miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Se consigue fotografiar al “monstruo” del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Simulación del horizonte de sucesos de un agujero negro

Simulación del horizonte de sucesos de un agujero negro – EHT

Máxima expectación por la primera fotografía de un agujero negro

Resultado de imagen de Gran expectación por la primera fotografía de un agujero negro

 

Todo apunta a que el consorcio global del Event Horizon Telescope presentará dos imágenes del horizonte de sucesos de dos agujeros negros supermasivos, uno en el centro de la Vía Láctea y otro en la galaxia M87

Nunca hasta ahora se ha visto uno de estos objetos. El hallazgo es clave para confirmar las predicciones de la relatividad de Einstein y estudiar estos cuerpos, fundamentales en la evolución de las galaxias

 

Todo apunta a que faltan poco más de 24 horas para que la humanidad presencie, por primera vez en la historia, la fotografía de un agujero negro. Este podría ser el motivo por el cual este miércoles astrónomos de todos los rincones del mundo han convocado una docena de ruedas de prensa para anunciar los primeros resultados del consorcio del « Event Horizon Telescope», EHT, cuya finalidad es tomar una instantánea del horizonte de sucesos de un agujero negro. Aunque la existencia de estos objetos es aceptada de forma universal, gracias a sus efectos gravitatorios sobre cuerpos cercanos, nadie ha visto uno hasta ahora.

A las 15.00 de la tarde, hora peninsular española, los 200 astrónomos del proyecto EHT presentarán los resultados de su campaña de observación de 2017. Habrá ruedas de prensa en Bruselas, Lyngby, Santiago de Chile, Shanghai, Tokio, Taipei y Washington. En Bruselas, la rueda de prensa se celebrará en el edificio de la Comisión Europea, el Berlaymont, y, en Madrid, el Consejo Superior de Investigaciones Científicas (CSIC) ha convocado a todos los medios.

¿Qué veremos?

 

Por el momento, se desconoce cuáles son los resultados que se harán públicos, pero, en el caso más favorable, se observarán simulaciones del horizonte de sucesos del agujero negro supermasivo del centro de la Vía Láctea, conocido como Sagitario A*, y de otro situado en el centro de la galaxia vecina M87, en la constelación de Virgo, y que está emitiendo un jet de energía de miles de años luz de largo.

Imagen de M87. El agujero negro de su núcleo emite un enorme jet, visible en la imagen

 

Imagen de M87. El agujero negro de su núcleo emite un enorme jet, visible en la imagen- Wikipedia

 

Los agujeros negros supermasivos son objetos que almacenan la masa de millones de soles en espacios muy reducidos, y que se caracterizan por estar rodeados por una banda de plasma (gas muy caliente) girando a enormes velocidades. También se caracterizan por tener un horizonte de sucesos, que es una región que funciona como un punto de no retorno que, una vez atravesado, impide que nada, ni la luz, escapen del interior de estos objetos. Se puede decir, por tanto, que los agujeros son pozos gravitacionales en los que el espacio-tiempo colapsa y atrapan la luz y la materia a perpetuidad. Por último, dentro de los agujeros negros existe una singularidad gravitacional, un punto sin dimensiones con densidad infinita.

Tal como explicó para este periódico Sheperd Doeleman, director del proyecto EHT, en 2017, con estas observaciones se espera ver un anillo luminoso de materia rodeando los agujeros negros, caracterizado por su asimetría debido al efecto doppler: dado que los agujeros están rotando, y como en un lado del anillo la luz y la materia se mueven hacia nosotros, nos parece más brillante, mientras que en el otro lado la luz y el material se están alejando, por lo que parecen más tenues. Por tanto, en principio las imágenes de los agujeros negros recordarían mucho a las de la película «Interestellar», con la diferencia de que este no representa la mencionada asimetría.

Simulación de un agujero negro aparecida en la película «Interestellar»

Simulación de un agujero negro aparecida en la película «Interestellar» – Warner Bros. / Syncopy / Paramount Pictures

 

En todo caso, resta por ver si los astrónomos han conseguido que las imágenes sean lo suficientemente nítidas como para poder comparar lo observado con lo predicho por las teorías. De hecho, uno de los problemas que los investigadores han tenido que hacer frente es el ruido introducido por los sistemas electrónicos en las observaciones.

Un telescopio global

 

 

Resultado de imagen de Telescopios situados en Arizona y HawAIResultado de imagen de Telescopios situados en Arizona y HawAI

Resultado de imagen de Telescopios situados en Arizona y HawAI

Resultado de imagen de Telescopios situados en Arizona y HawAI

Resultado de imagen de gRAN tELESCOPIO DE cANARIAS

Sean cuales sean los resultados que se muestren este miércoles, son fruto de una campaña de observación llevada a cabo en 2017, en la que se coordinaron las observaciones de ocho radiotelescopios diferentes, por medio de relojes atómicos. Dichos telescopios observaron los agujeros negros en longitudes de onda de un milímetro (entre el infrarrojo y los microondas).

Estas observaciones se sincronizaron a través de una técnica conocida como interferometría, y que permite sumar varias antenas para lograr unos resultados similares a los de un instrumento gigantesco, tan grande como la Tierra. De hecho, en este caso se combinaron las observaciones de telescopios situados en Arizona y Hawái (Estados Unidos), España, México, Chile y el polo Sur.

Resultado de imagen de eL CENTRO DE LA gALAXIA Y sAG aResultado de imagen de eL CENTRO DE LA gALAXIA Y sAG a

Esta es la única forma de observar la silueta de los agujeros negros de la Vía Láctea o de M87 porque, aunque ambos son objetos grandes, para la escala humana, están extremadamente lejos. Por ejemplo, se cree que Sagitario A* (que tiene una masa de cuatro millones de soles) tiene un diámetro de 44 millones de kilómetros, lo que le permitiría caber en el interior de la órbita de Mercurio, pero resulta difícil de ver porque está a 26.000 años luz de la Tierra. El otro objeto, situado en M87, es 1.500 veces más masivo que Sagitario A*.

