domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿De dónde venimos? ¿Hacia dónde vamos? ¿Quiénes somos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

Miramos la Naturaleza y su asombrosa belleza, y, no siempre podemos explicar lo que vemos. Miramos el Universo y sus maravillas y sólo podemos asombrarnos.  Nos pasamos todo el tiempo haciendo preguntas que, la mayoría de las veces nadie sabe contestar. Aprendemos a base de equivocarnos una y otra vez y, la observación y el estudio, la teoría y las matemáticas nos han llevado a discernir en qué lugar estamos pero… ¿No habremos tomado el camino hacia ninguna parte?

“¿Dónde estaríamos nosotros cuando se conformaron los cimientos de la Tierra?”

 

El titulo de ésta pagína es la pregunta que se hicieron los filósofos desde tiempos inmemoriales, y, en relación a las preguntas que se plantean, con los conocimientos que actualmente tenemos podríamos exponer diverdsas respuestas que serían el resultado de las distintas perspectivas que, cada una de ellas, pueden mostrarnos. Lo cierto es que, a ciencia cierta, nadie sabría contestar y todas esas posibles respuestas serían aproximaciones más o menos acertadas a los problemas planteados.

Resultado de imagen de las-civilizaciones-antiguas

Resultado de imagen de Tenochtitlan, pintura de Diego Rivera

Resultado de imagen de las-civilizaciones-antiguas-primeras-civilizacionesResultado de imagen de las-civilizaciones-antiguas-limpiezaResultado de imagen de las-civilizaciones-antiguas-canteros

                   Muchas cosas han pasado desde que se formó la Tierra hasta llegar a nuestros días

“Nosotros, los humanos, llegamos muchísimo más tarde, cuando los materiales que formaron la Tierra estaban más fríos y se formaron los océanos, cuando había ya una atmósfera y, lo cierto es que, los materiales que hicieron posible nuestra presencia aquí, estaban en aquella nebulosa que se esparcía en el esapcio interestelar que hoy ocupa nuestro Sistema solar, una supernova hace ahora miles de millones de años, fue el pistoletazo de salida. Después, el Tiempo, aliado con la materia y la fuerza de gravedad, hicieron posible que surgiera el Sol y, a su alrededor, los planetas y lunas de nuestro entorno, y, con la ayuda de lo que hemos llamado evolución y los ingredientes precisos de atmósfera, agua, radioactividad y otros parámetros necesarios, surgío aquella primera célula replicante que lo comenzó todo, es decir, la aventura de la Vida.”

 

 

            Una Tierra ígnea, incandescente, sin vida

Todas estas explicaciones, son muy pobres para describir los acontecimientos que aquí tuvieron lugar antes de que nosotros hiciéramos acto de presencia como seres humanos verdaderos. Ya me gustaría saber para poder contestar a todas las preguntas que me plantean.

La especulación sobre el origen del Universo es una vieja y destacada actividad humana. Vieja por el simple hecho de que la especie humana, no tiene ningún certificado de nacimiento y, tal desconocimiento de sus orígenes, les hace ser curiosos, deseosos de saber el por qué están aquí y pudo suceder su venida. Estamos obligados a investigar nuestros orígenes nosotros sólos, sin la ayuda de nadie, es el caso que, ningún ser inteligente nos puede contar lo que pasó y, siendo así, nos vemos abocados a tener que hurgar en el pasado y valernos de mil ingeniosos sistemas para tratar de saber. Así que, si investigamos sobre el mundo del que formamos parte, esas pesquisas terminarán por decirnos más, sobre nosotros mismos que sobre el universo que pretendemos describir. En realidad, todos esos pensamientos, que no pocas veces mezclan lo imaginario con la realidad, todo eso, en cierta medida, son proyecciones psicológicas, esquemas proyectados por nuestras mentes sobre el cielo, como sombras danzantes de un fuego fatuo que no siempre nos transmite algún mensaje.

