miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Max Planck nos decía:

“La ciencia no puede resolver el misterio final de la Naturaleza.  Y esto se debe a que, en el último análisis, nosotros somos parte del misterio que estamos tratando de resolver”. 

 

Y, desde luego, no parece que fuese muy desencaminado, nuestra complejidad es tan grande que, llegar a comprendernos, no será nada fácil.

                                       Las respuestas está en nuestras Mentes, sólo hay que saber buscar

¿Quién no ha tenido alguna vez, la sensación de que sabe la respuesta ? ¿De que todo está ahí, en su mente, escondido y a punto de salir a la superficie? Esas sensaciones que parecen querer hablarnos, contarnos ese secreto tan largamente perseguido por muchos y no desvelado por ninguno. Sin embargo, ese momento es efímero y, lo mismo que llegó, se fue. La frustración que deja en nostros esa sensación de tener ese algo a mano y de que se nos esfume y desaparezca sin más, es verdaderamente…dolorosa.

Bueno, a mí me pasa continuamente, siento que de un momento a otro, mi mente, me daría respuestas a preguntas que no han sido contestadas.  El  tiempo inexorable pasa y, las respuestas no llegan. ¡Qué impotencia! Parece como si una gran Nebulosa ocupara nuestra mente y todo lo tuviera envuelto en una espesa niebla que no nos deja ver lo que buscamos.

Imagino que, de vez en cuando, la niebla se ve despejada por alguna especie de “viento solar” dejando ver lo que allí está presente.  En algunas mentes, entonces, saltan esas respuestas (Newton, Planck, Einstein y otros) y son ofrecidas al mundo para que puedan continuar avanzando.

Los aspectos inconscientes de la actividad mental, como las rutinas motoras y cognitivas, así como los recuerdos, intenciones y expectativas inconscientes, las preocupaciones y los estados de ánimos, desempeñan un papel fundamental a la hora de conformar y dirigir nuestras experiencias conscientes.  Todo está siempre estrechamente relacionado, nada ocurre en nosotros que no esté unido a lo que pasa en nuestro entorno, somos una parte de un todo que se llama Universo, y, aún cuando somos autónomos en el pensamiento y en la manera de obrar, existen condicionantes exteriores que inciden, de una u otra manera en nosotros, en lo que somos.

Sin la fuerza de Gravedad, nuestras mentes serían diferentes (o no serían), estamos estrechamente conectados a las fuerzas que rigen el Cosmos y, precisamente, somos como somos, porque las fuerzas fundamentales de la Naturaleza, son como son y hacen posible la vida y la existencia de seres pensantes y evolucionados que son capaces de tener conciencia de SER, de hacer preguntas tales como: ¿de donde venimos? ¿Hacia donde vamos?

Resultado de imagen de El Universo y nosotrosResultado de imagen de La Qualia

                                          La experiencia consciente de la Mente

La qualia y la discriminación, correlatos neuronales de la percepción del color, ¿ un grupo neuronal, un quale ¿, los gualia y el núcleo dinámico, los qualia en el tiempo neuronal, el desarrollo de los qualia: referencia al propio yo, lo consciente y lo inconsciente, los puertos de entrada y de salida, los bucles largos y rutinas cognitivas, aprendizaje por el estudio y la experiencia, rupturas talamocorticales: posibilidades de núcleos escindidos, la observación, el lenguaje, el pensamiento, los mensajes exteriores, la unificación de datos y la selección lógica de respuestas, y, por fin: el significado último de las cosas (las preguntas de la filosofía), la metafísica.

Sí, por todas estas fases del estudio y del pensamiento he tenido que pasar para llegar a una simple conclusión:

No pocas veces, la imagen de nuestra imaginación  nos juega malas trastadas y nos hace ver… ¡Lo que ya no somos! También puede ocurrir que tengamos recuerdos de vivencias que nunca tuvimos. La Mente humana es muy compleja y, en ella, puede pasar cualquier cosa.

“No somos la imagen de nadie” y, simplemente, como seres que evolucionamos, sin que nos demos cuenta, mutamos y nos adaptamos al medio cambiante y, mientras eso ocurre, llegan mensajes que no comprendemos a la primera.   No, no exagero, dentro de esa imagen de frágil físico y de escasa capacidad para poder dar respuesta a ciertas preguntas, en realidad, se esconden cualidades y potenciales que, no sabemos ni podemos medir. En realidad, somos una compleja estructura de pensamientos que puede llegar…muy lejos.

Dentro de nuestro ser están todas las respuestas y solo necesitamos tiempo para encontrarlas.  Nuestra mente, es la energía del Universo, aún no sabemos utilizarla y pasaran, posiblemente, millones de años hasta que estemos preparados para saber lo que en realidad, es la conciencia.

Resultado de imagen de En nuestra Mente están las respuestas del Universo, formamos parte de

Podríamos decir que somos la parte del Universo que piensa (con otras muchas criaturas situadas en otros mundos). En un Universo “Infinito” creer que estamos solos…. ¡Es pretencioso y ególatra!

Mientras eso llega, algunos curiosos como yo, con más voluntad que conocimientos, tratan de especular con ideas y conceptos que nos puedan dar alguna luz sobre tan complicado problema.

Resultado de imagen de Nuestras Mentes son maravillas de la Naturaleza

Nuestra mente es una maravilla de la Naturaleza, algo tan grande que, a pesar de los muchos avances y conocimientos alcanzados, no podemos explicar…  aún.

Está claro que, como me ha comentado un amigo, la materia tiene memoria y, es precisamente esa memoria, la que hace posible el avance de nuestros conocimientos a través de la mente que, sin duda, está directamente conectada con el resto del Universo y las fuerzas que lo gobiernan que son las que hacen posible su funcionamiento tal como acontece.

La curiosidad y la sabiduría, esas gotas del transcurrir del tiempo que salpican el río de la vida a través de la experiencia y nos hace saber… ¡Algunas cosas!

