Jun
28
La Naturaleza misteriosa
por Emilio Silvera ~ Clasificado en La Naturaleza...El Universo ~ Comments (0)
En unas minas de uranio en Oklo, Gabón, hace 1.700.000.000 años, se produjeron reacciones en cadena moderadas por agua, y de forma natural se formaron pequeños reactores nucleares. Estudiando este fenómeno podemos aprender algo sobre cómo almacenar residuos nucleares a larguísimo plazo. En relación a este hecho histórico se me ha ocurrido buscar más información y ponerla aquí para ustedes con el título de:
Un Reactor Nuclear de la prehistoria
Habiendo leído uno de los libros de John D. Barrow, recordé que en él, por alguna parte, venía recogido un suceso muy interesante que paso a relatar corroborando así que, nunca llegamos a conocerlo todo y, en este caso, es la Tierra la que nos ha dado la sorpresa.
“El 12 de Junio de 1972 el doctor Bouzigues, hizo un descubrimiento preocupante, el tipo de descubrimiento que podía tener incalculables explicaciones políticas, científicas e incluso delictivas. Bouzigues trabaja en la planta de procesamiento de combustible nuclear de Pierrelatte, en Francia. Una de sus tantas rutinas consistía en medir la composición de menas procedentes de minas de Uranio próximas al río Oklo, en la antigua Colonia francesa ahora conocida como la República Africana Occidental de Gabón, a unos 440 km de la costa Atlántica.
Una y otra vez comprobaba la fracción de mineral natural que estaba en forma de isótopo de uranio-235 comparada con la fracción en forma de isótopo de Uranio-238, para lo que realizaba análisis de muestras de hexafluoruro de uranio gaseoso. La diferencia entre los dos isótopos es crucial. El Uranio que se da en forma natural y que extraemos del interior de la Tierra está casi todo en forma de Isótopo 238. Esta forma de Uranio no producirá una cadena de reacciones nucleares autosostenidas. Si lo hiciera, nuestro planeta habría explotado hace mucho tiempo.
Para hacer una bomba o una reacción en cadena productiva es necesario tener trazas del isótopo activo 235 de Uranio. En el Uranio Natural no más de una fracción de un 1 por 100 está en forma 235, mientras que se requiere aproximadamente un 20 por 100 para iniciar una cadena de reacciones nucleares. El Uranio “enriquecido” contiene realmente un 90 por 100 del isótopo 235. Estos números nos dejan conciliar un sueño profundo por la noche con la seguridad de que por debajo de nosotros no se va a iniciar espontáneamente una interminable cadena de reacciones nucleares que convierta la Tierra en una bomba gigantesca. Pero ¿quién sabe si en algún lugar habrá más 235 que la media?
¿Sabías que, escondido en una montaña en Gabón, África se encuentra el reactor nuclear más potente y antiguo del planeta, con más de 1.8 billones de años de antigüedad?
Boziguez midió con gran precisión la razón de isótopo 235 frente a 238. Eran comprobaciones importantes de la calidad de los materiales que en última instancia se utilizarían en la industria nuclear francesa. El suyo era un trabajo rutinario, pero ese día de Junio de 1972 su atención a los detalles se vio recompensada. Advirtió que algunas muestras presentaban una razón 235 a 238 de 0,717 por 100 en lugar del valor normal de 0,720 por 100 que se encuentra normalmente en todas las muestras terrestres, en incluso en meteoritos y rocas lunares. Tan exactamente se conocía el valor “normal” a partir del experimento, y tan exactamente estaba reflejado en todas las muestras tomadas, que esta pequeña discrepancia hizo sonar los timbres de alarma. ¿Dónde estaba el 0,003 por 100 que faltaba de Uranio 235? Era como si el Uranio ya hubiese sido utilizado para alimentar un reactor nuclear de modo que la abundancia de 235 se había reducido antes de haber sido extraído de las minas.
La Comisión de Energía Atómica de Francia consideró todo tipo de posibilidades. ¿Quizá las muestras habían sido contaminadas por algún combustible ya utilizado procedente de la planta de procesamiento? Pero no había ninguna prueba de la intensa radiactividad que habría acompañado al combustible usado, y ningún hexafluoruro de Uranio reducido faltaba en el inventario de la Planta.
