domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La expansión del Universo, ¿Y, nuestro futuro?

Autor por Emilio Silvera    ~    Archivo Clasificado en a otros mundos    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Resultado de imagen de La expansión del UNiverso

Si como parece la expansión del Universo se acelera, entonces el procesamiento de información debería desaparecer con el tiempo y cada vez sería menor y más difícil nuestro acceso para poder saber lo que pasa en regiones tan lejanas en las que se encontrarían las galaxias mientras que los espacios vacíos se hacían más y más grandes cada vez. Algunos grupos de  parecen haber comprobado que la expansión del Universo empezó a acelerarse hace sólo algunos pocos miles de millones de años. Pero, supongamos que las pruebas observacionales a favor de la aceleración resultaran ser incorrectas. ¿Qué pasaría entonces?

The Expansion of the Universe

Alguna podríamos estar tentados de preguntar: ¿En qué lugar exactamente ocurrió el Big Bang?, es decir, ¿Cuál es el centro del Universo? Y, al ser la expansión isotrópica y estar el universo expandiéndose en todas las direcciones, no parece que la  pueda tener respuesta. En cualquier lugar en el que nos podamos situar veremos siempre lo mismo, ¡el Universo se expande!

Lo más probable y según los conocimientos que hoy tenemos, lo que parece es que el universo se expandirá para siempre y, en esa diatriba  cuesta arriba está inmersa la vida que no quiere desaparecer y se enfrenta, en una batalla , a unos hechos que parecen irreversibles.

La vida necesita  diferencias de temperatura, o de densidad, o de expansión en el Universo de las que pueda extraer energía útil haciéndolas uniformes. Si se baza en recursos minerales de energía que existen localmente -estrellas muertas, agujeros negros que se evaporan, partículas elementales que se desintegran-, entonces con el tiempo se encara al problema al que se enfrentan inevitablemente los yacimientos muy explotados: cuesta más extraer los minerales de lo que pueda ganarse con ello.

The Observable Universe

El  intenta mostrar el Universo visible. Las galaxias en el Universo tienden a juntarse en los llamados supercúmulos que a su vez están rodeados  por gigantescos vacíos que le dan al universo una apriciencia celular y, debido a que la luz del Universo viaja a una velocidad constante, podemos ver objetos muy lejanos en el universo profundo, cuando éste era muy joven hace ahora unos trece mil nillones de años. En el Universo que para nosotros pudiera parecer infinito, se observan en 14 mil millones de años-luz:

– 25.000  de grupos galácticos.

– 350.000 millones de grandes galaxias.

– 7.000.000.000.000 de pequeñas galaxias.

– 30.000 trillones de estrellas (3 x 1022).

The <a href=

                 Imagen de galaxias lejanas captadas por el Hubble

Este es el  profundo que nos ofrece el Telescopio Espacial Hubble. En Diciembre de 1995 el Telescopio Espacial Hubble estaba apuntando a una zona supuestamente vacia de Ursa Major por diez dias. Esto produjo una de las fotos mas famosas de la astronomia moderna -. Una pequeña parte de la foto obtenida se muestra arriba. Casi todos los objetos mostrados ahí están entre 5 y 10 mil millones de años luz alejados. Las galaxias reveladas  son de todas formas y colores, algunas jovenes y azules mientras que otras rojas y viejas.

Los científicos creen saber que la expansión del Universo hará que los seres del futuro lejano tengan que economizar en el uso energético: ¡economizar en vida, de hecho! Y, para reducir el consumo libre de energía pasarán largos períodos en hibernación y se despertarán para procesar  durante un tiempo antes de volver al estado inactivo. Claro que, esos procesos conllevan ciertos problemas y necesitan de un despertador infalible que no ponga en peligro la vida de los hibernados.