Aquellos mitos de la creación precientíficos dependían en su supervivencia menos de su acuerdo con los datos de la observación (de los que, de todos modos había pocos) que del grado en que eran satisfactorios, o tranquilizantes  o poéticamente atractivos. Aficionados a ellos puesto que eran nuestros, esos cuentos poníann de relieve lo que más importaba a las sociedades que los conservaban. Los sumerios vivían en una confluencia de ríos, y, concebían la creación como una lucha en el barro entre dos dioses. Los mayas, obsesionados por los juegos de balón, conjeturaban que su creador se transformaba en balón cada vez que planeta Venus desaparecía detrás del Sol. El pescador tahitiano, hablaba de un dios pescador que arrastro sus islas desde el fondo del océano. Los espadachines japoneses formaron sus islas de gotas de sangre que caían de una espada cósmica. Para los griegos amantes de la lógica, la creación fue obra de los elementos: Para Tales de Mileto, el universo originalmente fue Agua; para Anaxímedes, fue Aire; para Heráclito, Fuego…Todos los pueblos tenían su propia génesis… Y, ¿cuál será la nuestra?

En Cosmología, las condiciones “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo después del comienzo del tiempo. ¿Qué pasó en ese brevísimo intervalo de tiempo? Nadie lo sabe. Pero, a pesar de ello, nosotros pretendemos saber cómo comenzamos nuestra andadura en este mundo que, en realidad, comenzó en otro lugar muy lejano y muy caliente.

Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes.

Imagen relacionadaImagen relacionada

                       Nuestros ancestros miraban asombrados la salida y puesta del Sol

Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo Marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que tiene el Universo.

Hablaremos ahora del Big Bang (lo único que tenemos para agarrarnos a lo que “parece que fue”), esa teoría aceptada por todos y que trata de explicar cómo se formó nuestro universo y comenzó su evolución hasta llegar a ser como ahora lo podemos observar. De acuerdo a esta teoría, el universo se originó a partir de un estado inicial de alta temperatura y densidad, y entonces ha estado siempre expandiéndose. La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, la temperatura y la densidad eran infinitas.

Resultado de imagen de Teorias-del-origen-del-Universo.jpg

Resultado de imagen de Teorias-del-origen-del-Universo.jpg

La mayoría de los cosmólogos interpretan singularidad una indicación de que la realtividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.

El Tiempo de Planck es una unidad de tiempo considerada como el intervalo temporal más pequeño que ser medido. Se denota mediante el símbolo tP. En cosmología, el Tiempo de Planck representa el instante de tiempo más antiguo en el que las leyes de la física pueden ser utilizadas para estudiar la Naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la siguiente:

 t_P = \sqrt{\frac{\hbar G}{c^5}} \approx 5.39124(27) × 10−43 segundos

Esta que es una de las célebres unidades de Planck, está formada por una combinación de la constante de estructura fina racionalizada (\hbar = h/(2 \pi), la constante gravitacional (G), y la velocidad de la luz elevada a la quinta potencia.

La Era de planck: Es la era que comenzó cuando el efecto gravitacional de la materia empezó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang.  Este hecho marcó el comienzo de la era de la materia.

La materia salió de ese clima de enormes temperaturas inimaginables y, durante varias etapas o eras (de la radiación, de la materia, hadrónica y bariónica… llegamos al momento presente habiendo descubierto muchos de los secretos que el Universo guardaba celosamente para que nosotros, los pudiéramos desvelar.

Era de la radiación

Periodo 10-43 s (la era de Planck) y 300.000 después del Big Bang… Durante periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación. La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual los partículas lentas dominaron la expansión del universo.

Era hadrónica

Resultado de imagen de La era hadrónica

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, protonesneutronespioneskaones entre otras. del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.

Era Leptónica

Intervalo que comenzó 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y antileptones en gran en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o un segundo después del Big Bang. Después, los leptones  se unieron a los hadrónes formar átomos.

El universo es el conjunto de todo lo que existe, incluyendo ( he dicho) el espacio, el tiempo y la materia.  El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein-de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.

En 1932 Einstein y de Sitter propusieron que la constante cosmológica debe tomar valor cero, y construyeron un modelo cosmológico homogéneo e isótropo que representa el caso intermedio los modelos abierto y cerrado de Friedmann. Einstein y de Sitter supusieron que la curvatura espacial del Universo no es ni positiva ni negativa, sino nula.

La geometría espacial de modelo es por lo tanto la geometría plana de Euclides; sin embargo el espacio-tiempo en su conjunto no es plano: hay curvatura en la dirección temporal. El tiempo comienza también en una Gran Explosión y las galaxias se alejan continuamente entre sí, sin embargo la velocidad de recesión (constante de Hubble) disminuye asintóticamente a cero a medida que el tiempo avanza.

Resultado de imagen de el modelo de Einstein-de Sitter

Debido a que la geometría del espacio y las propiedades de la evolución del Universo están unívocamente definidas en el modelo de Einstein-de Sitter, mucha gente lo considera el modelo más apropiado describir el Universo real.

