deterioro natural no es algo perdido, sino que, por el contrario, hasta que llega ese final, se hizo un trabajo que dará sus frutos en la mente de otros seres, en las cosas mismas que, transformadas, servirán y tendrán cometidos nuevos. Nada se pierde y todo tiene su por qué. La Naturaleza no hace nada porque sí, todo está programado y tiene un fin. Y, si eso es así (que los es), ¿que nos deparará el destino a nosotros? Habiendo llegado al nivel de cpomprensión alcanzado, no creo que el final sea el de la desaparición sin más, algo más debe estar oculto en los designios de la Naturaleza que no llegamos a comprender.
Cada 10/15 años el conocimiento científico se doblará, crecerá el cien por ciento, así que, el avance superará todas las previsiones. Tecnologías que hoy solo son un sueño (la energía de fusión o en robótica, los cerebros positrónicos), serán realidad en un tiempo muy corto en el futuro. Quizá entonces podamos discutir con cierto sentido la cuestión de si podremos o no ser señores del Hiperespacio.
Viaje en el tiempo. Universos paralelos. Ventana dimensional.
¡Sueños! Claro que, si echamos una atenta mirada a la Historia veremos que, muchos sueños se hicieron realidad.
emilio silvera
Mar
3
La vida de las partículas y otras curiosidades
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (2)
Nuevos mundos terrestres y marinos, riquezas de continentes remotos, relatos de viajeros aventureros que contaban sobre extrañas criaturas, pueblos de costumbres exóticas y formas diferentes de vida…
Los descubrimientos se sucedían ante el asombro general y llegaban historias asombrosas de todas las partes del mundo, ya había quedado muy atrás en el Tiempo el desconocimiento del entorno lejano que nos situaba en un mundo lleno de sorpresas.
Son más las preguntas que respuestas
Nuestro Universo está lleno de “joyas” como la que arriba podemos contemplar. Se trata de un conjunto que llaman Arp 147, una pareja de galaxias interactuando y situada a 430 millones de años luz de la Tierra. Aquí se muestra en rayos X desde el observatorio Chandra de la NASA.
Cuando me sumerjo en los misterios y maravillas que encierra el Universo, no puedo dejar de sorprenderme ante tanta diversidad y belleza, sus increíbles formaciones, la inmensidad, las fuerzas que están presentes e inciden en los comportamientos de todos los objetos estelares y sus derivados…
La posible presencia de una especie de sustancia cósmica invisible que genera Gravedad sin emitir radiación e incide en el comportamiento de las estrellas y las galaxias…
Las constantes universales que no varían con el paso del Tiempo: La velocidad de la luz en el vacío, la masa del protón, la carga del electrón… Si alguna de estas constantes variaran aunque sólo fuese una diez millonésima… ¡La Vida no estaría presente en el Universo!
La Mente: Ese misterio
Los cinco sentidos de los que estamos provistos físicamente, pueden controlar el entorno que nos rodea y, sus mensajes se envían al cerebro donde los datos son objeto de una compleja maniobra de “computación” natural, son guardados para cuando los volvamos a necesitar.
La mente humana es tan compleja que no todos ante la misma cosa vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De entre diez personas, sólo coinciden tres, los otros siete divergen en la apreciación de lo que el dibujo o la figura les sugiere. Un paisaje puede ser descrito de muy distintas maneras según quién lo pueda contar.
Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual, supone unos cinco millones de especies según algunas estimaciones. La Tierra acoge a todas esas especies u palpita de vida que prolifera por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.
Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.
También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.
Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, psi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.
Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.
¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.
Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.
Una colisión entre un protón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN.
En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.
Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.
Se habla de ondas cuánticas y también, de ondas gravitacionales. Las primeras han sido localizadas y las segundas están siendo perseguidas.
Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.
Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.
Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”
Si la vida de una partícula es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.
Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.
Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).
Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.
Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:
∆⁺⁺→р + π⁺; ∆⁰→р + πˉ; o п+π⁰
En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.
El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.
El informe con el diseño del futuro colisionador circular del CERN (FCC), un documento con las diferentes opciones para construir este gigantesco acelerador de partículas en la frontera franco-suiza, se ha enviado esta semana para su publicación. La idea es que sea un anillo de 100 kilómetros y que opere a energías de hasta 100 TeV, mucho más que los 27 km y los 14 TeV del actual LHC.
Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro, se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza y, cerca de una veintena de sus parámetros son aleatorios y no han sido explicados. Uno de ellos, el Bosón de Higgs, dicen que ha sido encontrado. Sin embargo, a mí particularmente me quedan muchas dudas al respecto.
emilio silvera