Pero nada es tan sencillo ni podemos hablar de lo sensorial sin tener en cuenta el plano más simple y cotidiano que está referido a la materia, a nuestro cuerpo, las sensaciones, las experiencias vividas, lo que aprendemos, del estudio y la profunda observación que nos lleva de la mano de la curiosidad hasta la fuente de la que mana el agua de la sabiduría.

Entender las claves que explican el devenir de la vida sobre este planeta, con la idea en el horizonte de aspiraciones intelectuales a que nos aboca la conciencia del SER, no resulta fácil, la complejidad de la empresa exige tener en cuenta múltiples factores que no siempre estamos preparados para comprender, y, sobre todo, debemos ser muy conscientes de que formamos parte de un Universo inmenso, y, estamos supeditamos a las fuerzas que lo rigen. Lo mejor para hacer nuestras vidas más fáciles, es tratar de comprender la Naturaleza de ese Universo nuestro.

Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Arte que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partiendo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.

¡La Vida! Siempre me llamó la atención y elevó el grado de curiosidad ese gran misterio que llamamos ¡vida!, y, cada vez que he tenido la oportunidad, no me he perdido el poder aprender alguna cosa sobre ella. Ya os he contado en otras ocasiones mi experiencia con la eminente y privilegiada mente de…

Lynn Margulis comenzó a explorar los caminos de la genética a partir de un libro escrito en el siglo XIX por Edmund B.Webs.  En ese texto encontró reflexiones sobre la herencia citoplasmática y datos sobre las bacterias, entonces no muy consideradas en el estudio del origen de la vida.

Resultado de imagen de Lynn Margulis

Lynn Margulis fue una importante e influyente bióloga estadounidense. Además de ser una de las madres del evolucionismo, aportó notables conocimientos a la ciencia, como por ejemplo, su teoría de la aparición de las células eucariotas, o la de la simbiogénesis, por nombrar solo algunas.

La doctora Margulis fue profesora del Departamento de Geociencias de la Universidad de Massachussets (Estados Unidos) relacionó el papel de las bacterias con la microbiología, una ciencia surgida de la medicina, de la salud pública y del procedimiento seguido para procesar los alimentos.  De ahí saltó al estudio del tema que ocupa su curso magistral: Contribución de los microbios a la evolución.

El pequeño Monasterio franciscano de La Rábida en Huelva, dónde Colón fue acogido por los frailes y se fraguó el viaje a Las Américas.La zona está enclavada en un margen del Río Odiel y los terrenos de de Bosques y Pinares con senderos para pasear.

Resultado de imagen de Visita al Monasterio de la Rábida en HuelvaResultado de imagen de Obras pictóricas de Daniel Vázquez Díaz en la RábidaResultado de imagen de Obras pictóricas de Daniel Vázquez Díaz en la RábidaResultado de imagen de Obras pictóricas de Daniel Vázquez Díaz en la Rábida

Junto al Monasterio se levanta un enorme obelisco que fue construido en conmemoración del cuarto centenario del nuevo continente y, en su interior, como podéis ver arriba, existen obras pictóricas conmemorativas de la gesta que pintó Daniel Vázquez Díaz. El monasterio tipológicamente pertenece al Gótico-Mudéjar incorporado a la Rábida desde el período Almohade.

Placa conmemorativa

La iglesia-Santuario es de dimensiones pequeñas y estructura compacta posee una sola nave y un hermoso artesonado de influencia mudéjar que cubre la bóveda primitiva. El ábside posee arcos apuntados. En las paredes conserva pinturas de Juan de Dios realizadas en el Siglo XVIII que tratan temas de la vida de San Francisco.

Claustro mudéjar del Monasteio de la Rábida

El claustro del Monasterio de la Rábida es pequeño y sigue el modelo de San Isidoro y Guadalupe: estilo mudéjar. Se amplió en el siglo XVII con un cuerpo superior y se le incorporaron almenas como protección de invasiones.

Tiene en sus paredes frescos del siglo XV que han sido restauradas. El claustro estuvo punto de desaparecer en 1855 por la desamortización, y salvado el conjunto por el Gobernador Alonso. Es uno de los monumentos mas importantes y significativos en la historia de España y de América, fue declarado primer monumento histórico de los pueblos Hispanos y en 1856 fue declarado el tercer monumento nacional y patrimonio de la humanidad.

 Resultado de imagen de La Universidad hispano-americana de La RábidaResultado de imagen de La Universidad hispano-americana de La Rábida

Me desvío del tema. Muy cerca del entorno, junto al Monasterio, está la Sede de la Universidad Internacional Iberoamericana de La Rábida, en la que, se imparten Cursos de verano y se acogen a grandes personalidades en los distintos campos del saber que dan conferencias muy apreciadas. Aquí, en el pasado no muy lejano, tuve la suerte de asistir a una de Lynn Margulis y pude hablar con ella que respondío a mis preguntas con amabilidad y sabiduría.

Ella centraba el curso en la enorme importancia que tenían los microbios para nosotros, no siempre bien valorados.  Los microbios pueden ser definidos como organismos que no podemos ver a simple vista y, la cultura popular dice que tan sólo sirven de agentes para canalizar enfermedades, pero esa apreciación conlleva un error muy serio.  Por ejemplo: el 10% del peso del cuerpo humano en seco está compuesto por microbios, sin los cuales no podemos vivir ni siquiera un día.  Ellos asumen tareas tan importantes como la de generar el oxígeno del aire que precisamos para respirar.  Además, tienen un papel fundamental en la evolución de la vida: todos los seres vivos considerados simples –animales, plantas, hongos, etc.- están hechos de microbios en combinación simbiótica con otros organismos.  Se trata de una historia que se aleja en el pasado hasta 3.500 millones de años en el curso de la vida sobre la superficie de nuestro planeta: La Tierra.

Los conceptos que maneja y esgrime la doctora en genética, están encuadrados en una visión totalmente contradictoria con la religión y otros muchos conceptos culturales.