Resultado de imagen de Los viajeros espaciales hibernados en grandes navesResultado de imagen de Los viajeros espaciales hibernados en grandes naves

              Decenas, cientos o miles de años hibernados hasta que se aviste el destino

En la mente de todos están aquellas escenas de algunas películas en las que, los viajeros espaciales tenían que recorrer esas grandes distancias que nos separan de los mundos lejanos en estado de hibernación que…, no siempre ofrecían la seguridad requerida para la vida. Hay que preparar algunos procesos físicos que proporcionen un despertador infalible sin utilizar tanta energía que se pierda el interés general por el período de hibernación y, hasta ahora no está nada claro si puede hacerse para siempre. parece que con el tiempo los gradientes de energía extraída que pueden utilizarse para impulsar los procesamientos de información se hacen ineficaces. Entonces la vida debe  a desaparecer.

Por el contrario, si la vida no limita su atención a fuentes de energías locales, la predicción a largo plazo parece mucho más brillante pero, para ello, necesitaríamos contar con unas tecnologías muy avanzadas que nos permitiera salir definitivamente de nuestro pequeño mundo para  en otros lugares lo que aquí hemos agotado.

Imagen relacionada

Imagen relacionada
Imagen relacionada
Imagen relacionada

                                       ¿Qué nos podremos  en otros lugares del Universo?

Parece que el Universo no se expande exactamente al mismo ritmo en todas las direcciones. Existen pequeñas diferencias de velocidad entre unas direcciones  y otras que podrán ser atribuibles a ondas gravitatorias de longitud de onda muy larga, probablemente infinita, que atraviesan el espacio. El desafío para las formas de vida super – avanzadas consiste en saber  alguna manera para saber aprovechar estas fuentes energías potencialmente ilimitados. Lo extraordinario en esto es que su densidad decrece mucho más lentamente que todas las formas ordinarias de materia a medida que el Universo se expande. Explotando las diferencias de temperaturas creada por radiación que se mueve paralela a la dirección de la expansiòn a ritmos diferentes, la vida puede encontrar una manera de mantener en marcha su procesamiento de información.

Resultado de imagen de La roca de Unobtanium que el jefe de la empresa tiene exhibida en su escritorio.

                  La roca de Unobtanium que el jefe de la empresa tiene exhibida en su .

No sabemos lo que nos puede aguardar en el futuro y nuestra imaginación recrea mundos posibles en los que pudiéramos encontrar una salida a las crisis que se avecinan en el devenir de la Humanidad. Para ningún humano es extraño el tema de los recursos naturales. Desde los años noventa hemos estado escuchando constantemente que los recursos naturales de la tierra se van a acabar, que ya no queda agua, que estamos destruyendo la tierra y suma y sigue. La imagen de arriba nos muestra una escena de la exitosa película y, el que  se desarrolle en un futuro en el que debemos viajar millones de años luz para explotar los recursos de otro planeta nos obliga a pensar en nuestro propio contexto presente.

Resultado de imagen de Ciudades en otros mundos

Nuestros descendientes que nacerán en otros mundos, sólo podrán tener imágenes de la Tierra y quedarán maravillados de su hermosura, Una joya que disfrutaron sus antepasados, nada comparable al mundo que ahora habitan ellos.

¿Quién sabe lo que a nuestros descendientes les aguarda? En futuro lejano aún en el tiempo, podríamos viajar a otros mundos que tengan sus propias formas de energías más cercanas a la Naturaleza. Mundos que estarían en una más estrecha simbiosis con los seres que lo habitan y que éstos, respetaran su naturaleza que sentirían más cercana que nosotros sentimos la nuestra.

Que no está nada claro nuestro porvenir es un hecho. Lo que sabemos nos habla de lejanas e inevitables catástrofes que ya están en camino: Andrómeda se nos echa encima, el Sol tiene sus días contados, la espada de Damocles de la caída inesperada de un gran meteorito…

Claro que hay un último truco que seres super-avanzados podrían  escondidos en su manga en éste mundo (universo) nuestro, que parece estar condenado sin remisión, bien por la expansión o por cualquier otra causa. Acordaos de que en 1949, el lógico Kurt Gödel, amigo y colega de Einstein en Princeton, le dio una sorpresa al demostrar que el  en el tiempo estaba permitido por la teoría de la gravedad, la relatividad . Incluso encontró una solución a las ecuaciones de Einstein para un universo en el que esto ocurría.