El reto es comparable al de ver una naranja puesta en la superficie de la Luna desde la Tierra

 

Según ha dicho Sheperd Doeleman, director del proyecto EHT, el reto es comparable al de ver una naranja puesta en la superficie de la Luna desde la Tierra.

Supercomputadoras y 4 petabytes de información

 

 

Resultado de imagen de Supercomputadoras y 4 petabytes de información

 

 

Hacer estas observaciones ha llevado mucho tiempo. Los astrónomos observaron estos agujeros negros durante cinco noches. Recogieron un total de cuatro petabytes de información (cuatro millones de gigabytes), que equivalen al «peso» que tendrían las canciones en formato MP3 necesarias para estar sonando 8.000 años seguidos. Los datos son tan voluminosos que los científicos no han podido transmitirlos por internet, sino que han tenido que moverlos por medio de discos duros.

Esta información se usó luego para elaborar modelos tridimensionales sobre ambos agujeros negros, contrastando los datos con las predicciones de la física para los agujeros negros en varias circunstancias. La tarea ha sido tan complicada, que los astrónomos han necesitado dos años para correlacionar, calibrar e interpretar los datos, con la ayuda de supercomputadores.

Resultado de imagen de eL HORIZONTE DE SUCESOS DE UN AGUJERO NEGRO

«Lo que supondría la imagen del agujero negro, si la conseguimos, sería coger la predicción más extraña y extrema de la relatividad general, uno de los mayores logros de la mente humana, y combinarla con la tecnología más avanzada con una colaboración a escala planetaria, en la que se han empleado las técnicas estadísticas más avanzadas y nuevas técnicas de imagen», dijo Peter Galison, miembro del equipo del EHT y científico en la Universidad de Harvard, en una conferencia celebrada en marzo. «Es como hacer una nueva cámara con un nuevo tipo de película y de lentes, combinándolo con otras cámaras a la vez».

Poner a prueba a Einstein

Según resaltó Galison, tomar una foto de un agujero negro no solo probaría la existencia e estos objetos, sino que permitiría poner a prueba las predicciones de la relatividad de Einstein.

NASA/UMass/D.Wang et al., IR: NASA/STScI / Feryel Ozel

 

NASA/UMass/D.Wang et al., IR: NASA/STScI / Feryel Ozel

 

«Einstein nos dijo hace 100 años cuál debería ser el tamaño y la forma de la sombra –de un agujero negro–», dijo Doeleman en dicha conferencia. «Si pudiéramos poner una regla junto a la sombra, podríamos poner a prueba la teoría de Einstein del límite del agujero negro». Hasta ahora, las observaciones habían permitido averiguar que el tamaño de la silueta de Sagitario A* es el que predice la teoría y que el horizonte es asimétrico, tal como se espera.

Nunca hasta ahora se ha predicho la relatividad de Einstein a esta escala. El último «empujón» relevante a esta teoría ocurrió en 2015, cuando se detectaron de forma directa, por primera vez, las ondas gravitacionales predichas por este científico, gracias a la fusión de parejas de agujeros negros. Ahora está por ver si Einstein también acertó a la hora de predecir cómo son los agujeros negros supermasivos, millones de veces más pesados que aquellos.

Y comprender a Sagitario A*

 

 

Resultado de imagen de lA MEJOR IMAGEN DE sAGITARIO A EN EL CENTRO GALÁCTICO

 

 

Además de afianzar, o no, la relatividad, las observaciones del EHT probablemente también revelarán interesantes datos sobre el agujero negro supermasivo de nuestra Vía Láctea. Tal como ha explicado a ABC Charles Hailey, experto en este objeto en la Universidad de Columbia (EE.UU.), «nuestro agujero negro supermasivo es muy misterioso: no pone mucha de su energía en forma de rayos X, como sí ocurre con los otros agujeros negros de muchas otras galaxias. Decimos que es infraluminoso, pero apenas estamos comenzando a entender por qué».

La clave está en que se desconocen los detalles de cómo la materia, gas y estrellas, que engullen los agujeros, es transformada en potente radiación, y también cómo caen hacia ellos, previamente. «Es muy probable que el EHT dilucide todas estas preguntas, sobre todo en combinación con otras observaciones en la banda de rayos X».

Imagen relacionada

Saber todo eso es fundamental para estudiar cómo los agujeros negros supermasivos que existen en la mayoría de las galaxias influyen en su evolución. «Incluso cuando estos objetos apenas contribuyen a una pequeña parte de la masa de una galaxia, parecen tener un efecto desmesurado en su evolución. Este es sin duda un campo muy activo en la astrofísica ahora mismo».

Parece que en los próximos años lo estará aún más. Sheperd Doeleman ha dicho en The New York Times que en abril del año pasado el EHT hizo otra observación de Sagitario A* y de M87, y que por entonces recogieron el doble de datos que en la primera observación. «Nuestro plan es llevar a cabo estas observaciones de forma indefinida y ver cómo las cosas cambian», ha reconocido.

 

 

La teoría de la Relatividad dice que la sombra del agujero será circular, como en el centro – Eventhorizontelescope.org

 

 

 

 

 

 

Estructuras fundamentales del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

                         Estructuras Fundamentales de la Naturaleza

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

La cosmología  sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas y estas, a su vez, juntas en una inmensa proporción, forman los cuerpos que podemos ver a lo largo y lo ancho de todo el universo. Grandes estructuras y cúmulos y supercúmulos de galaxias que están hechos de la materia conocida como bariónica, es decir, de Quarks y Leptones.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Ya ahí tenemos pruebas de historia.  Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

                                                                                  Sistema nervioso somático

 Incluye grupos de neuronas que llevan información desde los órganos sensoriales (incluyendo toda la piel) hasta el sistema nervioso central (principalmente hasta el cordón espinal). A estos grupos de neuronas se les llama neuronas sensoriales o aferentes.

                     a. Las neuronas que recogen información directamente de los órganos sensoriales son neuronas especializadas con formas y sensibilidad particular. Por lo regular, estas neuronas tienen abundantes dendritas y axones cortos.