Pregunté a la doctora Margulis si la mala imagen de los microbios nacía de un estudio deficiente de la microbiología, o si simplemente surgía a partir de tópicos sin fundamentos.  Su contestación fue:

“La asociación de esos pequeños organismos con aspectos negativos se explica por el origen de su estudio científico, que siempre estuvo relacionado con descubrimientos ligados a la investigación en torno a enfermedades.  Junto a esta idea, lo cierto es que pensamos en formas ideales que corresponden al esquema platónico de hace casi 30 siglos, cuando en realidad no existen tales ideas sino organismos que interaccionan con el medio ambiente en el que se encuentran. Esta colaboración recibe el nombre de ecología. De hecho, el concepto de independencia no tiene sentido en este campo: al margen de los microbios moriríamos inmediatamente”.

 

 

 

Nos creemos lo contrario pero, siempre seremos aprendices, no tenemos tiempo para más

 

Resultado de imagen de Siempre seremos aprendices, no hay tiempo para más

 

Cuando alcanzamos una cumbre… çNos enteramos de que existe otra más alta!

 

 

Aquel día, como casi todos los días de mi vida, aprendí cosas nuevas y muy interesantes que me confirmaron que nuestras vidas, podrían ser cualquier cosa, menos simples. Es tal el nivel de complejidad implicado que, precisamente por eso, no somos capaces de explicarla al completo, solo vamos dominando parcelas limitadas que, algún día, al ser unidas, nos darán las respuesta.

En fin amigos, que como habréis podido deducir, aunque nuestras limitaciones nos impongan barreras, no debemos rendirnos ante ninguna de ellas y, si persistimos, finalmente encontraremos el camino de pasarlas para poder ir un poco más allá. Era Jhon Wheeler el que nos decía: “Vivímos en una isla rodeada por un mar de ignorancia. Mientras nuestra isla de conocimiento crece, también crece la costa de nuestra ignorancia.” Pero, cada nuevo conocimiento que adquirimos, hace la isla mayor, y, la ignorancia decrece en esa pequeña proporción”

Claro que, si los conocimientos que vamos adquiriendo son continuados… Finalmente, ¿podríamos secar ese mar de ignorancia?

Pero, ¿que tiene todo esto que ver con el título del trabajo? Bueno, lo único que puedo decir es que, nosotros… ¡También somos universo!

emilio silvera

La importancia del Carbono para la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Entradas anteriores

Resultado de imagen de teorias origen de la vidaResultado de imagen de La vida en el Universo
¿Que es la Vida? Nos preguntan en el título de este trabajo, y… ¡Tenemos muchas teorías y pocas certezas! Las hipótesis son variadas y las conjeturas forman una multiplicidad de ideas que nos llevan hasta un enjambre de escenarios imposibles de señalar como ciertos. Esporas venidas del Espacio, El germen existente en la Nebulosa molecular en la que nació el Sistema solar y, más tarde, la química del planeta Tierra, el Agúa, la radiación solar, los océanos, la atmósfera… Hicieron posible el surgir de aquella primera célula viva que comenzó el fascinante viaje de la vida.

 

 

Resultado de imagen de La vida en el Universo

 

Otros hablan de que la trajo a nuestro mundo un cometa

 

Lo cierto es que no podemos contestar a esa pregunta con propiedad. Sabemos lo que son los seres vivos e incluso, es posible que existan algunas especies que estando vivas ni lo podamos saber ni las podemos detectar. Sabemos de los materiales que son necesarios para que la vida esté presente en nuestro Universo y, en éstas mismas páginas hemos expuestos amplios trabajos sobre el tema de la vida, su posible origen, de cómo se “fabrican” los materiales necesarios para su existencia en las estrellas… Se podría decir, sin andar muy lejos de la verdad, que la vida, es la materia evolucionada hasta el nivel de la consciencia (si nos referimos ala vida en su más alta expresión).

 

 

 

Resultado de imagen de los meteoritos

 

 

Los meteoritos, como se ha podido demostrar en muchos estudios realizados sobre una diversidad de ellos, son portadores de aminoácidos necesarios para la vida. Recordemos aquí, por ejemplo:

 

 

 

 

¿Estaban aquí las moléculas precursoras de la Vida?

 

“El meteorito Murchison recibe su nombre de la localidad de Murchison, Victoria en Australia. Los Fragmentos del meteorito que cayeron sobre el pueblo el 28 de septiembre de 1969. El meteorito, una condrita carbonácea tipo II (CM2) contenía aminoácidos comunes como la glicinaalanina y ácido glutámico, pero también algunos poco comunes como la isovalina y pseudoleucina. El informe incial estableció que los aminoácidos eran racémicos, apoyando la teoría de que su fuente era extraterrestre. Se aisló también una mezcla compleja de alcanos que era similar a la encontrada en el experimento de Miller y Urey. La Serina y la treonina se consideran habitualmente como contaminantes terrestres y estos compuestos se encontraban notablemente ausentes en las muestras.”

 

 

File:Murchison-meteorite-ANL.jpg

 

Fragmento del meteorito Murchison y partículas individuales aisladas (se muestran en el tubo de ensayo).

 

“Más investigaciones encontraron que algunos aminoácidos estaban presentes en exceso enantiomérico. La homoquiralidad se considera una propiedad biológica única. Se ponían en entredicho algunas afirmaciones sobre la base de que los aminoácidos que entran en las proteínas no eran racémicos en el meteorito, mientras que el resto si lo eran. En 1997 las investigaciones mostraron que los enantiómeros individuales de Murchison estaban enriquecidos con el isótopo 15N del nitrógeno en comparación con sus correspondientes terrestres, lo que confirmaba una fuente extraterrestre del exceso del enantiómero L-enantiomer en el sistema solar. A la lista de materiales orgánicos identificados en el material del meteorito se le añadió el poliol en 2001″

 

 

File:Murchison-meteorite-stardust.jpg

 

Par de granos del metorito Murchison.