A Slice of the Universe

Sí, lo cierto es que nuestro Universo es muy  y nosotros muy pequeños. Sin embargo siempre he dicho que el Universo es casi tan grande como nuestra imaginación y, con tiempo por delante… ¿Quién puede predecir de lo que seremos capaces? ¿Acaso no pueden existir otros universos a los que poder escapar en caso necesario? Si conseguimos seguir aquí podría llegar el día en el que el universo se nos haga pequeño.

Dar el salto, primero a otros mundos y después… ¡a otros universos! Claro que, también nos queda otra posibilidad que no es, nada despreciables. Imaginad que al fin hemos podido dar con el secreto de los viajes en el Tiempo. Simplemente bastaría con viajar una y otra vez al tiempo deseado, aquel que más nos guste o que tenga las  más adecuadas y tranquilas para que la vida, no sea vea perturbada. Bastaría con viajar hacia atrás en el tiempo, a una era en la que las condiciones nos fueran más propicias y hospitalarias.

Claro que, no creo que la cosa fuese tan fácil y escapar de ese final termodinámico del Universo por esa vía… ¿No traería complicaciones en las poblaciones que verían llegar a seres del futuro? Y, ¿no sería posible que nos pudiéramos  con nuestro Yo futuro que al viajar hacia atrás se encontraría con él en el pasado?

Los viajes en el Tiempo (hacia atrás en el tiempo, se sobreentiende) han sido siempre una cuestión fascinante, ya sea como recurso argumental en la ciencia-ficción, como rompecabezas lógico, o como  de estudio en el ámbito de la física o de la filosofía. Uno de los elementos más interesantes de los mismos es la aparición de “paradojas”, situaciones en las que surge una contradicción causal o una incoherencia ontológica.

Un ejemplo del primer tipo es la célebre paradoja del abuelo, en la que un viajero del tiempo se traslada al pasado e impide que sus abuelos se conozcan, por lo que su propia existencia no será posible en el futuro (con lo que es imposible que viajara al pasado a impedir que sus abuelos se conocieran). En cuanto al segundo tipo,  un ejemplo canónico es aquel en el que alguien viaja al pasado con un ejemplar del Quijote y se lo da a Cervantes, que lo publica como obra suya. Y, de esa manera, podríamos describir mil y una situaciones en las que, las incongruencias estarían presentes para dibujar un mundo de locura.

Por otra parte,  y suponiendo que ya contamos con la tecnología necesaria, no sabemos de dónde obtendremos la energía necesaria para abrir un agujero de gusano que nos pudiera trasladar desde el presente. Claro que, de la misma manera que hemos alcanzado el  de esa tecnología, también habríamos podido alcanzar los conocimientos que exigen tener fuentes inagotables de energía para proyectos que, como los de viajar en el tiempo exigen.

Tampoco tenemos que perder de  las exigencias que dichos procesos de viajar en el Tiempo pudieran exigir de un cuerpo Humano. ¿Estaríamos preparados físicamente para soportarlo, o, por el contrario tendríamos que dejar ese privilegio de viajar en el Tiempo a seres artificiales creados por nosotros?

               La máquina para viajar en el Tiempo de la película Contac que asesoró KIp Thorne

Lo cierto es que, si en verdad llegáramos a construir una máquina de esas características… ¿Quién se atrevería a viajar por primera vez sin ninguna garantía de regresar? Bueno, en ese sentido y conociendo como somos, os aseguro amigos que la cola de aspirantes sería…¡interminable!

Sin que me de , he pasado de la expansión del Universo a viajar en el Tiempo y es que, como siempre digo… ¡qué imaginación!

emilio silvera

¿La masa perdida, o, que no entendemos nada?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

materia oscura” »

 

 

Resultado de imagen de Recreación artística del WHIM en la Pared del Escultor. Fuente: NASA.