 

 

b. Por su parte, las neuronas que llevan información desde los órganos sensoriales hasta el sistema nervioso central suelen tener menos dendritas y axones largos. Grupos de estos axones forman lo que generalmente conocemos como nervios. Estos muestran un color blanco debido a la abundancia de capas de mielina, característico de los axones. A estos grupos de axones se les conoce como nervios sensoriales o aferentes.

 

 

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

El enlace: Adenina con Timina o Guanina con Citosina, constituyendo dicha secuencia el código genético en el que se organiza el funcionamiento celular.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protonesneutrones.

Resultado de imagen de El microscopio electrónico nos enseña cosas alucinantesResultado de imagen de El microscopio electrónico nos enseña cosas alucinantesResultado de imagen de El microscopio electrónico nos enseña cosas alucinantesResultado de imagen de El microscopio electrónico nos enseña cosas alucinantes

                           El microscopio electrónico nos enseña cosas alucinantes

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

Resultado de imagen de Hemos llegado hasta la conciencia de Ser, y, sabemos en qué lugar del Universo estamos

Hemos llegado hasta la consciencia de Ser, y, sabemos en qué lugar del Universo estamos

Nos cuesta asimilar que la evoluciòn de la materia se pudiera elevar (bajo un sin fin de parámetros y transmutaciones muy complejos), hasta alcanzar la consciencia y llegar a generar pensamientos. Parece como si el Universo hubiera sabido que nosotros (también otros seres similares e inteligentes en otros mundos del inmenso Cosmos), teníamos que venir y, para ello, creó sistemas idóneos para la vida como el planeta Tierra y muchos otros de su clase que ofrecen tal cobijo a criaturas vivas.

Los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo. En la imagen de arriba podemos ver como el Telescopio Espacial Hubble, poco a poco, ha podido ir avanzando hacia atrtás en el tiempo para enseñarnos las imágenes captadas cuando el Universo era muy joven. ¿Podremos algún día fabricar telescopios tan potentes que puedan captar imágenes del universo vecino?

Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.

Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que, la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.

                     Las entrañas de un protón

                   Siempre hemos querido saber lo que hay más allá de lo que el ojo ve

En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.

Estas y otras muchas maravillas son las que nos permitirán, en un futuro relativamente cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes.

emilio silvera

La asombrosa Naturaleza y la Física

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 Makoto Kobayashi

Toshihide Maskawa

Yoichiro Nambu

Makoto Kobayashi (1944). Japón

Toshihide Maskawa (1940). Japón

“Por el descubrimiento del origen de la ruptura de la simetría que predice la existencia de, al menos, tres familias de quarks en la naturaleza”

Yoichiro Nambu (1921. USA

“Por el descubrimiento del mecanismo de ruptura espontánea de la simetría en física subatómica”

¿Por qué hay algo en vez de nada? ¿Por qué hay tantas partículas elementales diferentes? Los laureados con el Premio Nobel de Física de este año han presentado ideas teóricas que nos suministran una comprensión más profunda de lo que sucede en el interior de los bloques más pequeños que forman la materia.

“De hecho, todos somos hijos de la simetría rota. Ello debió ocurrir inmediatamente después del Big Bang, hace unos 14.000 millones de años cuando fueron creadas la materia y la antimateria. El contacto de materia y antimateria es fatal para ambas, se aniquilan mutuamente y se transforman en radiación. Es evidente que la materia, al final, ganó la partida a la antimateria, de otra manera nosotros no estaríamos aquí. Pero estamos, y una pequeña desviación de la simetría perfecta parece que ha sido suficiente –un exceso de una partícula de materia por cada diez mil millones de partículas de antimateria fueron suficientes para hacer que nuestro mundo exista-. Este exceso de la materia fue la semilla de nuestro universo, lleno de galaxias, estrellas y planetas y, eventualmente, de vida. Pero lo que hay detrás de esta violación de la simetría en el cosmos es aún un gran misterio y un activo campo de investigación.”


Resultado de imagen de Partículas elementales

¿Por qué hay algo en vez de nada? ¿Por qué hay tantas partículas elementales diferentes? Estos laureados con el Premio Nobel de Física de presentaron ideas teóricas que nos suministran una comprensión más profunda de lo que sucede en el interior de los bloques más pequeños que forman la materia.


Resultado de imagen de La simetría rota del UNiverso


La naturaleza de las leyes de simetría se encuentran en el corazón de este asunto. O más bien, la ruptura de las simetrías, tanto las que parecen haber existido en nuestro universo desde el principio como aquellas que han perdido su simetría original en alguna parte del camino. De hecho, todos somos hijos de la simetría rota.

Resultado de imagen de El big bang

Ello debió ocurrir inmediatamente después del Big Bang, hace unos 14.000 millones de años cuando fueron creadas la materia y la antimateria. El contacto de materia y antimateria es fatal para ambas, se aniquilan mutuamente y se transforman en radiación. Es evidente que la materia, al final, ganó la partida a la antimateria, de otra manera nosotros no estaríamos aquí. Pero estamos, y una pequeña desviación de la simetría perfecta parece que ha sido suficiente –un exceso de una partícula de materia por cada diez mil millones de partículas de antimateria fueron suficientes para hacer que nuestro mundo exista-. Este exceso de la materia fue la semilla de nuestro universo, lleno de galaxias, estrellas y planetas y, eventualmente, de vida. Pero lo que hay detrás de esta violación de la simetría en el cosmos es aún un gran misterio y un activo para seguir buscando lo que no sabemos.

Resultado de imagen de El Mecanismo de Higgs

La mayoría de los físicos piensa que el llamado mecanismo de Higgs es el responsable de que la simetría original entre fuerzas fuera destruido dando a las partículas sus masas en las primeras etapas del universo. El camino hacia ese descubrimiento fue trazado por Yoichiro Nambu quien, en 1960, fue el primero en introducir la violación espontánea de la simetría en la física de partículas. Es por este descubrimiento por el que se le concede el Premio Nobel de Física.