 

“Abundando en la idea de que la homoquiralidad (la existencia de solo aminoácidos de la serie L y azúcares de la serie D) fue provocada por la deposición de moléculas quirales de los meteoritos, la investigación demostró en 2005 que los aminoácidos como la Lprolina es capaz de catalizar la formación de azúcares quirales. La catálisis es no lineal, lo que significa que la prolina en un exceso enantiomérico del 20% produce una alosa con un exceso enantiomérico del 55% comenzando con el benziloxiacetaldeido en una reacción secuencial de tipo aldólica en un disolvente como el DMF. En otras palabras una pequeña cantidad de aminoácidos quirales podrían explicar la evolución de los azúcares de serie D.”

 

 

 

 

Muchos de los meteoritos hallados en la Tierra y venidos del espacio exterior traen muestras de la materia necesaria para la vida

 

 

Imagen: Fotografía de uno de los fragmentos del meteorito. Las muestras fueron recuperadas para su análisis en un estudio financiado por la NASA | H. Siegfried Via ABC.  La teoría de la Panspermia, que defiende la aparición de la Vida en la Tierra como consecuencia de la llegada a nuestro planeta procedente del espacio exterior de las primeras formas de vida, tiene otra prueba a su . No es la primera vez que se descubren aminoácidos en un meteorito. Anteriormente, científicos del centro Goddard de Astrobiología los habían encontrado en las muestras del cometa Wild-2 y en varios meteoritos ricos en carbono.

 

 

Resultado de imagen de La mujer más bella

 

Sí, ella también está basada, como todos los animales vivos de la Tierra, en el Carbono

 

Aunque parezca amorfo y feo en algunas de sus formas y estados, el Carbono puede llegar a conformar las cosas más bellas, tales como… ¡La Vida!

Cada cosa viviente está hecha de carbono. Está en nuestra atmósfera, en la corteza de la tierra y en los cuerpos de las plantas y animales. respiramos, exhalamos dióxido de carbono. Cuando las plantas respiran, toman el dióxido de carbono. Sin carbono, la vida no podría darse. El carbono es el bloque básico todas las formas de vida en la Tierra. Afortunadamente, es también uno de los elementos más abundantes en nuestro planeta. Al igual que toda la materia, el carbono ni se crea ni se destruye, por lo que todos los organismos vivos deben encontrar una manera de volver a utilizar continuamente el suministro finito que se encuentra disponible.

 

 

 

 

El carbono es el elemento químico que sustenta toda la vida en la Tierra. En la naturaleza existen 92 elementos químicos en natural. Es decir, 92 tipos distintos de átomos. Son las pequeñas piezas que se combinan entre sí para formar toda la materia conocida. Los átomos se combinan para formar moléculas, y las moléculas se unen para formar la materia. Todo lo que vemos a nuestro alrededor se forma con sólo esos 92 elementos. Incluidos nosotros mismos.

El 95% del cuerpo de los seres vivos se compone por sólo cuatro elementos: carbono, oxígeno, hidrógeno y nitrógeno. De ellos, el carbono es el más importante. Sin él, no podría formarse el ADN. Las proteínas, glúcidos, vitaminas y grasas son compuestos de carbono.

 

 

Resultado de imagen de Molécula de Carbono

 

 

El carbono es un elemento muy abundante en el Cosmos. Los átomos de carbono se unen entre sí formando largas cadenas que sirven de base para construir otras moléculas más complejas. facilidad para enlazar moléculas es lo que permitió la evolución hasta los organismos vivos. En la tierra primitiva se dio una excelente combinación de grandes cantidades de carbono y agua, que fueron determinantes para el origen de la vida. El carbono es la base química de la vida en presencia de agua que, en el Universo, también está por todas partes.

 

 

 

 

También aquí, donde se forman los pensamientos y los sentimientos, el Carbono está presente. Los hidratos de carbono  son una parte necesaria  para cualquier persona sana , ya que aportan el combustible  que el cuerpo necesita  para su actividad  física. El cerebro necesita los lípidos y otros jugos que lo mantienen “engrasado” y a punto.

 

 

http://upload.wikimedia.org/wikipedia/commons/d/d9/Diamond_and_graphite2.jpg

 

 

El Carbono es un elemento esencial para muchas cosas, y, podríamos destacar, sin temor a equivocarnos que, la vida, es la más importante de entre todas ellas. En cualquier parte que queramos mirar  nos dirán, del Carbono, cosas como éstas:

 

 

“El carbono es un elemento notable por varias razones. Sus formas alotrópicas incluyen, sorprendentemente, una de las sustancias más blandas (el grafito) y la más dura (el diamante) y, el punto de vista económico, uno de los materiales más baratos (carbón) y uno de los más caros (diamante). Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Así, con el oxígeno el dióxido de carbono, vital para el crecimiento de las plantas(ver ciclo del carbono); con el hidrógeno numerosos compuestos denominados genéricamente hidrocarburos, esenciales para la industria y el transporte en la forma de combustibles fósiles; y combinado con oxígeno e hidrógeno forma gran variedad de compuestos como, por ejemplo, los ácidos grasos, esenciales para la vida, y los ésteres que dan sabor a las frutas; además es vector, a través del ciclo carbono-nitrógeno, de parte de la energía producida por el Sol.”

 

 

Resultado de imagen de eSTRUCTURA DEL cARBONO

 

 

Hacia 1860, varios químicos sugirieron que la asimetría óptica de los compuestos orgánicos debía surgir a partir de la estructura tetraédrica del átomo de Carbono.  A finales del siglo XIX, la teoría correcta fue formulada de manera independiente, por dos  químicos que, de manera simultánea, dieron con la clave al sugerir que, el átomo de Carbono de un compuesto carbonado se encuentra situado en el centro de esa estructura tetraédrica, unido mediante enlaces químicos a otros cuatro átomos, situados en uno de los vértices del tetraedro. El átomo de Carbono puede albergar 8 electrones en su corteza, tiene solamente cuatro; por tanto, por decirlo de manera sencilla, dispone de cuatro plazas vacantes que pueden ser ocupadas por electrones de las cortezas de otros cuatro átomos.