                           Recreación artística del WHIM en la Pared del Escultor. Fuente: NASA.

La idea de la masa perdida se introdujo porque la densidad observada de la materia en el universo está cerca del valor crítico (10-29 g/cm3). Sin embargo, hasta comienzo de los ochenta, no hubo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. desde entonces la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado. Lo cierto es que la idea del universo inflacionista, estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico.

File:End of universe.jpg

Diagrama de las tres posibles geometrías del universo: cerrado, abierto y plano, correspondiendo a valores del parámetro de densidad Ω0 mayores que, menores que o iguales a 1 respectivamente. En el universo cerrado si se viaja en línea recta se llega al mismo punto, en los otros dos no. ( Ω es lo que los cosmólogos llaman el Omega Negro, es decir, la cantidad de materia que hay en el Universo).

La predicción de Guht viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los muchos otros procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.

El proceso mediante el cual la fuerza nuclear fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; una botella de leche explotará si se deja en el exterior una noche fría del crudo invierno. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.
Lo que sí sorprende es la enorme magnitud de la expansión. El tamaño del universo aumentó en un factor no menor de 1050. Este número es tan inmenso que virtualmente no tiene significado para la mayoría de la gente. Y es lógico que así sea, ya que, si su altura aumentase de repente en un factor tan grande como ése, se extendería de un extremo del universo al otro y les faltaría sitio. Incluso un solo protón de un solo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el universo.
En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una buena naranja. No es extraño que el nombre inflación esté ligado a este proceso en un cambio de fase tan descomunalmente inusual.
Resultado de imagen de Recreación artística del WHIM en la Pared del Escultor. Fuente: NASA.
Todas estas ideas han dado lugar a que los científicos se planteen el problema de la clase de universo en el que vivimos, y, se ha llegado a la conclusión de que será el que determine la cantidad de materia que contenga, es decir, conforme lo determine Ω, signo que significa toda la masa que contiene el universo y que será la que determine su geometría final y también, qué clase de final le espera en función de ese parámetro que llamamos Densidad Crítica del Universo y que según las medidas más afinadas está en 10-29 g/cm3.
Claro que cuando uno lee estas cosas y le dicen que el universo sufrió una expansión de tal magnitud, no se puede sustraer a la pregunta: ¿No violaría un crecimiento tan rápido las reglas de Einstein contra viajar más rápido que la luz? Si un cuerpo material viajó de un extremo de una naranja al otro en 10-35segundos, su velocidad excedió la de la luz en una cantidad muy considerable.
Claro que la respuesta a tal objeción la podemos encontrar, de manera simple y sencilla, en un globo que tiene dibujadas algunas galaxias. A medida que le añadimos aire y el globo se hincha (se expande), podemos apreciar cómo las galaxias se van separando las unas de las otras. Sin embargo, no son las galaxias las que viajan velozmente a medida que el aire entra en el globo, sino que es, el espacio mismo dentro del globlo el que se infla haciendo que las galaxias se muevan y dando la sensación de que son éstas las que corren, cuando, en realidad, es el espacio el que se está expandiendo. Ningún cuerpo material, ninguna de las galaxias se mueve a altas velocidades en el espacio. Las reglas contra el viaje a velocidad mayor que la luz sólo se aplica al movimiento dentro del espacio, no al movimiento del espacio mismo. Así que, nunca se ha violado la regla impuesta por la relatividad especial y la velocidad de la luz es una constante del universo inviolable.
Imagen relacionada
La geometría del espacio está determinada por la masa de los objetos que contiene: Cúmulos de galaxias, galaxias, estrellas, planetas. Cada cual en la debida proporción bambolea el espacio que se curva debido a la fuerza de gravedad que dichos objetos generan.
La consecuencia de la rápida expansión se puede describir mejor con referencia a la visión einsteniana de la gravitación. Antes de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribución de la materia (su forma precisa no importa). A causa de esta materia, el espacio-tiempo tendrá alguna forma característica. Podríamos suponer que estaba algo arrugado o bamboleado, es decir, no era uniforme y en presencia de materia se curvaba en función de la masa allí presente. Pero llegó la inflación y comenzó una especie de estiramiento del espacio-tiempo que dejó al universo como lo podemos ver hoy, es decir, según la materia que parece que contiene, es casi perfectamente plano por lo general.