Pero a poco las investigaciones descubrieron que la fuente de la discrepancia estaba en los propios depósitos naturales del Uranio. Había una baja razón 235 a 238 en las vetas de la mina. Se estudio todo el proceso y recorrido del Uranio desde su extracción hasta su transporte al lugar de destino, y, todo era correcto, nada extraño podía influir en la discrepancia descubierta. El Uranio procedente de la Mina de Oklo era simplemente distinto del que se encontraba en cualquier otro lugar.
Cuando se investigó con detalle el emplazamiento de la Mina pronto quedó claro que el Uranio 235 que faltaba había sido destruido dentro de las vetas de la Mina. Una posibilidad era que algunas reacciones químicas lo hubiesen eliminado mientras dejaban intacto el 238. Por desgracia, las abundancias relativas de Uranio 235 y 238 no se ven afectadas de forma diferente por procesos químicos que hayan ocurrido en el interior de la Tierra. Tales procesos pueden hacer que algunas partes de la Tierra sean ricas en mineral de Uranio a expensas de otras partes al disolverlo y transportarlo, pero no alteran el balance de los dos isótopos que constituyen el mineral disuelto o en suspensión. Sólo las reacciones y desintegraciones nucleares pueden hacerlo.
Los subproductos de Oklo han sido usados para realizar varios experimentos científicos. Quizás el más famoso sea uno en que se intentó comprobar si las velocidades de desintegración de los isótopos hace 1.700 millones de años eran diferentes a las de ahora (parece que no, pero los resultados no fueron concluyentes).
Poco a poco, la insospechada verdad salió a la luz ante los investigadores. Las vetas bajas en Uranio-235 contenían las pautas características de otros 30 o más elementos atómicos que se forman como subproducto de las reacciones de fisión nuclear. Sus abundancias eran completamente diferentes de las que se dan en forma natural en rocas donde no hubieran ocurrido reacciones de fisión. La reveladora firma de los productos de fisión nuclear se conoce a partir de los experimentos en reactores construidos por el hombre. Seis de estas vetas características de la actividad de un Reactor Nuclear Natural fueron finalmente identificadas en Oklo. Algunos de los elementos presentes, como el neodimio, tienen muchos isótopos pero no todos son productos de la fisión. Los que no son productos de fisión proporcionan por consiguiente una calibración de la abundancia de todos los isótopos antes de que empezaran las reacciones naturales y de este modo nos permite determinar los efectos y tiempos característicos de dichas reacciones.
Sorprendentemente, parecía que la Naturaleza había conspirado para producir un Reactor Nuclear Natural que había generado reacciones nucleares espontáneas bajo la superficie de la Tierra hace dos mil millones de años. Fue este episodio de la historia geológica de Gabón lo que había llevado a la acumulación de productos de fisión en el emplazamiento actual de la misma.
Las primeras reacciones nucleares producidas por el hombre se produjeron el 2 de diciembre de 1942 como parte del famoso Proyecto Manhattan que culminó con la fabricación de las primeras bombas atómicas.”
Después de leer el relato histórico del suceso que, sin ninguna duda, nos revela la certeza y posibilidad de que, en cualquier momento, se pueda producir otro suceso similar de cuyas consecuencias nadie puede garantizar nada, uno se queda preocupado y puede pensar que, aquel suceso, no llegó a más debido a una serie de circunstancias que concurrieron y, desde luego “el ambiente oxidante necesario que aportase el agua requerida para concentrar el uranio fue originado por un importante cambio de la biosfera de la Tierra. Hace dos mil millones de años ocurrió un cambio en la atmósfera, producido por el crecimiento de algas azul-verdosas, los primeros organismos de producir fotosíntesis.
Claro que eso, sería entrar en otras historias. Sin embargo, no debemos olvidar que, en nuestro planeta, todo está relacionado y por lo tanto, los cambios y mutaciones que se puedan producir en la Naturaleza de la misma, influyen, de manera irreversible, en todo lo demás.
Esperemos que ningún Reactor Nuclear Natural se vuelva a poner en marcha, ya que, de ser así, no sabemos si se darán las precisas condiciones necesarias para que no continúe indefinidamente su actividad y nos mande a todos al garete.