La teoría que es correcta, fue expuesta por el joven francés Joseph Achille  Le Bel, y el otro, el joven neerlandés llamado Jacobus Henricus van´t Hoff, ambos razonaron que tal estructura tetraédrica será asimétrica y no superponible a su imagen especular.

 

 

 

 

 

 

 

Los bioquímicos, es decir, los químicos que estudian los procesos de los seres vivos, no pueden imaginar de vida alguno (excepto, tal vez, alguna forma inactiva muy elemental) que no requiera decenas de miles de clases distintas de tejidos, cada uno de ellos diseñado para llevar a cabo una labor altamente especializada. Pensemos, por ejemplo, en la complejidad de un ojo, que no es más que uno de los muchos órganos del cuerpo.

El ojo tiene que sintetizar compuestos determinados para poder constituir cada una de sus partes: el cristalino, los músculos que permiten cambiar la de éste último, los que abren y cierran las pupilas, las capas de la córnea, los líquidos que llenan las distintas vavidades, la retina, el coroides, la esclerótica, el nervio óptico de los vasos sanguíneos… Cada una de ellas necesita sustancias enormemente complejas que, además, deben poseer las propiedades adecuadas para hacer exactamente lo que se supone que hacen.

 

 

 

Resultado de imagen de El ojo humanoResultado de imagen de El ojo humano

 

 

 

Miles de millones de tales tejidos especializados son esenciales para las formas vivientes de la Tierra. Es imposible imaginar que la evolución de éstos haya podido realizarse sin la ayuda del Carbono, un elemento que sobrepasa a los demás en su capacidad de formar una variedad casi ilimitada de compuestos, uno de ellos con propiedades específicas.

El compuesto más simple es el metano, un átomo de carbono con cuatro de hidrógeno (valencia = 1), pero también puede darse la unión carbono-carbono, formando cadenas de distintos tipos, ya que pueden darse enlaces simples, dobles o triples. Cuando el resto de enlaces de estas cadenas son con hidrógeno, se habla de hidrocarburos, que pueden ser:
saturados: con enlaces covalentes simples, alcanos.
insaturados, con dobles enlaces covalentes (alquenos) o triples (alquinos).
aromáticos: estructura cíclica.
La gran cantidad que existe de compuestos orgánicos tiene su explicación en las características del átomode carbono, que tiene cuatro electrones en su capa de valencia: según la regla del octeto necesita ocho para completarla, por lo que cuatro enlaces (valencia = 4) con otros átomos formando un tetraedro, una pirámide de base triangular.
Resultado de imagen de La multiplicidad de compuestos de carbono
Los compuestos de Carbono conocidos superan en más del doble al conjunto de los restantes compuestos conocidos. Los tejidos de cualquier ser que vive sobre la superficie de la Tierra, un virus microscópico hasta un elefante, están constituidos por sustancias que contienen Carbono.  Algunos bioquímicos van incluso más allá al definir la propia vida como una más de las complejas propiedades de los compuestos de Carbono.
¿Cómo se las arregla éste ser un elemento tan versátil y adaptable?
Resultado de imagen de Los seres vivos están formados por elementos químicos
Los seres vivos están formados principalmente por C carbono, H hidrógeno, O oxígeno y N nitrógeno, y, en menor medida, contienen también S azufre y P fósforo junto con algunos halógenos y metales. De ahí que los compuestos de carbono se conozcan con el de compuestos orgánicos (o de los seres vivos). Pero…, cuidado, también hay muchos otros compuestos de carbono que no forman de los seres vivos. La parte de la Química que estudia los compuestos del carbono es la Química Orgánica oQuímica del Carbono, pues este elemento es común a todos los compuestos orgánicos.
En la pregunta que hacíamos más arriba, sólo podemos dar una respuesta: Es que el Carbono es un gran “combinador”: debido a que su corteza dispone de espacio para cuatro electrones más, se puede enlazar a otros átomos de Carbono y formar cadenas de longitud indefinida, de manera que eslabón de la misma (cada átomo de carbono) tiene dos ramas, por así decirlo, a las que se pueden unir otros átomos o grupos de átomos, como los colgantes de un brazalete.
                      Muchas de estas moléculas están presentes en las Nebulosas
La cadena puede ser sencilla o compleja y ramificarse en distintas direcciones, pueden tener los extremos sueltos o bien unidos formando lazos cerrados o anillos. Si dos moléculas tienen exactamente el mismo de átomos de los mismos tipos, pero difieren en la forma en que están dispuestos, se dice que son isómeros.
Archivo:Ethane conformation.gif
En la isomería los átomos se distribuyen de distinta para cada isómero 
Hidrocarburos
Son compuestos orgánicos formados únicamente por “átomos de carbono e hidrógeno”. La estructura molecular consiste en un armazón de átomos de carbono a los que se unen los átomos de hidrógeno. También son los compuestos orgánicos más simples y pueden ser considerados como las sustancias principales de las que se derivan todos los demás compuestos orgánicos. Los hidrocarburos se clasifican en dos grupos principales, de cadena abierta y cíclicos. En los compuestos de cadena abierta que contienen más de un átomo de carbono, los átomos de carbono están unidos entre sí formando una cadena lineal que tener una o más ramificaciones. En los compuestos cíclicos, los átomos de carbono forman uno o más anillos cerrados. Los dos grupos principales se subdividen según su comportamiento químico en saturados
e insaturados.
                     El Carbono y el Hidrógeno son fundamentales la Vida
Aquí, por ser un tema apasionante, hemos comentado en más de una ocasión, la importancia del Carbono para la vida y, también hemos tratado ya la cuestión de si puede existir vida en algún planeta sin la presencia de compuestos de Carbono. Por supuesto, nadie sabe contestar esa pregunta pero, muchos bioquímicos piensan que la auto duplicación y la mutación son demasiado complejas para que puedan producirse por medio de algún de moléculas que dejen de lado la gran variedad y flexibilidad de los compuestos de Carbono.
El Carbono, es un elemento de posibilidades maravillosas y, hasta tal punto es así, que la vida en nuestro planeta, está presente gracias a ese fantástico elemento que, posiblemente, sea el actor principal en todas las formas de vida que puedan existir en el Universo, dado que, como he dicho tantas veces, lo que pasa aquí, también pasará allí: Todas las leyes del Universo funcionan de la misma manera en Galaxia y en cualquier otra, en este mundo y, también en cualquier otro mundo que, como el nuestro, reúna las posibilidades necesarias para el surgir de la vida.
Se han imaginado y recreado posibles formas de vida basadas en el Silicio en planetas de alta temperatura
Las bioquímicas hipotéticas son especulaciones sobre los distintos tipos de bioquímicas que podría revestir una vida extraterrestre exótica en formas que difieren radicalmente de las conocidas sobre la Tierra, con distintos grados de plausibilidad. En estas bioquímicas hipotéticas comúnmente se emplean elementos distintos del carbono construir las estructuras moleculares primarias y/o se produce en solventes distintos del agua. Las presentaciones de la vida extraterrestre basadas en estas bioquímicas alternativas son comunes en la ciencia ficción.
El Silicio es el elemento más próximo al Carbono en cuanto a su capacidad de combinarse consigo mismo y con otros elementos formar muchos compuestos diferentes, pero sus cadenas son relativamente cortas e inestables en comparación con las de los hidrocarburos (compuestos de carbono que contienen hidrógeno). El Boro es otro elemento que se cita a veces como posible base para una vida sin Carbono, pero sus propiedades hacen que sea todavía peor candidato que el Silicio.
   Solo podemos imaginar lo que pueda estar presente en otros mundos
Claro que, si todo eso es así (como parece que es), creo que la Vida en el Universo (al menos en su mayor representación), también, como en la Tierra, estará basada en el Carbono. Lo cual, no quita la posibilidad, por extraña que ésta pueda parecer de que, otras formas de vida desconocidas nosotros puedan estar pululando por ahí fuera. En lo que llevamos vivido, en lo que la Ciencia nos ha mostrado, en las inmensas y asombrosas maravillas que hemos podido con la Mecánica Cuántica y con las leyes cosmológicas que rigen en el Universo, hemos podido aprender una cosa: ¡Nunca digas que no! Todo lo que podamos imaginar… podría ser una realidad por asombroso que nos pueda parecer.
Por ejemplo:


En otros trabajos hemos hablado de los materiales del futuro y… ¡mira por donde! también el actor principal es el carbono que está presente en los fullerenos y en el grafeno que dan unas posibilidades increíbles para las nuevas técnicas de la electrónica, comunicaciones, y otros menesteres de las actividades huamnas que nos llevarán hacia un futuro de incAlculable riqueza tecnológica.
Tres formas principales en las que se encuentra el grafeno monocapa, con unas propiedades electrónicas muy interesantes.
La tercera alotrópica del carbono después del grafito y del diamante, es el carbono en una sola capa, formando bien esferas o cuerpos con volumen como los fullerenos y los nanotubos, o láminas bidimensionales como el grafeno. El grafeno es una lámina de átomos de carbono de un átomo de espesor. Es un candidato muy prometedor para la nanoelectrónica que viene, debido a sus interesantísimas propiedades electrónicas, además de ser transparente, flexible y barato. Los electrones se mueven en el grafeno unas 2000 veces más rápido que en el silicio, lo que posibilita que como transistor se pueda apagar y encender más rápido.

 

Resultado de imagen de Neuronas sin finResultado de imagen de nANOTUBOS DE cARBONO

 

 

 

 

Tenemos que pensar que todo lo que existe, sea animado o inanimado, se trate del cerebro de un insecto, de las conexiones de nuestro cerebro o de los nanotubos de carbono, todo sin excepción, está formado por la misma cosa: Quarks y Leptones que, combinados en la debida proporción, conforman la materia presente en todo el Universo y que es poseedora de la energía que está presente por todas partes en sus distintas manifestaciones.

De todas las maneras y, aunque mirando objetivamente la realidad, seámos nosotros los que prevalecemos sobre todos los demás, no debemos presumir demasiado por ello, dado que, la diferencia entre nosotros y algunos objetos y seres de la Tierra…, no es tan grande. Seámos humildes y sencillos, reconozcamos nuestras debilidades y comprendamos que, en definitiva, sólo somos una parte más, de la Naturaleza grandiosa que define al Universo.

 

 

 

Organismo

Hombre

Alfalfa

Bacteria

Carbono

19,37 %

11,34 %

12,14 %

Hidrógeno

9,31 %

8,72 %

9,94 %

Nitrógeno

5,14 %

0,83 %

3,04 %

Oxígeno

61,81 %

77,90 %

73,68 %

Fósforo

0,63 %

0,71 %

0,60 %

Azufre

0,64 %

0,10 %

0,32 %

CHNOPS/ TOTAL

97,90 %

99,60 %

99,72 %

Podríamos pensar que la vida es la forma más evolucionada de la materia. Claro que, para llegar a ese nivel máximo de la vida, tendría que estar presente la consciencia.