 

Se ha tratado de medir la Densidad Crítica del Universo para poder saber en qué clase de universo estamos y, parece que es plano. La Densidad crítica es casi exacta con la cantidad de materia que posee el Universo.

 

 

Resultado de imagen de Universo cerrado abierto o plano

 

Las tres posibles clase de universo en función de la materia que contiene

 

 

Universo cerrado

 

Si omega  (Ω>1), entonces la geometría del espacio sería cerrada como la superficie de una esfera. La suma de los ángulos de un triángulo exceden 180 grados y no habría líneas paralelas. Al final, todas las líneas se encontrarían. La geometría del universo es, al menos en una escala muy grande, elíptico.

En un universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del universo, después de lo que empezará a contraerse hasta que toda la materia en el universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el universo tiene una gran suma de energía oscura (como sugieren los hallazgos recientes), entonces la expansión será grande.

 

 

 

 

Universo abierto

 

Si omega  (Ω<1), la geometría del espacio es abierta, p.ej., negativamente curvada como la superficie de una silla de montar. Los ángulos de un triángulo suman menos de 180 grados (llamada primera fase) y las líneas paralelas no se encuentran nunca equidistantes, tienen un punto de menor distancia y otro de mayor. La geometría del universo sería hiperbólica.

Incluso sin energía oscura, un universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un universo abierto es, o la muerte térmica” o “Big Freeze” o “Big Rip”,  dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.

 

Universo plano

 

Si la densidad media del universo es exactamente igual a la densidad crítica tal que omega (Ω=1), entonces la geometría del universo es plana: como en la geometría euclidiana,  la suma de los ángulos de un triángulo es 180 grados y las líneas paralelas nunca se encuentran.

Sin energía oscura, un universo plano se expande para siempre pero a una tasa continuamente desacelerada: la tasa de expansión se aproxima asintóticamente a cero. Con energía oscura, la tasa de expansión del universo es inicialmente baja, debido al efecto de la gravedad, pero finalmente se incrementa. El destino final del universo es el mismo que en un universo abierto, la muerte caliente del universo, el “Big Freeze” o el “Big Rip”. En 2005, se propuso la teoría del destino del universo Fermión-Bosón,  proponiendo que gran parte del universo estaría finalmente ocupada por condensado de Bose-Einstein  y la quasipartícula análoga al fermión,  tal vez resultando una implosión. Muchos datos astrofísicos hasta la fecha son consistentes con un universo plano.

 

 

http://upload.wikimedia.org/wikipedia/commons/9/94/Big_rip.gif

 

     Simulación del Big Rip
En un Universo abierto, la relatividad general predice que el Universo tendrá una existencia indefinida, pero con un estado donde la vida que se conoce no puede existir. Bajo este escenario, la energía oscura causa que las tasa de expansión del universo se acelere.  Llevándolo al extremo, una aceleración de la expansión eterna significa que toda la materia del Universo, empezando por las galaxias y eventualmente todas las formas de vida, no importa cuán pequeñas sean, se disgregarán en partículas elementales  desligadas. El estado final del Universo es una singularidad, ya que la tasa de expansión es infinita.
File:Big crunch.png
    El Big Crunch. El eje vertical se puede considerar como tiempo positivo o negativo

La teoría del Big Crunch es un punto de vista simétrico del destino final del Universo. Justo con el Big Bang empezó una expansión cosmológica, esta teoría postula que la densidad media del Universo es suficiente para parar su expansión y empezar la contracción. De ser así, se vería cómo las estrellas tienden a ultravioleta, por efecto Doppler.  El resultado final es desconocido; una simple extrapolación sería que toda la materia y el espacio-tiempo en el Universo se colapsaría en una singularidad espaciotemporal adimensional, pero a estas escalas se desconocen los efectos cuánticos necesarios para ser considerados -se aconseja mirar en Gravedad-Cuántica-..