¡La Naturaleza! que no nos avisa con el tiempo suficiente de lo que piensa hacer mañana y, el ejemplo más cercano lo tenemos con el terrible terremoto acaecido en el territorio de los antiguos mayas.
emilio silvera
Jun
24
Enigmático Encélado
por Emilio Silvera ~ Clasificado en Lunas misteriosas ~ Comments (0)
Géiseres en Encélado, luna de Saturno – Archivo
El océano subterráneo de Encélado, un “banquete” para la vida extraterrestre. Han descubierto la composición química del agua es mucho más adecuada de lo que se creía para dar sustento a múltiples organismos.
Noticias de Prensa
Donde hay comida, hay vida. Y un equipo de investigadores de la Universidad de Washington acaba de comprobar que Encélado, una de las lunas de Saturno, tiene mucha más capacidad para dar sustento a múltiples formas de vida de lo que se creía hasta ahora. Así lo han anunciado Lucas Fifer, David Catling y Jonathan Toner, autores del estudio, durante el AbSciCon 2019, la Conferencia de Astrobiología que celebra cada año la Unión Geológica Americana en Washington.
Desde que la misión Cassini la visitara por primera vez en 2004, la luna Encélado no ha dejado de dar sorpresas. Uno de los mayores descubrimientos fue una serie de géiseres de vapor de agua alrededor de su polo sur, lo que reveló la presencia de un gran océano subterráneo. Desde entonces, se han llevado a cabo decenas de investigaciones para averiguar si allí, en las profundidades de ese vasto mar extraterrestre, puede haber surgido la vida.
El de Fifer y sus colegas es el último de esos trabajos, y en él se demuestra que las concentraciones de dióxido de carbono, hidrógeno y metano en el océano interior de Encélado son mucho más altas de lo que pensaba, y que el ph de sus aguas es sorprendentemente similar al de la Tierra. Unas condiciones ideales, pues, para dar sustento a múltiples formas de vida bacteriana.
Una «ventana imperfecta»
Fueron precisamente las similitudes en el ph, la salinidad y la temperatura de ese océano alienígena con los de la Tierra lo que más ha atraído la atención de cientos de investigadores. Todas esas características fueron determinadas estudiando la composición de los géiseres, que periódicamente hacen erupción en el polo sur de Encélado y lanzan vapor de agua al espacio a una velocidad de 1.300 km/h.
Sin embargo, Fifer y su equipo se dieron cuenta de que los géiseres no tienen la misma composición química que el océano del que proceden. La propia erupción, en efecto, se encarga de alterar esa química por medio de un proceso de separación de gases llamado fraccionamiento, que hace que algunos de ellos entren en erupción mientras que otros se quedan atrás.
Por eso, según los autores del estudio, los géiseres son una “ventana imperfecta” a la verdadera composición química del océano subterráneo. Para corregir ese error, decidieron analizar los datos de la Cassini en una simulación informática que tenía en cuenta los efectos del fraccionamiento, y eso reveló que los estudios anteriores habían subestimado la presencia de hidrógeno, metano y dióxido de carbono en las aguas subterráneas.
Muestras de los géiseres
En palabras de Fifer, “es mejor encontrar concetraciones altas de gas que ninguna. Parece poco probable que la vida pudiera evolucionar y consumir este álmuerzo químico si los gases no fueran abundantes en el océano… Aunque hay excepciones, la vida en la Tierra funciona mejor viviendo o consumiendo agua con un ph casi neutro, por lo que las condiciones similares en Encélado resultan tentadoras, y facilitan mucho más la comparación de este extraño mundo oceánico con un entorno más familiar”.
Cuando dispongamos de una tecnología más adecuada y completa para efectuar exploraciones más precisas, podremos al fín, desvelar los muchos secretos que guardan estos pequeños “mundos”.
Fifer y sus colegas reconocen sin embargo que esa alta concentración de gases podría indicar, también, una falta de organismos vivos que los consuman. Pero eso, añaden, no significa necesariamente que Encélado carezca de vida, sino que los organismos podrían no ser lo suficientemente abundantes como para consumir toda la energía química disponible. En todo caso, eso será algo que resolverán las próximas misiones a la misteriosa luna de Saturno.
“Las futuras misiones espaciales -concluye Fifer- tomarán muestras directamente de los géiseres en busca de signos de vida en Encélado, muchos de los cuales se verán afectados por el proceso de erupción. Por lo tanto, entender la diferencia entre el océano y los chorros de agua será de gran ayuda en el futuro”.