Durante los últimos años de la década de los 70 surgió un firme soporte teórico para idea a partir de los estudios en física de partículas. Además, las observaciones experimentales sobre la densidad media del Universo apoyan esta concepción, aunque las evidencias aún no son concluyentes.

Todo esto está muy bien pero… ¿De donde venimos? ¿Hacia donde vamos? ¿Quiénes somos?

¡Si supiera contestar esas preguntas!

emilio silvera

Los átomos, el núcleo atómico

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La maravilla del núcleo atómico

Es tan pequeño que ni lo podemos ver con el ojo desnudo, nos valemos de los microscopios electrónicos para poder saber de ellos, y, sin embargo, si me dieran a escoger la mayor maravilla del Universo, tendría mis dudas entre los átomos y el cerebro. Pero creo que, al final,  sin dudarlo, escogería ésta ¡Los átomos!

El número de protones en el núcleo define a qué elemento químico pertenece el átomo: por ejemplo, todos los átomos de cobre contienen 29 protones. El número de neutrones define el isótopo del elemento. El número de electrones influye en las propiedades magnéticas de un átomo.

There is much to admire in this 3D performance

Mucho ha tenido que evolucionar la Mente humana para llegar a saber sobre la entidad de la materia

Mucho ha tenido que trasminar la Mente Humana para llegar al fondo de los componentes de la materia que, como todos sabemos ahora, están conformadas de moléculas hechas de átomos que, a su vez, están hechos de partículas subatómicas unas más elementales que otras que, dentro del núcleo y fuera de él, hacen el conjunto que denominamos átomos.

planetario, modelo, de, Átomo - csp8715507
Los átomos han sido representados de diferentes maneras pero, lo cierto es que en su conjunto está conformado por un núcleo muy complejo que, rodeado de electrones hacen de éste objeto infinitesimal uno de los más valiosos del Universo, toda vez que, todo lo que conocemos desde las estrellas, los mundos, las galaxias, o los seres vivos, todo sin excepción, está hecho de átomos.

Resultado de imagen de La maravilla del núcleo atómico

El núcleo atómico está cargado positivamente al tener allí situados a los protones. Los neutrones no tienen carga y éstas dos partículas de la familia de los Hadrones en su rama bariónica, cuando están dentro del núcleo se suelen llamar nucleones. Lo curioso del caso es que, dentro de ellos, partículas más pequeñas de la familia Quarks, se han juntado en tripletes para conformarlos, es decir, un protón está conformado por dos quarks up y un quark down, mientras que un neutrón, está hecho por dos qurks down y un quarks up.

Pero, además, dentro de tan pequeño habitáculo ocurren sucesos extraordinarios, ya que, para mantener confinados a los Quarks, tiene que actuar lo que conocemos como fuerza nuclear fuerte que es transmitida por ocho bosones llamados Gluones.

 Hay quien habla de la existencia de materia extraña de Quarks y Gluones

Así que, los Quarks dentro de los protones y los neutrones están confinados, no pueden separarse y son sujetados por 8 partículas de la familia de los Bosones que se llaman Gluones que, son los intermediarios de la fuerza nuclear fuerte, la más potente de todas las fuerzas fundamentales de la Naturaleza. Esa fuerza, funciona al contrario que las otras tres, es decir, aumenta con la distancia. Se comporta como un muelle de acero que, cuanto más lo estiramos más resistencia opone.

Resultado de imagen de El nucleo atómico

Representación aproximada del átomo de Helio. en el núcleo los protones están representados en rojo y los neutrones en azul. En la realidad el núcleo también es simétricamente esférico. El núcleo atómicoes la parte central de un átomo, tiene carga positiva, y concentra más del 99,9% de la masa total del átomo.

Resultado de imagen de el experimento de Rutherford

La existencia del núcleo atómico fue deducida del experimento de Rutherford, donde se bombardeó una lámina fina de oro con partículas alfa, que son núcleos atómicos de helio emitidos por rocas radiactivas. La mayoría de esas partículas traspasaban la lámina, pero algunas rebotaban, lo cual demostró la existencia de un minúsculo núcleo atómico.

El Experimento de Rutherford. En 1911 se realizó en Manchester una experiencia encaminada a corroborar el modelo atómico de Thomson. Fué llevada a cabo por Geiger, Marsden y Rutherford, y consistía en bombardear con partículas alfa (núcleos del gas helio) una fina lámina de metal.