Resultado de imagen de Un lápiz en equilibrio sobre su punta

Tenemos algunos ejemplos banales de violación espontánea de la simetría en la vida diaria. Un lápiz en equilibrio sobre su punta lleva una existencia totalmente simétrica en la cual todas las direcciones son equivalentes. Pero esta simetría se pierde cuando cae -ahora sólo una dirección cuenta-. Por otro lado su condición es ahora más estable, el lápiz no puede volver a caer, ha llegado a su nivel más bajo de energía.

Resultado de imagen de El Modelo Estándar


El modelo que tenenos de la física de partículas se llama Modelo Estándar y, nos habla de las interacciones entre partículas y las fuerzas o interrelaciones que están presentes, las leyes que rigen el Universo físico y que, no hemos podido completar al no poder incluir una de las fuerzas: La Gravedad. Claro que, no es esa la única carencia del Modelo, tiene algunas más y, a estas alturas, se va necesitando un nuevo Modelo, más completo y audaz, que incluya a todas las fuerzas y que no tenga parámetros aleatorios allí donde nuestros conocimientos no llegan.

Resultado de imagen de El Modelo Estándar

La fealdad del Modelo Estándar puede contrastarse con la simplicidad de las ecuaciones de Einstein, en las que todo se deducía de primeros principios. Para comprender el contraste estético entre el Modelo Estándar y la teoría de la relatividad general de Einstein debemos comprender que, cuando los físicos hablan de “belleza” en sus teorías, realmente quieren decir que estas “bellas” teorías deben poseer al menos dos características esenciales:

  1. Una simetría unificadora.
  2. La capacidad de explicar grandes cantidades de datos experimentales con las expresiones matemáticas más económicas.

E = mc2 . Esta es la mejor prueba de lo que decimos arriba.

Resultado de imagen de Ecuaciones e campo de la Relatividad Especial

Resultado de imagen de Ecuaciones e campo de la Relatividad general

El Modelo Estándar falla en ambos aspectos, mientras que la relatividad general los exhibe, ambos, de manera bien patente. Nunca una teoría dijo tanto con tan poco; su sencillez es asombrosa y su profundidad increíble.De hecho, desde que se publicó en 1.915, no ha dejado de dar frutos, y aún no se han obtenido de ella todos los mensajes que contiene.

El principio director del modelo estándar dicta que sus ecuaciones son simétricas. De igual modo que una esfera ofrece el mismo aspecto desde cualquier punto de vista, las ecuaciones del modelo estándar subsisten sin variación al cambiar la perspectiva desde la que son definidas. Las ecuaciones permanecen invariables, además, cuando esta perspectiva se desplaza en distinta magnitud a diferentes puntos del espacio y el tiempo.

Resultado de imagen de La simetría del Modelo estándar está forzada

Al contrario de la relatividad general, la simetría del Modelo Estándar, está realmente formada empalmando tres simetrías más pequeñas, una por cada una de las fuerzas; el modelo es espeso e incómodo en su forma. Ciertamente no es económica en modo alguno. Por ejemplo, las ecuaciones de Einstein, escritas en su totalidad, sólo ocupan unos centímetros y ni siquiera llenaría una línea de esta página. A partir de esta escasa línea de ecuaciones, podemos ir más allá de las leyes de Newton y derivar la distorsión del espacio, el Big Bang y otros fenómenos astronómicos importantes como los agujeros negros. Por el contrario, sólo escribir el Modelo Estándar en su totalidad requeriría, siendo escueto, un par de páginas  y parecería un galimatías de símbolos complejos sólo entendibles por expertos.

Los científicos quieren creer que la naturaleza prefiere la economía en sus creaciones y que siempre parece evitar redundancias innecesarias al crear estructuras físicas, biológicas y químicas.

 

La luz antigua absorbida por átomos de hidrógeno neutro podría usarse para probar ciertas predicciones de la Teoría de Cuerdas, dicen los cosmólogos de la Universidad de Illinois. Realizar tales medidas, sin embargo, requeriría que se construyese un gigantesco conjunto de radio telescopios en la Tierra, el espacio, o la Luna.

El matemático francés Henri Poincaré lo expresó de forma aún más franca cuando escribió: “El científico no estudia la Naturaleza porque es útil; la estudia porque disfruta con ello, y disfruta con ello porque es bella

Resultado de imagen de El experimento de E. Rutherford

“Diseño experimental de Rutherford para medir la dispersión de las partículas alfa causada por una lámina de oro. La mayoría de las partículas alfa atraviesan la lámina de oro con poca o ninguna desviación. Algunas se desvían con un ángulo grande ocasionalmente alguna partícula invierte su trayectoria.”

E. Rutherford, quien descubrió el núcleo del átomo (entre otras muchas cosas), dijo una vez: “Toda ciencia es o física o coleccionar sello”.Se refería a la enorme importancia que tiene la física para la ciencia, aunque se le olvidó mencionar que la física está sostenida por las matemáticas que la explica.

Pero, a pesar de todos sus inconvenientes, el Modelo Estándar, desde su implantación, ha cosechado un éxito tras otro, con sus inconvenientes y sus diecinueve parámetros aleatorios, lo cierto es que es lo mejor que tenemos por el momento para explicar las familias de partículas que conforman la materia y cómo actúan las fuerzas de la naturaleza, todas las fuerzas menos la gravedad; esa nos la explica a la perfección y sin fisuras las ecuaciones de Einstein de la relatividad general.

Hace tiempo que los físicos tratan de mejorar el Modelo Estándar con otras teorías más avanzadas y modernas que puedan explicar la materia y el espacio-tiempo con mayor amplitud y, sobre todo, incluyendo la gravedad.Así que retomando la teoría de Kaluza de la quinta dimensión, se propuso la teoría de supergravedad en 1.976 por los físicos Daniel Freedman, Sergio Ferrara y Peter van Nieuwenhuizen, de la Universidad del Estado de Nueva York en Stoney Brook que desarrollaron esta nueva teoría en un espacio de once dimensiones.