Jun
24
¿Por qué, si está más lejos, calienta más el Sol en verano?
por Emilio Silvera ~ Clasificado en Cosas curiosas ~ Comments (0)
Algunas erupciones pueden causar grandes daños en la Tierra
Aunque en un principio pueda sonar contradictorio, la Tierra se encuentra más lejos del Sol en verano que en invierno. Hablamos, eso sí, del verano y del invierno en el hemisferio norte. Ahora bien, ¿cómo es esto posible si el Sol es la gran fuente de calor del planeta azul? Pues por una sencilla razón: no importa tanto la distancia entre la gran estrella y nuestro planeta como la inclinación de éste último.
El eje imaginario sobre el cual gira la Tierra está desviado unos 23 grados -si bien es cierto que varía entre los 22 y los 24 en un proceso que dura miles de años. Esa inclinación lateral del planeta cambia radicalmente la forma en que los rayos solares, que son los que irradian calor sobre la Tierra, impactan sobre la atmósfera y la superficie terrestre. De ese modo, se desechan teorías como que en verano hace más calor porque el cielo está más despejado o porque hay más horas de luz, que intentan explicar la diferencia de temperatura. (Ésta última es cierta, si bien es verdad que no bastaría que hubiese un cambio de temperatura tan drástico).
Sí, este verano el Sol nos fastidiará un poco más de cuenta
Cuando en el hemisferio norte es verano, el eje terrestre hace que sea esa mitad superior del globo la que esté más cerca al sol y, por tanto, que los rayos solares incidan sobre la Tierra más perpendicularmente, es decir, de manera menos oblicua. Por eso, en julio o agosto da la sensación de que el Sol llega más arriba en el cielo. Lo que ocurre es que se alinea con el hemisferio norte. La radiación solar, en verano, se concentra en un menor espacio que en inviero, haciendo que la temperatura sea mayor.
Si no tenemos cuidado… Tomar el Sol nos puede causar serios problemas
El momento en que el sol está más lejano a la Tierra -unos 152 millones de kilómetros- se llama afelio. Por su parte, el nombre que recibe el punto de la órbita terrestre más cercano al astro rey es perihelio y mide unos 147 millones de kilómetros. La diferencia entre ambas cantidades puede asustar si se mira en cuano a valor absoluto, pero si tenemos en cuenta que apenas es un tres por ciento de la distancia media, vemos que es un dato insignificante.
Así, la distancia entre Tierra y Sol no es lo que determina las estaciones del año, sino la inclinación del eje de nuestro planeta, razón por la cual cuando en el norte es verano, en el sur es invierno y viceversa. Si el eje fuera perpendicular al ecuador y a los rayos del sol, no existirían las estaciones y los días durarían exactamente lo mismo siempre en todos los lugares del mundo. Por eso, en regiones próximas a la línea que divide nuestro planeta en dos mitades los días son casi siempre iguales y la hora de amanecer y de anochecer apenas varía unos minutos.
emilio silvera
Jun
23
Estamos en un Universo de geometría curva
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (0)
Parece que toda la geometría del Universo es redonda, o, al menos, los objetos que en él se crean tienden a ser circulares, la energía que los mueve los hace girar spbre su centro y, ya sean lunas, planetas, estrellas, galaxias o agujeros negros… ¡Todos tienen la geometría circular!
“Aunque a grandes rasgos pueda parecernos que todas las estrellas, planetas y otros cuerpos celestes tienen una forma totalmente esférica, lo cierto es que les queda mucho para poder considerarse como tales.
Quizás en un principio lo fueron, pero las fuerzas centrífugas a las que se someten al girar sobre sí mismos les ha llevado a que sus regiones ecuatoriales se alejen del centro de rotación, dando lugar a cuerpos algo más anchos que altos; que, por lo tanto, no pueden considerarse como una esfera perfecta.
Sin embargo, un equipo de investigadores del Instituto Max Planck y la Universidad de Göttingen, acaba de descubrir una estrella que, en contra de todo pronóstico, aún conserva esa forma, considerándose el objeto más redondo creado por la naturaleza.”