Este escenario permite que el Big Bang esté precedido inmediatamente por el Big Crunch de un Universo precedente. Si esto ocurre repetidamente, se tiene un universo oscilante. El Universo podría consistir en una secuencia infinita de Universos finitos, cada Universo finito terminando con un Big Crunch que es también el Big Bang del siguiente Universo. Teóricamente, el Universo oscilante no podría reconciliarse con la segunda ley de la termodinámica:

 

 

Resultado de imagen de La Entropía

 

 

 

 

la entropía aumentaría de oscilación en oscilación y causaría la muerte caliente. Otras medidas sugieren que el Universo no es cerrado. Estos argumentos indujeron a los cosmólogos a abandonar el modelo del Universo oscilante. Una idea similar es adoptada por el modelo cíclico, pero esta idea evade la muerte caliente porque de una expansión de branas se diluye la entropía acumulada en el ciclo anterior.

Como podéis comprobar por todo lo anteriormente leído, siempre estamos tratando de saber en qué universo estamos y pretendemos explicar lo que pudo pasar desde aquel primer momento que no hemos podido comprender de manera exacta y científicamente autosuficiente para que sea una ley inamovible del nacimiento del universo. Simplemente hemos creado modelos que se acercan de la mejor manera a lo que pudo ser y a lo que podría ser.

 

Resultado de imagen de El modelo del Big Bang

 

Cuando pasen algunos miles de millones de años más, no sabemos que será del Universo ni que rumbo habrán tomado las cosas, toda vez que, el Universo es dinámico y cambiante. Si todo sigue como ahora lo podemos contemplar, lo que parece es que vamos, sin remisión, hacia una muerte térmica del Universo en el que el espacio continuará expandiéndose y las galaxias se alejaran las unas de las otras hasta que, la entropía deje sin energía a todo el universo que, como sistema cerrado, se verá abocado a quedar estático, en el frío más profundo de los -273 ºC. Allí, entonces, nada se moverá, ni los átomos tendrán la posibilidad de que sus componentes se muevan.
Claro que, nada de todo lo anterior… ¡lo podemos asegurar!
emilio silvera

¿Viajes en el Tiempo? ¡Otro sueño de la Humanidad!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros de gusano    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En cromodinámica cuántica, la propiedad de libertad asintótica hace que la interacción entre quarks sea más débil cuanto más cerca están unos de otros (confinación de quarks) y la fuerza crece cuando los quarks tratan de separarse, es la única fuerza que crece con la distancia. Los quarks y los gluones están confinados en una región cuyo valor se define por:

R » ћc /L » 10-13 cm

Poder contemplar Quarks libres sólo podría haber sido posible en aquellos primeros momentos, antes de la formación de los hadrones. En realidad, la única manera de que pudiéramos observar quarks libres, sería en un ambiente con la temperatura del universo primitivo, es la temperatura de desconfinamiento.

Ahora se cree que el Big Crunch nunca se producirá y que la muerte del Universo será térmica, es decir, una temperatura del cero absoluto que lo paralizará todo, ni los átomos se moverán en ese frío de muerte que dejará un universo congelado donde ni brillaran las estrellas ni estará presente ninguna clase de vida.