{\displaystyle g=\sum _{i,j=1}^{n}g_{ij}\ dx^{i}\otimes dx^{j}\qquad \qquad G={\begin{pmatrix}g_{11}&g_{12}&...&g_{1n}\\g_{21}&g_{22}&...&g_{2n}\\\vdots &\vdots &\vdots &\vdots \\g_{n1}&g_{n2}&...&g_{nn}\end{pmatrix}}}

“Para desarrollar la superteoría de Kaluza-Klein en once dimensiones, uno tiene que incrementar enormemente las componentes del interior del Tensor métrico de Riemann (que Einstein utilizó en cuatro dimensiones, tres de espacio y una de tiempo para su relatividad general y más tarde, Kaluza, añadiendo otra dimensión de espacio, la llevó hasta la quinta dimensión haciendo así posible unir la teoría de Einstein de la gravedad, con la teoría de Maxwell del electromagnetismo), que ahora se convierte en el supertensor métricode Riemann.”

Hasta hoy, no se ha logrado, ni mucho menos, inventar una teoría de campo consistente totalmente unificadora que incluya la gravedad. Se han dado grandes pasos, pero las brechas «científicounificantes» siguen siendo amplias. El punto de partida ha sido siempre la teoría de la relatividad general y conceptos con ella relacionados, por la excelencia que manifiesta esa teoría para explicar la física gravitatoria macrocósmica. El problema que se presenta surge de la necesidad de modificar esta teoría sin perder por ello las predicciones ya probadas de la gravedad a gran escala y resolver al mismo tiempo los problemas de la gravedad cuántica en distancias cortas y de la unificación de la gravedad con las otras fuerzas de la naturaleza.

Su tensor métrico es un tensor de rango 2 que se utiliza para definir … Sin embargo, en otras teorías se ha elevado el rango y se pueden definir múltiples universos de dimensiones más altas.

El tensor métrico se podría adaptar a las necesidades de la búsqueda estableciendo la multiplicidad de dimensiones que la teoría exigía para su desarrollo.

 

Más allá de lo que nos permiten captar nuestros sentidos físicos, hay que tener nuestra mente abierta a la posibilidad de que puedan existir otras realidades diferentes a lo que nos dicta nuestra experiencia, realidades capaces de ser descubiertas por la fuerza del intelecto cuando nos atrevemos a cuestionar aquello que creíamos como absoluto.

Esta nueva teoría de supergravedad pretendía la unificación de todas las fuerzas conocidas con la materia, y, como en un rompecabezas, encajarlas en el Tensor de Riemann tan solo con elevar el número de dimensiones que exigía más componentes y nos daba el espacio necesario para poder ubicar en sus apartados correspondientes, todas las fuerzas fundamentales y también la materia, la que podía satisfacer, casi en su totalidad, el sueño de Einstein.

A partir de aquí, de estas ecuaciones, surgió todo. Este fue el puerto de donde salió el bajel de la teoría de Kaluza-Gleim, la supergravedad y supersimetría, la cuerda heterótica y la Teoría de cuerdas, todo ello, rematado con la finalmente expuesta, teoría M. También, con el nacimiento de esta ecuación que es la imagen que mejor refleja hasta dónde puede3 llegar el intelecto humano, comenzó la verdadera cosmología.

La supergravedad casi consigue satisfacer el sueño de Einstein de dar una derivación puramente geométrica de todas las fuerzas y partículas del universo. Al añadir la supersimetría al Tensor métrico de Riemann, la métrica se duplica en tamaño, dándonos la supersimetría de Riemann. Las nuevas componentes del súper tensor de Riemann corresponden a quarks y leptones, casi todas las partículas y fuerzas fundamentales de la naturaleza: la teoría de la gravedad de Einstein, los campos de Yang-Mills y de Maxwell y los quarks y leptones. Pero el hecho de que ciertas partículas no estén en esta imagen nos obliga a buscar un formalismo más potente:

La materia con todas las fuerzas fundamentales de la naturaleza. Los bosones intermediarios o partículas portadoras de las fuerzas como el fotón para el electromagnetismo, los gluones para la fuerza nuclear fuerte, las partículas W y Z para la nuclear débil y, en la partícula portadora de la gravedad, el gravitón, ponemos el signo de interrogación, ya que se sabe que esta ahí en algún sitio pero hasta la fecha no ha sido detectado.

Antes de continuar con la teoría de súper cuerdas, o con su versión más avanzada la teoría M, parece conveniente recordar que hasta el momento los ladrillos del universo eran los quarks, las partículas más pequeñas detectadas en los aceleradores del CERN y FERMILAB. Pero ¿están hechos de cosas más pequeñas?, eso no lo sabemos. El Modelo Estándar, menos avanzado que las otras teorías, nos dice que los quarks son las partículas más pequeñas y forman protones y neutrones constituyendo la formación interna del átomo, el núcleo. En la actualidad, nuestros aceleradores de partículas no tienen capacidad para ahondar más allá de los quarks y averiguar si a su vez, éstos están formados por partículas aún más pequeñas.

 

No podemos saber (aún) que es lo que pueda haber (si es que lo hay) más allá de los Quarks, los constituyentes de la materia más pequeños conocidos hasta el momento actual. Sin embargo, no se descarta que puedan existir partículas más simples dentro de los Quarks que, al fin y al cabo, no serían tan elementales.

Por otro lado, los físicos están casi seguros de que los leptones no están compuestos de partículas más pequeñas. Sin embargo, esta sospecha no se tiene en el caso de los quarks; no se sabe qué puede haber detrás de ellos. Tan sólo se ha llegado a desconfinarlos junto con los gluones y por un breve periodo de tiempo de los protones y neutrones que los mantenían aprisionados, formando – en esos breves instantes – una materia plasmosa. No es raro oir dentro de la comunidad científica a los físicos teóricos hablando de prequarks.