Si nos centramos en objetos de la naturaleza y, más concretamente, del espacio exterior, nos encontramos con que no existen formas totalmente redondas debido a las fuerzas centrífugas a las que se someten algunos cuerpos celestes al girar sobre su propio eje.
Como resultado, la medida de los radios ecuatorial y polares será muy diferente, mostrando que no son totalmente esféricos, como se puede ver en la primera imagen superior.
Sin embargo, este objeto, cuyo descubrimiento ha sido publicado recientemente en Science Advances, sólo tiene una diferencia de 3 kilómetros, que pueden parecernos mucho si tenemos que hacerlos corriendo cuesta arriba y sin el calzado adecuado, pero son una nimiedad en comparación a los 1,5 millones de kilómetros que tiene de media el radio de la estrella, llamada Kepler 11145123.
Está claro que tener una imagen completa del Universo… ¡No podemos! Para eso tendríamos que salir de él, y, a mucha distancia tomar una fotografía del conjunto, y, de esa manera, podríamos tener una idea más completa de como es. Hago éste comentario porque, alguna vez, pude oír a un conferenciante cosmólogo referirse al “borde” del Universo.
Hablar del “borde” del Universo parece… arriesgado. Pienso que situado en la Tierra miro el horizonte allá a los lejos, ante mí sólo un inmenso espacio abierto que parece finalizar en esa línea que llamamos horizonte. Camino hacia él y nunca lo alcanzó, siempre se vislumbra a lo lejos, inalcanzable.
¿Pasará lo mismo con nuestro Universo que, al ser en su conjunto redondo, es “ilimitado” y nunca podremos alcanzar ese supuesto “borde” . Sin embargo, sabemos que nada es ilimitado, todo tiene un principio y un final, y, el Universo no puede ser una excepción.Si caminamos siempre en línea recta, llegará un momento en que saldremos del Universo, hacia otra parte, y, seguramente, nos podremos encontrar con otros universos que pertenecerán al mismo cúmulo que el nuestro.
¿Quién sabe la verdad? ¿Por qué nuestro Universo tiene que ser único? Si existen cúmulos de estrellas y de galaxias… ¿Por qué no de universos? Algunos estudios y observaciones aconsejan pensar que nuestro universo no está sólo. Otra cosa será poder demostrarlo con la actual tecnología.
De todas las maneras, me gusta imaginar más allá de lo que creemos que sabemos.
emilio silvera
Jun
23
Más lejos… ¡Objetos más jóvenes!
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
A la izquierda, una imagen en falso color obtenida combinando exposiciones en tres filtros con el telescopio Hubble, en la derecha se observa la misma zona del cielo vista con GTC utilizando un único filtro más sensible a la emisión de estrellas muy jóvenes. / UCM.
La lente gravitacional permite amplificar los objetos lejanos
En el futuro próximo se podrán detectar muchas galaxias como A370-L57 con GTC y Hubble, y otras aún más distantes que estén formando su primera población de estrellas y estudiarlas en gran detalle gracias al telescopio espacial James Webb, que han desarrollado conjuntamente la NASA y la Agencia Espacial Europea, y que será puesto en órbita en 2019.
Lástima que la NASA haya retrasado de nuevo su lanzamiento
El James Webb va a permitir contestar algunas de las cuestiones fundamentales sobre cómo y cuándo se formaron las primeras galaxias y estrellas, pero sin duda habrá sorpresas y surgirán también muchas preguntas nuevas. Los próximos años van a ser apasionantes.
Aquí se captó como se formaba un jóven cúmulos de galaxias en el Universo temprano
Lograr identificar galaxias tan lejanas en sus primeras etapas de formación es un gran reto para los astrofísicos, puesto que la luz que llega es muy débil. Por eso, solo se suele detectar a las más grandes y luminosas, que tienden a ser también las más evolucionadas.
En el Universo encontramos objetos que no dejan de sorprendernos. Ahí aparece la imagen de lo que parece una serpiente cósmica dentro de las estructura de lejanas galaxias.
A la distancia de A370-L57, incluso el Hubble sólo puede detectar galaxias que ya tienen cientos o miles de millones de estrellas, formadas a lo largo de decenas o cientos de millones de años. En comparación, esta tiene sólo unos cuatro millones de años de edad y una masa de apenas tres millones de veces la del Sol.
emilio silvera