En la parte anterior de este mismo trabajo,  estaba hablando del Big Crunch y me pasé a otro (los quarks), así que cerremos este capítulo del Big Crunch que está referido a un estado final de un universo cerrado de Friedmann  (es decir, uno en el que la densidad excede a la densidad crítica). Dicho universo se expande desde el Big Bang inicial, alcanza un radio máximo, y luego colapsa hacia un Big Crunch, donde la densidad de la materia se vuelve infinita después de que la gravedad haga parar la expansión de las galaxias que, lentamente al principio, y muy rápidamente después, comenzarán a desplazarse en sentido contrario, desandarán el camino para que toda la materia del universo se junte en un punto, formado una singularidad en la que dejaría de existir el espacio-tiempo. Después del Big Crunch debería haber otra fase de expansión y colapso, dando lugar a un universo oscilante.  universo que se va y universo que viene.

Pero, ¿y nosotros?, ¿qué pintamos aquí?

¡Mirado así no parece que seamos gran cosa!

Antes de pasar a otros temas, retomemos el de los viajes en el tiempo y las paradojas que pueden originar.

Una versión de la máquina del tiempo de Thorne consiste en dos cabinas, cada una de las cuales contiene dos placas de metal paralelas. Los intensos cambios eléctricos creados entre cada par de placas de metal paralelas (mayores que cualquier cosa posible con la tecnología actual) rizan el tejido del espacio-tiempo, creando un agujero en el espacio que une las dos cabinas. Una cabina se coloca entonces en una nave espacial y es acelerada a velocidades próximas a la de la luz, mientras que la otra cabina permanece en la Tierra. Puesto que un agujero de gusano puede conectar dos regiones des espacio con tiempos diferentes, un reloj en la cabina de la nave marcha más despacio que un reloj en la cabina de la Tierra. Debido a que el tiempo transcurriría a diferentes velocidades en los dos extremos del agujero de gusano, cualquiera que entrase en un extremo del agujero de gusano sería instantáneamente lanzado al pasado o al futuro.

Stephen Hawking

Viajar al pasado y conocer a personajes famosos a los que contar las novedades científicas. Algunos dicen que el viaje en el Tiempo está prohibido, aunque es posible. Siempre hemos tenido una gran imaginación y, cuando no sabíamos contestar a una cuestión compleja… ¡Inventamos la respuesta!

Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.

Parece que la función de las placas metálicas paralelas consiste en generar la materia o energía exótica necesaria para que las bocas de entrada y salida del agujero de gusano permanezcan abiertas y, como la materia exótica genera energía negativa, los viajeros del tiempo no experimentarían fuerzas gravitatorias superiores a 1g, viajando así al otro extremo de la galaxia e incluso del universo o de otro universo paralelo de los que promulga Stephen Hawking. En apariencia, el razonamiento matemático de Thorne es impecable conforme a las ecuaciones de Einstein.

Claro que una cosa es la escenificación matemática en la pizarra y otra muy distinta el llevar esa idea a la realidad, de tal manera que todo lo que nos dicen las ecuaciones se convierta en un hecho cierto. Conseguir eso es lo que diferencia al genio de los demás.

                Muchas son las máquinas del tiempo que hemos desarrollado en nuestra imaginación

Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.

Resultado de imagen de Agujero de gusano

“Los agujeros de gusano son túneles capaces de unir dos puntos alejados en el espacio a través de una curvatura en el espacio-tiempo. Son una forma de, en teoría, viajar entre esos dos puntos lejanos instantáneamente. Una fantástica forma de teletransportarse si no fuese porque nunca se ha visto uno en el espacio y que, por tanto, solo existen en nuestra imaginación” Hasta que no se demuestre lo contrario.

Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.

En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.

“Nuestra línea de universo resume toda nuestra historia, que nacemos hasta que morimos. Cuanto más rápido nos movemos más se inclina la línea de universo. Sin embargo, la velocidad más rápida a la que podemos viajar es la velocidad de la luz. Por consiguiente, una de este diagrama  espacio-temporal está “prohibida”; es decir, tendríamos que ir a mayor velocidad que la luz para entrar en esta zona prohibida por la relatividad especial de Einstein, que nos dice que nada en nuestro universo puede viajar a velocidades superiores a c.”