Resultado de imagen de El nucleo atómico

Una imagen precisa del núcleo del carbono-14 debe tener en cuenta tanto las interacciones entre parejas de protones y neutrones (fuerza a dos cuerpos, izquierda), como las interacciones entre tres nucleones (fuerzas a tres cuerpos, derecha).

Resultado de imagen de La complejidad del núcleo atómico

Lo cierto es que, estos “personajillos” tienen una imnesa importancia en todo lo que se cuece en el Universo, ya que, sin ellos, no existirían las estrellas ni los mundos, ni las galaxias, ni las Nebulosas, ni ninguno de los objetos que captan nuestros telescopios en el inconmensurable Cosmos. ¡Ah! Tampoco nosotros podríamos existir si en estos personajes se dieran algunos cambios. Imaginaros que la masa del protón decrece en una diezmillonésima parte, o, que lo mismo le pudiera pasar a la carga del electrón… ¡Nosotros no existiríamos!

external image bis.fcgi?rt=GetFile&uri=!!QH57AB8QMA&type=0&index=24

Interacciones eléctricas entre protones y electrones

Antes del experimento de Rutherford la comunidad científica aceptaba el modelo atómico de Thomson, situación que varió después de la experiencia de Rutherford. Los modelos posteriores se basan en una estructura de los átomos con una masa central cargada positívamente rodeada de una nube de carga negativa.
Este tipo de estructura del átomo llevó a Rutherford a proponer su modelo en que los electrones se moverían alrededor del núcleo en órbitas. Este modelo tiene una dificultad proveniente del hecho de que una partícula cargada acelerada, como sería necesario para mantenerse en órbita, radiaría radiación electromagnética, perdiendo energía.

Para aclarar el panorama y la confusión que sobre el átomo y el núcleo atómico existía, tuvo que llegar el gran físico Murray Gell-Mann, que fue quien por primera vez habló de los Quarks. Se le otorgó el Premio Nobel de Física en 1969 por sus descubrimientos sobre partículas elementales. La teoría de Gell-Mann aportó orden al caos que surgió al descubrirse cerca de 100 partículas en el interior del núcleo atómico. Esas partículas, además de los protones y neutrones, estaban formadas por otras partículas elementales llamadas Quarks. Los quarks se mantienen unidos gracias al intercambio de Gluones. Junto con otros investigadores construyó la teoría cuántica de quarks y gluones, llamada Cromodinámica cuántica.

Sí, ¡Todo lo grande está hecho de cosas pequeñas!

Todo lo que podamos observar en el Universo y que esté hecho de materia, está hecho de átomos, es decir, de Quarks y Leptones. Es curioso como la gente corriente no especializada, ven los objetos y en ellos contemplan una barra de pan, un automóvil, un traje o unos zapatos, y, si miran al cielo estrellado, ven como brillan los objetos y cuerpos celestes. Sin embargo, ninguno se para a pensar que, todo eso, es gracias a los átomos, es decir, a los Quarks que forman protones y neutrones, a los electrones que rodean el núcleo, a los Gluones que participan activamente en la transmisión de la fuerza nuclear fuerte… ¡Que maravillas!
emilio silvera

A veces es difícil determinar dónde está la realidad

Autor por Emilio Silvera    ~    Archivo Clasificado en Artículo de Prensa    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Ciencia
¿Una burbuja de curvatura espaciotemporal en el Pacífico Sur?

Un matemático ofrece una explicación para la historia alucinante de un naufragio en 1925

¿Una burbuja de curvatura espaciotemporal en el Pacífico Sur?

 

Esta es una historia extraña donde las haya. Llegué a conocerla casi por casualidad, rebuscando entre artículos científicos del físico Benjamin Tippett, un experto en Relatividad General que acaba de publicar un modelo matemático según el cual es posible viajar en el tiempo.

Resultado de imagen de El físico Benjamin Tippett

                                      El físico Benjamin Tippett

De pronto, me topé con un trabajo que me sorprendió. Se publicó en arXiv.org el 29 de Octubre de 2012 y su título parecía cosa de ciencia ficción: “Posibles burbujas de curvatura espaciotemporal en el Pacífico Sur”. Por supuesto, me sumergí de inmediato en el artículo, y me topé de bruces con una historia increíble que no he podido resistirme a compartir aquí. ¿Verdad o mentira? ¿La acertada interpretación de una realidad alucinante o el simple juego matemático de un científico?