Como antes hemos comentado de pasada, el Modelo Estándar agrupa las partículas en familias:

Claro, son muchos más. Además de los Bariones, también forman parte de la familia hadrónica los mesones y la lista de unos y otros es larga y cada individuo, como es natural, tiene sus propias características que lo hacen único.

Hadrones: Bariones: protónneutrón , Lambda, omega, etc.
Mesones: piónkaón, psí, etc.
Quarks: up, down, charmed, strange, top y botton
Leptones: electrónmuón y tau (y sus neutrinos asociados), neutrinoelectrónico, muónico y tauónico

Y describe las interacciones que estas partículas tienen con las cuatro fuerzas fundamentales de la naturaleza, sobre todo con las nucleares fuerte y débil y la electromagnética; la gravedad se queda aparte del Modelo Estándar, ya que su incidencia con las partículas elementales es inapreciable como consecuencia de las infinitesimales masas de éstas, y ya sabemos que la gravedad se deja sentir y se hace presente cuando aparecen las grandes masas como planetas, estrellas y galaxias.

Grandes estructuras que vienen a ser como pequeños ”universos islas” en los que podemos estudiar, a menos tamaño, todo lo que en el Gran Universo puede pasar. Partiendo de la base de que las leyes del universo son las mismas en todas partes, podemos tomar cualquier región del mismo y ver que, allí está ocurriendo lo mismo que aquí ocurre, es decir, están presentes las fuerzas fundamentales: nucleares débiles y fuertes, electromagnetismo y Gravedad y, todo, absolutamente todo, funciona al ritmo que dichas leyes nos marcan.

Como el Modelo Estándar es limitado, los físicos buscan desesperadamente nuevas teorías que puedan corregir y perfeccionar este modelo. Así aparecieron las teorías de súper simetría, súper gravedad, súper cuerdas, y ahora por último, la teoría M propuesta por Edward Witten en 1.995 y que nos quiere explicar, de manera más perfecta, el universo desde su origen, cómo y por qué está conformado ese universo, las fuerzas que lo rigen, las constantes de la naturaleza que establecen las reglas, y todo ello, a partir de pequeños objetos infinitesimales, las cuerdas, que sustituyen a las partículas del modelo estándar que creíamos elementales.

Esas partículas súper simétricas que pronostican algunas teorías, aún no han sido observadas y se espera que en el LHC puedan aparecer algunas que, desde luego, si así ocurre, sería un buen adelanto para conocer el mundo que nos acoge y la Naturaleza del Universo.

Esta nueva teoría, permite además, unificar o incluir la gravedad con las otras fuerzas, como teoría cuántica de la gravedad, todo ello mediante una teoría estructurada y fundamentada con originalidad y compactificación de las cuatro fuerzas de la naturaleza y dejando un gran espacio matemático para eliminar anomalías o perturbaciones, y se propugna con coherencia quela cuerda es el elemento más básico de la estructura de la materia; lo que estaría bajo los quarks serían unas diminutos círculos semejantes a una membrana vibrante circular y de diferentes conformaciones.

Universos Paralelos, Teorías de Cuerdas, Súper gravedad, La Teoría M, y ¿Los pensamientos de la Mente, podrán dar para tanto?

Una vez se escucha sobre los fundamentos de la teoría cuántica uno no puede mas que sobrecogerse, ampliar la mente y galopar entre las múltiples posibilidades acerca de lo real e imaginario que por momentos y depende que conceptos se entrelazan intercambiables. Lo que llama la atención es que por mucho que hayan sido los físicos cuánticos más prestigiosos entre la sociedad científica los que hayan puesto sobre la mesa conceptos cuanto menos rimbombantes e inverosímiles como las multi-dimensiones, los universos paralelos, los efectos túneles y demás, sean los propios miembros  de la academia los que grandilocuentemente se ofenden cuando se hace alusión al paralelismo evidente del comportamiento y extensión de la energía  en referencia al universo preconizado por los místicos de muchas culturas. No tenemos los conocimientos necesarios para poder decir que no a esto o aquello, cada cosa tiene su lugar y tendremos que analizarlas muy a fondo y adentrarnos en esos mundos de misterio para poder decidir lo que es y lo que no puede ser.

Aquí hemos llegado a una región de la Física de las partículas donde la energía (por partícula) es mucho mayor de la que actualmente podemos estudiar en nuestros laboratorios. Claro que especulamos, pero con los datos de los que disponemos, la realidad estará muy cerca de la expuesta en el gráfico, y, en él se señalan energía que no están a nuestro alcance para conseguir lo que se quiere saber.

Ed Witten, en su trabajo, presentó amplias evidencias matemáticas de que las cinco teorías obtenidas de la primera revolución, junto con la más reciente conocida como la súper gravedad (súper cuerda después), en 11 dimensiones, eran de hecho parte de una teoría inherentemente cuántica y no perturbativa conocida como teoría M. Las seis teorías están conectadas entre sí por una serie de simetrías de dualidad T, S, y U. Además, de la teoría propuesta por Witten se encuentran implícitas muchas evidencias de que la teoría M no es sólo la suma de las partes, sino que se vislumbra un alentador horizonte que podría concluir como la teoría definitiva tan largamente buscada.

 

Los resultados de la segunda revolución de las súper cuerdas han demostrado que las cinco teorías de cuerdas forman parte de un solo marco unificado, llamado Teoría M.

Las súper cuerdas, en realidad, sólo es otra manera utilizada por los científicos a la búsqueda de la verdad que la Humanidad necesita y reclama para continuar con su propia evolución que, sin esos conocimientos, quedaría estancada.

Como se puede ver, las partículas implicadas en el Modelo Estándar están en un mundo microscópico de 10-17cm que sí dominan nuestros aceleradores, mientras que la cuerda está en una distancia de 10-33 cm que les está prohibida, allí no podemos llegar, no disponemos de la energía suficiente para ello.