 

 

Imagen relacionada

                 Sí, ¿pero dónde está esa energía negativa para viajar en el Tiempo? El efecto túnel se usa para ilustrar la diferencia entre la mecánica clásica y la mecánica cuántica. Una partícula cuántica puede atravesar una barrera de potencial imposible de atravesar… ¿Energía cinética negativa?

Este concepto más bien simple se conoce con un nombre que suena complicado: la condición de energía media débil (average weak energy condition, o AWEC). Como Thorne tiene cuidado en señalar, la  AWEC debe ser violada; la energía debe hacerse temporalmente negativa para que el viaje en el tiempo tenga éxito. Sin embargo, la energía negativa ha sido históricamente anatema para los relativistas, que advierten que la energía negativa haría posible la antigravedad y un montón de otros fenómenos que nunca se han visto experimentalmente.

Pero Thorne señala al momento que existe una forma de obtener energía negativa, y esto es a través de la teoría cuántica.

En 1.948, el físico holandés Hendrik Casimir demostró que la teoría cuántica puede crear energía negativa: tomemos simplemente dos placas de metal paralelas y descargadas ordinariamente, el sentido común nos dice que estas dos placas, puesto que son eléctricamente neutras, no ejercen ninguna fuerza entre sí. Pero Casimir demostró que, debido al principio de incertidumbre de Werner Heisenberg, en el vacío que separa estas dos placas existe realmente una agitada actividad, con billones de partículas y antipartículas apareciendo y desapareciendo constantemente. Aparecen a partir de la “nada” y vuelven a desaparecer en el “vacío”. Puesto que son tan fugaces, son, en su mayoría, inobservables, y no violan ninguna de las leyes de la física. Estas “partículas virtuales” crean una fuerza neutra atractiva entre estas dos placas que Casimir predijo que era medible.

 

HAN DESCUBIERTO QUE EL EFECTO CASIMIR PUEDE MOVER UNA ESFERA QUE NO ESTÁ EN CONTACTO CON NINGUNA SUPERFICIE.

Observan una extraña fuerza capaz de mover nanopartículas a distancia. Si una bola muy pequeña gira sobre sí misma dentro de un vacío cuántico se moverá en una dirección concreta.

Imaginad una pequeñísima esfera que apenas mide unos nanómetros (un millón de veces menos que un milímetro). La esfera está rodando sobre una superficie plana pero no llega a tocarla, por lo que no experimenta ningún rozamiento y se queda en el sitio donde está. Pues bien, existe un extraño fenómeno, llamado efecto Casimir que hace que la esfera experimente un desplazamiento lateral, aunque la bola no llegue a tocar la superficie de abajo. ¿Qué energía la impulsa?

Cuando Casimir publicó el artículo, se encontró con un fuerte escepticismo. Después de todo, ¿cómo pueden atraerse dos objetos eléctricamente neutros, violando así las leyes normales de la electricidad clásica? Esto era inaudito. Sin embargo, en 1.985 el físico M. J. Sparnaay observó este efecto en el laboratorio, exactamente como había predicho Casimir. Desde entonces (después de un sin fin de comprobaciones), ha sido bautizado como el efecto Casimir.

Una manera de aprovechar el efecto Casimir mediante grandes placas metálicas paralelas descargadas, sería el descrito para la puerta de entrada y salida del agujero de gusano de Thorne para poder viajar en el tiempo.

Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como para contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.

Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.

En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.

              Podríamos ver como se forman las nebulosas y nacen y mueren las estrellas

Antes comentaba algo sobre disfrutar de un viaje al pasado pero, pensándolo bien, no estaría yo tan seguro. Rápidamente acuden a mi mente múltiple paradojas que, de una u otra especie han sido narradas, principalmente por escritores de ciencia-ficción que, por lo general, son los precursores del futuro.

Si viajar en el tiempo finalmente pudiera ser posible, cosas parecidas a esta locura ¡”podrían ocurrir”! I. B. S. Haldane, nos decía:

“La naturaleza no sólo es más extraña de lo que suponemos; es más extraña de lo que podamos suponer”.

emilio silvera