Resultado de imagen de En 1928, el difunto Francis Wayland Thurston

El artículo de Tippett empieza con estas palabras: “En 1928, el difunto Francis Wayland Thurston publicó un manuscrito escandaloso para advertir al mundo de una conspiración global de ocultistas. Entre los documentos que reunió para apoyar su tesis se encontraba el relato personal de un marinero llamado Gustaf Johansen, describiendo un encuentro con una isla extraordinaria. Las descripciones de Johansen de sus aventuras en la isla son fantásticas, y se consideran a menudo el más enigmático (y por lo tanto el punto culminante) de la colección de documentos de Thurston. En este trabajo sostenemos que todos los fenómenos que Johansen describió pueden explicarse como las consecuencias observables de una burbuja de curvatura del espacio-tiempo. Puede afirmarse por lo tanto que muchas de sus declaraciones más incomprensibles (que implican la geometría de la arquitectura y la variabilidad de la localización del horizonte) tienen una causa única subyacente”.

El tal Thurston, explica el investigador, estaba obsesionado por las ciencias ocultas y las teorías de la conspiración, pero nada de eso es relevante para esta historia. Por supuesto, Tippett no comulga con ninguna de esas teorías, y aclara en su artículo que “Quisiéramos dejar claro que de ninguna manera respaldamos o toleramos su perspectiva ocultista”. En realidad, de todo el manuscrito de Thurston lo único que le interesa al físico es el capítulo que recoge el testimonio del desafortunado marino.

Imagen relacionada

Gustaf Johansen, en efecto, describe con todo detalle el trágico destino de la “Emma”, la goleta de Nueva Zelanda que comandaba, y todo lo que le sucedió en aguas del Pacífico Sur entre el 22 de marzo y el 12 de abril de 1925. Tras sufrir el asalto de un grupo de piratas y avistar una isla que no figuraba en los mapas, el barco naufragó en medio de una gran tormenta. A partir de ahí, el escrito de Johansen narra los increíbles acontecimientos que vivió junto a algunos miembros de su tripulación en la misteriosa isla durante aquellos días. Al final de la aventura, solo el propio Johansen logró sobrevivir. “El naufragio de la Emma y la pérdida de la tripulación -aclara Tippett en su artículo- están bien documentados, y los académicos que investigaron el documento de Johansen han confirmado que fue escrito por su propia mano”.

En su increíble relato, el marino insiste en varias ocasiones sobre las “cualidades geométricas aberrantes” del lugar. “Una gran puerta de granero -escribía Johansen- …no podíamos decidir si estaba en posición vertical o tumbada como una trampa o una puerta de sótano… la geometría del lugar estaba equivocada. no se podía estar seguro que que el mar y el suelo estuvieran horizontales, por lo que la posición de todo lo demás era fantásticamente variable… Todas las reglas de la materia y la perspectiva parecían perturbadas”.

Resultado de imagen de Extraña puerta geométricamente imposible

                      Todo aparecía trastocado, como fuera de lugar

En otro punto de su historia, el marino recuerda cómo uno de sus hombres trató de investigar esa gran puerta: “Entonces Donovan recorrió (la puerta) despacio, alrededor del borde, presionando en cada punto a medida que avanzaba. Subió interminablemente a lo largo de una grotesca moldura de piedra, algo que llamaríamos escalera si no hubiera estado en posición horizontal, y los hombres se preguntaban cómo cualquier puerta en el Universo podía ser tan enorme”.

Tippett no duda en afirmar que “la mayoría de estos detalles son consistentes con la hipótesis de que Johansen penetró en una región de espacio-tiempo anormalmente curvo. Para facilitar nuestro argumento, proponemos (en este trabajo) una geometría simple de espacio-tiempo que posee todas las cualidades necesarias. Y usaremos esa geometría para explicar, punto por punto, la enigmática experiencia de Johansen y justificar sus palabras”.