 

¡El Carbono! Un elemento esencial para la vida… y mucho más.

emilio silvera

¡Las estrellas! Algo más que puntitos brillantes en el cielo

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

Resultado de imagen de La Humanidad

Una muestra (entre otros muchas) de lo que hicimos en el pasado

  

 

 WISE: Nebulosas Corazón y Alma en Infrarrojo

 

Si en una noche clara, sin contaminación lumínica, salimos a contemplar las estrellas, las vemos brillar y titilar como si quisieran enviarnos algún mensaje. Lo cierto es que pocos piensan en la inmensa importancia que tienen estos puntitos brillantes del cielo. Como el ciclo de agua en la Tierra, también allí arriba se produce un ciclo estelar: Estrellas que viven 10.000 millones de años, explotan como supernovas y riegan una región inmensa del Espacio interestelar con una Nebulosa cargada de elementos. De esa Nebulosa nacen nuevas estrellas y nuevos mundos, nuevos sistemas planetarios y, posiblemente, nuevas formas de vida.

 

 

Resultado de imagen de NUevos sistemas planetarios

 

En la Nebulosa de arriba…“¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopea? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una forma en luz visible que nos recuerda a un clásico símbolo de un corazón. La imagen de arriba, sin embargo , fue realizada en luz infrarroja por el recientemente lanzado telescopio WISE. La luz infrarroja penetra bien dentro de las enormes y complejas burbujas creadas por la formación estelar en el interior de estas dos regiones de formación de estrellas.

Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos desde estas nebulosas, que juntas abarcan unos 300 años luz.” (APOD)

Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazon (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una región de la galaxia donde muchas estrellas se están formando. IC 1805 (la nebulosa Corazón) es a menudo llamada también como la nebulosa del Perro Corriendo, debido obviamente a la apariencia de la nebulosa vista desde un telescopio.

 

 

http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

 

 

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

 

 

Foto de la estrella Sirio A y B a la izquierda inferior

 

Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

 

 

En el centro de la Nebulosa del Corazón ¿Qué poderes

 

Seguimos en la Nebulosa del Corazón (otra región)

 

Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo, unidas a las de los gases, se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado, poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma; su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.

La masa máxima de las estrellas puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían desde alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.

 

 

 

La estrella Sirio es la más brillante y tiene el doble de tamaño que nuestro Sol

 

 

 

Eta Carinae (NGC 3372) tiene 400 veces el diámetro del Sol inmersa en esa Nebulosa que la esconde dentro del gas y el polvo que la misma estrella expulsa para mantenerse “viva” y evitar la destrucción por su propia radiación, eso es lo que les pasa a las estrella con más de 120 masas solares.

 

 

 

Betelgeuse tiene 1.000 veces el díametro de nuestro Sol

Pero la estrella más grande conocida es:

 

 

VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol.

 

El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, hace posible que los protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por cada kilogramo de hidrógeno quemado de esta manera, se convierten en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta forma, deja “sembrado” de estos materiales el “vacío” estelar.

 

 

Resultado de imagen de Clasificación de las estrellasResultado de imagen de Clasificación de las estrellasResultado de imagen de Clasificación de las estrellasResultado de imagen de Clasificación de las estrellas

 

Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.

 

 

 

Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, desde luego, nos podemos quedar asombrados de que puedan existir cosas tan grandes como VY Canis Majoris. Podéis observar en ellas su tamaño en comparación con nuestro Sol.

El Color de las estrellas indican de qué materiales están conformadas y, así se compruena mediante el estudio de sus espectros.

 

  • Color azul, como la estrella I Cephei
  • Color blanco-azul, como la estrella Spica
  • Color blanco, como la estrella Vega
  • Color blanco-amarillo, como la estrella Proción
  • Color amarillo, como el Sol
  • Color naranja, como Arcturus
  • Color rojo, como la estrella Betelgeuse.

 

 

Resultado de imagen de Clasificación de las estrellas

 

 

Otra clasificación es a partir de sus espectros, que indican su temperatura superficial. También por el color. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad. También evolución estelar y magnitudes aparentes y absolutas y el tipo espectral con la distancia en a. L., es otra de las clasificaciones.

Después de estas clasificaciones genéricas tenemos otras mas particulares y definidas referidas a estrellas binarias, estrellas capullo, con baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, de bario, de bariones, de campo, de carbono, de circonio, de estroncio, de helio, estrella de la población I extrema, de la población intermedia, de la rama gigante asintótica, estrella de litio, de manganeso, de manganeso-mercurio y, viceversa, estrella de metales pesados, de neutrones, estrellas de quarks (hipotética con densidad intermedia entre la estrella de neutrones y el agujero negro), estrella de referencia, de silicio, de tecnecio, de tiempo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estándar, evolucionada, etc.

La luz proveniente de la superficie caliente del Sol pasa a través de la atmósfera solar más fría, es absorbida en parte, por eso llega a nosotros presentando las características líneas oscuras en su espectro. Las líneas oscuras del espectro del sol coinciden con líneas de los espectros de algunos elementos y revelan la presencia de estos elementos en la superficie solar. Las longitudes de onda de las radiaciones se indican en nanometros (nm).

 

El Sol

 

 

Els Sol

 

                             De qué está hecho el Sol

 

La posición e intensidad de las líneas oscuras del espectro solar han permitido establecer que casi las tres cuartas partes de la masa del Sol son hidrógeno, el elemento más simple. Casi todo el resto es helio, el segundo elemento más simple. En suma, entre hidrógeno y helio suman alrededor del 98 por ciento de la masa solar. El 2% restante está compuesto, aproximadamente, por la siguiente proporción de elementos: 0,8% de oxígeno, 0,6% de carbono, 0,2% de neón, 0,15% de nitrógeno, 0,05% de magnesio, y, en menor porcentaje aún, hierro, sodio y silicio.

La composición química de una estrella varía según la generación a la que pertenezca. Cuánto más antigua sea, más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en volumen, la relación es 90% de hidrógeno y 10% de helio.

En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad está directamente relacionada con la edad de la estrella. A más elementos pesados, más joven es la estrella.

 

 

http://animalderuta.files.wordpress.com/2010/10/188091main_d-protoplanetary-082907-5161.jpg

 

 

Un equipo japones de astrónomos han descubierto una fuerte correlación entre la metalicidad del disco de polvo protoplanetario y su longevidad. A partir de éste hallazgo proponen que las estrellas de baja metalicidad son menos propensas a tener planetas, incluyendo gigantes gaseosos, debido a la corta vida de los discos protoplanetarios.