 

Igual que con la energía disponible por el momento, nos pasa con las distancias, que también nos tiene paralizados en nuestros deseos de visitar mundos lejanos, no podemos, al no disponer de los medios necesarios para poder soslayar las distancias de tantos años-luz como tendríamos que recorrer. ¿Habrá otro camino?

Está muy claro para los físicos que, aunque teóricamente, en la Teoría de Súper cuerdas se pueden unir todas las fuerzas, todavía tenemos que seguir sosteniendo que la gravedad resulta una fuerza solitaria para todos los efectos, ya que ha resistido todos los intentos para saber, con certeza, si finalmente se podrá unir a las otras fuerzas de la Naturaleza. La gravedad está descrita por la teoría de la relatividadgeneral de Einstein y tiene una naturaleza esencialmente geométrica. Se entiende como la curvatura del espacio-tiempo alrededor de un objeto masivo. En los gráficos, generalmente, se representa como un objeto pesado sobre una superficie fina y tensa (una pelota o bola pesada de jugar a los bolos que dejamos encima de una sábana extendida tirando de las cuatro esquinas). El peso de la bola (materia) hundirá la sábana (espacio-tiempo) con mayor intensidad en la distancia más cercana a donde se encuentre masa.

Resultado de imagen de El espacio tiempo se distorsiona allí donde residen objetos pesados como los planetas, las estrellas, galaxias y cualesquiera otros cuerpos masivos.

Em presencia de estas galaxias el espacio se ve afectado y se forman huecos en su presencia dando la sensación de que hilos invisibles las atan las unas a las otras y las mantienen juntas cuando, en realidad, es la Gravedad la que lo consigue.

El espacio tiempo se distorsiona allí donde residen objetos pesados como los planetas, las estrellas, galaxias y cualesquiera otros cuerpos masivos.

La teoría de Einstein goza de una amplia aceptación debido a los aciertos macroscópicos que han sido verificados de manera experimental. Los más recientes están referidos a los cambios de frecuencia de radiación en púlsares binarios debido a la emisión de ondas gravitacionales, que actualmente estudia Kip S. Thorne, en relación a los agujeros negros. Entre las predicciones que Einstein propugna en su teoría se encuentran, por ejemplo, la existencia de ondas gravitacionales, que el universo está en constante expansión y que, por lo tanto, tuvo un inicio: el Big Bang o los agujeros negros.

 

Se trata de regiones donde la gravedad es tan intensa que ni siquiera la luz puede escapar de su atracción. Estas regiones se forman por el colapso gravitatorio de estrellas masivas en la etapa final de su existencia como estrella, acabado el combustible nuclear y no pudiendo fusionar hidrógeno en helio, fusiona helio en carbono, después carbono en neón, más tarde neón en magnesio y así sucesivamente hasta llegar a elementos más complejos que no se fusionan, lo que produce la última resistencia de la estrella contra la fuerza de gravedad que trata de comprimirla, se degeneran los neutrones como último recurso hasta que, finalmente, la estrella explota en supernova lanzando al espacio las capaz exteriores de su material en un inmenso fogonazo de luz; el equilibrio queda roto, la fuerza de expansión que contrarrestaba a la fuerza de gravedad no existe, así que, sin nada que se oponga la enorme masa de la estrella supermasiva, se contrae bajo su propio peso, implosiona hacia el núcleo, se reduce más y más, su densidad aumenta hasta lo inimaginable, su fuerza gravitatoria crece y crece, hasta que se convierte en una singularidad, un lugar en el que dejan de existir el tiempo y el espacio.

Resultado de imagen de Las mejores imagenes de un Agujero negro

Allí no queda nada, ha nacido un agujero negro y a su alrededor nace lo que se ha dado en llamar el Horizonte de Sucesos, que es una región del espacio, alrededor del agujero negro que una vez traspasada no se podrá regresar; cualquier objeto que pase esta línea mortal, será literalmente engullida por la singularidad del agujero negro. De hecho, el telescopio espacial Hubble, ha enviado imágenes captadas cerca de Sagitario X-1, en el centro de nuestra galaxia, donde reside un descomunal agujero negro que, en las fotos enviadas por el telescopio, aparece como atrapa la materia de una estrella cercana y se la engulle.

 

.Ondas gravitacionales que se forman a partir de los agujeros negros que, en su dinámica cotidiana y que, actualmente, estamos tratando de captar para saber de un njhuevo Universo que nos diría muchas cosas de las que ocurren a partir de fenómenos que sabemos existen pero, que hasta el momento no hemos podido “leer”.

Esta es la fuerza que se pretende unir a la Mecánica Cuántica en la teoría de supercuerdas, es decir, que Einstein con su relatividad general que nos describe el cosmos macroscópico, se pueda reunir con Max Planck y su cuanto infinitesimal del universo atómico, lo muy grande con lo muy pequeño.

 Relatividad y Gravedad Cuántica. Universidad de Cambridge.
Relatividad y Gravedad Cuántica. Universidad de Cambridge.

La llamada gravedad cuántica trata de fundir en una sola las dos teorías físicas más soberbias con las que contamos, la relatividad general y la mecánica cuántica, que en el estado actual de nuestro conocimiento parecen incompatibles. Su estudio, ahora mismo, es en algunos aspectos análogo a la física de hace cien años, cuando se creía en los átomos, pero se ignaraban los detalles de su estructura.

Hasta el momento, Einstein se ha negado a esta reunión y parece que desea caminar solo. Las otras fuerzas están presentes en el Modelo Estándar, la gravedad no quiere estar en él, se resiste.

De hecho, cuando se ha tratadode unir la mecánica cuántica con la gravedad, aunque el planteamiento estaba muy bien formulado, el resultado siempre fue desalentador; las respuestas eran irreconocibles, sin sentido, como una explosión entre materia y antimateria, un desastre.