Resultado de imagen de Extraña puerta geométricamente imposible

Johansen, que por supuesto no conocía la Relatividad de Einstein ni estaba familiarizado con las geometrías no euclidianas, trataba de encontrar una explicación lógica a lo que estaba viendo, pero su mente terminó por sucumbir. Al final de su relato, en efecto, habla de “paseos vertiginosos a través de universos deformados”, o de “giros espectrales a través de los golfos líquidos del infinto”, o de alucinantes “caídas desde el fondo de un pozo hasta la Luna y de la Luna de nuevo al pozo…”

Desde ese momento y hasta su rescate, Johansen recuerda muy poco más. Por los testimonios de sus rescatadores, queda claro que el marino fue encontrado en un estado de agitación extrema y alucinando. Unas condiciones físicas y mentales tan lamentables que parecía increíble que el náufrago hubiera logrado sobrevivir tanto tiempo. Para Tippett, resulta imposible que alguien en ese estado sobreviva durante dos largas semanas. “¿Podría un individuo enfermo -se pregunta el investigador-, paralizado por el delirio, recordar siquiera que tiene que comer, beber, dormir y llevar a cabo el mantenimiento diario que nuestros cuerpos necesitan para sobrevivir? Somos incrédulos ante esa posibilidad”.

Resultado de imagen de Efecto de dilatación temporal

Tippett opina, sin embargo, que Johansen pudo experimentar un efecto de dilación temporal, algo que resultaría consistente con la hipótesis de la burbuja espaciotemporal. Dentro de la burbuja, en efecto, el tiempo transcurriría más lentamente. “Por lo tanto -explica el científico- resulta razonable que mientras en el mundo exterior pasaban dos semanas, Johansen y su tripulación solo experimentaran unas pocas horas o días”.

Dentro de la burbuja

“¿Cuál es la probabilidad -se pregunta Tippett- de que la imaginación de un profano en la década de 1920 sea capaz de describir accidentalmente no sólo los efectos de una lente gravitatoria, sino también la relación anómala consecuente entre líneas, ángulos y áreas en un espacio curvo? ¿Cómo podría explicar los detalles de un misterio cuya única solución puede ser la dilatación del tiempo debido al espaciotiempo curvo? ¿Cómo es de probable que un hombre sin conocimiento de la relatividad general moderna sea capaz de fabricar a ciegas un relato con tantos detalles coherentes?”

 

 

Resultado de imagen de la geometría espaciotemporal

 

El Espacio-Tiempo tienen secretos que aún nos quedan por descubrir

 

Lo cierto es que la geometría espaciotemporal propuesta por el físico en su artículo es capaz, punto por punto, de corroborar las “visiones” de Johansen. “La mayoría de estos detalles -afirma Tippett en su artículo- son consistentes con la hipótesis de que Johansen encontró, efectivamente, una región de espacio-tiempo anormalmente curvo”.

En su estudio, Tippett elabora un modelo de burbuja de curvatura capaz de demostrar que cualquier observador que hubiera estado en la piel de Johansen “habría parecido un lunático al pedirle que describiera lo que estaba viendo. Al comparar las observaciones de Johansen con nuestro modelo de espacio-tiempo curvo, nos dimos cuenta de que eran consistentes”.

Ya solo quedaba comprobar si la burbuja espaciotemporal de Johansen podría haberse generado espontáneamente a partir de la materia que conocemos. Y la respuesta es que no. “Como demuestra nuestro modelo -escribe el investigador- para que exista tal geometría es necesario un tipo exótico de materia que es completamente desconocida para la Ciencia humana. De hecho, implica el mismo tipo de energía que teóricamente se requiere para construir un motor de curvatura o un dispositivo de encubrimiento espaciotemporal”.

Resultado de imagen de Burbuja de curvatura espacio temporal

Entonces, ¿Cómo pudo llegar una burbuja de curvatura espaciotemporal hasta el Pacífico Sur? En palabras de Tippett, muchas geometrías del espacio-tiempo “requieren de tipos similares de materia exótica. La lista incluye agujeros de gusano atravesables (y por lo tanto máquinas del tiempo), motores de curvatura y dispositivos de ocultamiento del espacio-tiempo. En sentido muy amplio, solo una raza capaz de cruzar grandes distancias cósmicas podría haber construido la burbuja de Johansen. Además, quien sea que construyera tal estructura, necesitaría dominar una enorme fuente de energía, y tener la capacidad para construir edificios en una escala ciclópea”.

Por último, el modelo de Tippett requiere que el tiempo transcurra exponencialmente más deprisa fuera de la burbuja que en su interior. “Tal burbuja de geometría no euclidiana -afirma el científico- podría utilizarse para resistir en su interior el paso de vastos eones de tiempo, mientras que el Universo fuera de ella seguiría creciendo y haciéndose fragil con la edad”.

Noticias de prensa