La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.

 

 

 

El tipo espectral estelar, conocido también como Clasificación espectral de Harvard, ya que lo comenzó a esbozar Edward Charles Picjering de la Universidad de Harvard en el año 1890, y que perfeccionó Annie Jump Cannon de la misma universidad en 1901, es la clasificación estelar más utilizada en astronomía. Las diferentes clases se enumeran de las más cálidas a frías. Son las siguientes:

 

 

Clase Temperatura Color Convencional Masa Radio Luminosidad Líneas de absorción Ejemplo
O 28 000 – 50 000 K Azul 60 15 140 000 Nitrógenocarbonohelio y oxígeno 48 Orionis
B 9600 – 28 000 K Blanco azulado 18 7 20 000 Helio, hidrógeno Rigel
A 7100 – 9600 K Blanco 3,1 2,1 80 Hidrógeno Sirio A
F 5700 – 7100 K Blanco amarillento 1,7 1,3 6 Metaleshierrotitaniocalcioestroncio y magnesio Canopus
G 4600 – 5700 K Amarillo 1,1 1,1 1,2 Calcio, helio, hidrógeno y metales El Sol
K 3200 – 4600 K Amarillo anaranjado 0,8 0,9 0,4 Metales y óxido de titanio Albireo A
M 1700 – 3200 K Rojo 0,3 0,4 0,04 Metales y óxido de titanio Betelgeuse

 

Las magnitudes MasaRadio y Luminosidad, en proporción respecto al Sol (Sol=1).

 

La variedad de estrellas es grande y para los estudiosos fascinantes. Tal diversidad es debida a la evolución que desde su formación tiene cada tipo de estrella en función de su masa y de los gases y polvo cósmico que la forman y los que se crean en su núcleo (horno solar) a miles de millones de grados de temperatura capaces de transformar materiales simples como el hidrógeno hacia una gama más compleja y pesada que, finalmente, mediante la explosión de supernova (más temperatura), arroja al espacio materiales que, a su vez, forman nuevas estrellas de 2ª y 3ª generación con materiales complejos. La vida en nuestro planeta pudo surgir gracias a que en la Tierra había abundancia de estos materiales creados en las estrellas. Podemos decir, sin temor a equivocarnos que nosotros mismos estamos hechos del material creado en las estrellas lejanas que posiblemente, hace miles de millones de años explotó en supernova a millones de años luz de nuestro Sistema Solar.

Pero el Universo se rige por lo que llamamos las Fuerzas y Constantes Fundamentales de la Naturaleza, tenemos que decir que, precisamente, estas constantes son las que tienen el mérito de que las estrellas brillen en las galaxias y de que nosotros estemos aquí para mirar a los cielos y contemplar su belleza.

Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.

 

 

 

 

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundo-brana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.

 

 

Las fuerzas fundamentales

 

 

Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La

El hipotético gravitón transporta la Gravedad pero está fuera del Modelo estándar


Las constantes fundamentales


Constante

Símbolo

Valor en unidades del SI

Aceleración en caída libre

g

9,80665 m s-2

Carga del electrón

e

1,60217733(49) × 10-19 C

Constante de Avogadro

NA

6,0221367 (36) × 1023 mol-1

Constante de Boltzmann

K=R/NA

1,380658 (12) × 10-23 J K-1

Constante de Faraday

F

9,6485309 (29) × 10C mol-1

Constante de los gases

R

8,314510 (70) × J K-1 mol-1

Constante de Loschmidt

NL

2,686763 (23) × 1025 mol-3

Constante de Planck

h

6,6260755 (40) × 10-34 J s

Constante de Stefan-Boltzmann

σ

5,67051 (19) × 10-8 Wm-2 K-4

Constante eléctrica

ε0

8,854187817 × 10-12 F m-1

Constante gravitacional

G

6,67259 (85) × 10-11 m3 Kg-1 s-2

Constante magnética

μ0

4π × 10-7 Hm-1

Masa en reposo del electrón

me

9,1093897 (54) × 10-31 Kg

Masa en reposo del neutrón

mn

1,6749286 (10) × 10-27 Kg

Masa en reposo del protón

mp

1,6726231 (10) × 10-27 Kg

Velocidad de la luz

c

2,99792458× 10m s-1

Constante de estructura fina

α

2 π e2/h c

Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces.

Resultado de imagen de Alfa, el número puro adimensional

El físico experimental, León Lederman, decía: Todos los físicos del mundo deberían tener, en el lugar más destacados de sus casas, un cuadro con el número 137, así les recordaría lo mucho que no sabemos.

La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e indicamos con α, es como hemos dicho antes, una combinación de ec y h(el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si eh y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza.

 

Si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnétares creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de sucesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas.

Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos,

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.

http://4.bp.blogspot.com/_vN2CzO8lJI8/TCgyBTdgFLI/AAAAAAAAAC0/3G3ep8WFRGA/s1600/resplandor.jpg

Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Artes que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partierndo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.

Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.

Resultado de imagen de 2015 año Internacional de la Luz

Resultado de imagen de la luz solar

El pasado año 2.015 fue el Año Internacional de la Luz, y, no debemos perder de vista que la luz tiene tanto importancia para vida como el agua. Sin luz tendríamos un planeta oscuro con un sola noche eterno, frío de tenebroso, sin esos bellos rincones que se pueden conformar cuando la luz, incide en una montaña, en el bosque, en el horizonte del Océano, o, simplemente se refleja en la blanca nieve, en las olas del Mar o en una atronadora catarata.

La luz Natural es un don que nos dio la Naturaleza y hace posible que esa luz y ese calor que el Sol nos envía, haga posible la vida en el planeta, se produzca la tan necesario fotosíntesis, y muchos más beneficiosos fenómenos que, no siempre sabemos valorar en su justa medida.

emilio silvera