Sin embargo, es preciso destacar que las nuevas teorías de súper-simetría, súper-gravedad, súper-cuerdas o la versión mas avanzada de la teoría M de Ed Witten, tienen algo en común: todas parten de la idea expuesta en la teoría de Kaluza-Klein de la quinta dimensión que, en realidad, se limitaba a exponer la teoría de Einstein de la relatividad general añadiendo otra dimensión en la que se incluían las ecuaciones de Maxwell del electromagnetismo.

Hasta hoy no se ha logrado, ni mucho menos, inventar una teoría de campo que incluya la gravedad. Se han dado grandes pasos, pero la brecha “científico-unificante” es aún muy grande. El punto de partida, la base, ha sido siempre la relatividad y conceptos en ella y con ella relacionados, por la excelencia que manifiesta esa teoría para explicar la física gravitatoria cósmica. El problema que se plantea surge de la necesidad de modificar esta teoría de Einstein sin perder por ello las predicciones ya probadas de la gravedad a gran escala y resolver al mismo tiempo el problema de la gravedad cuántica en distancias cortas y de la unificación de la gravedad con las otras fuerzas de la naturaleza. Desde la primera década del siglo XX se han realizado intentos que buscan la solución a este problema, y que han despertado gran interés.

Después de la explosión científica que supuso la teoría de la relatividad general de Einstein que asombró al mundo, surgieron a partir e inspiradas por ella, todas esas otras teorías que antes he mencionado desde la teoría Kaluza-Klein a la teoría M.

 

                                      Esas complejas teorías cuánticas nos quieren acercar al misterio que encierra la materia: ¡El Espíritu de la Luz!

Es de enorme interés el postulado que dichas teorías expone. Es de una riqueza incalculable el grado de complejidad que se ha llegado a conseguir para desarrollar y formular matemáticamente estas nuevas teorías que, como la de Kaluza-Klein o la de supercuerdas (la una en cinco dimensiones y la otra en 10 ó 26 dimensiones) surgen de otra generalización de la relatividad general tetradimensional einsteniana que se plantea en cuatro dimensiones, tres espaciales y una temporal, y para formular las nuevas teorías se añaden más dimensiones de espacio que, aunque están enrolladas en una distancia de Planck, facilitan el espacio suficiente para incluir todas las fuerzas y todos los componentes de la materia, tratando de postularse como la Teoría de Todo.

   Dimensiones enrolladas ¿En un espacio-tiempo fractal? La Naturaleza sabe de eso

La Gran Teoría Unificada que todo lo explique es un largo sueño acariciado y buscado por muchos. El mismo Einstein se pasó los últimos treinta años de su vida buscando el Santo Grial de la teoría del todoen la física, unificadora de las fuerzas y de la materia. Desgraciadamente, en aquellos tiempos no se conocían elementos y datos descubiertos más tarde y, en tales condiciones, sin las herramientas necesarias, Einstein no podría alcanzar su sueño tan largamente buscado. Si aún viviera entre nosotros, seguro que disfrutaría con la teoría de súper-cuerdas o la teoría M, al ver como de ellas, sin que nadie las llame, surgen, como por encanto, sus ecuaciones de campo de la relatividad general.

La fuerza de la Naturaleza, en el universo primitivo del Big Bang, era una sola fuerza y el estado de la materia es hoy conocido como “plasma”; las enormes temperaturas que regían no permitía la existencia de protones o neutrones, todo era como una sopa de quarks. El universo era opaco y estaba presente una simetría unificadora.

Más tarde, con la expansión, se produjo el enfriamiento gradual que finalmente produjo la rotura de la simetría reinante. Lo que era una sola fuerza se dividió en cuatro. El plasma, al perder la temperatura necesaria para conservar su estado, se trocó en quarks que formaron protones y neutrones que se unieron para formar núcleos. De la fuerza electromagnética, surgieron los electrones cargados negativamente y que, de inmediato, fueron atraídos por los protones de los núcleos, cargados positivamente; así surgieron los átomos que, a su vez, se juntaron para formar células y éstas para formar los elementos que hoy conocemos. Después se formaron las estrellas y las galaxias que sirvieron de fábrica para elementos más complejos surgidos de sus hornos nucleares hasta completar los 92 elementos naturales que conforma toda la materia conocida. Existen otros elementos que podríamos añadir a la Tabla, pero estos son artificiales como el plutonio o el einstenio.

                                  La materia ha evolucionado hasta límites increíbles: ¡la vida! y, aún no sabemos, lo que más allá pueda esperar.

                           ¿Quizás hablar sin palabras, o, Incluso algo más?

Estos conocimientos y otros muchos que hoy posee la ciencia es el fruto de mucho trabajo, de la curiosidad innata al ser humano, del talento de algunos y del ingenio de unos pocos, todo ello después de años y años de evolución pasando los descubrimientos obtenidos de generación en generación.

¿Cómo habría podido Einstein formular su teoría de la relatividad general sin haber encontrado el Tensor métrico del matemático alemán Riemann?

¿Qué formulación del electromagnetismo habría podido hacer James C. Maxwell sin el conocimiento de los experimentos de Faraday?

La relatividad especial de Einstein, ¿habría sido posible sin Maxwell y Lorentz?

¿Qué unidades habría expuesto Planck sin los números de Stoney?

 

En realidad… ¿Cómo comenzaría todo? Mientras encontramos la respuesta, observamos como el Universo se expande y se vuelve viejo y frío.

Así podríamos continuar indefinidamente, partiendo incluso, del átomo de Demócrito, hace ahora más de dos milenios. Todos los descubrimientos e inventos científicos están apoyados por ideas que surgen desde conocimientos anteriores que son ampliados por nuevas y más modernas formulaciones.

Precisamente, eso es lo que está ocurriendo ahora con la teoría M de las supercuerdas de Witten. Él se inspira en teorías anteriores que, a su vez, se derivan de la original de A. Einstein que pudo surgir, como he comentado, gracias al conocimiento que en geometría aportó Riemann con su tensor métrico.

emilio silvera