miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Tiempo que transcurre inexorable

Autor por Emilio Silvera    ~    Archivo Clasificado en El Tiempo pasa...¿O somos nosotros?    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La Tumba de Hilbert

En la tumba de David Hilbert (1862-1943), en el cementerio de Gotinga (Alemania), dice:

Debemos saberSabremos”.

Resultado de imagen de Tenemos que saber

Tenemos que ir borrando algunos signos de interrogación, y, aunque aparezcan otros nuevos, el avance será real acumulanhdo conocimientos que nos lleven (algún día lejano) a poder viajar a las estrellas.

Estoy totalmente de acuerdo con ello. El ser humano está dotado de un resorte interior, algo en su mente que llamamos curiosidad y que nos empuja (sin que en muchas ocasiones pensemos en el enorme esfuerzo y en el alto precio que pagamos) a buscar respuestas, a querer saber el por qué de las cosas, a saber por qué la naturaleza se comporta de una u otra manera y, sobre todo, siempre nos llamó la atención aquellos problemas que nos llevan a buscar nuestro origen en el origen mismo del universo y, como nuestra ambición de saber no tiene límites, antes de saber de dónde venimos, ya nos estamos preguntando hacia dónde vamos. Nuestra osadía no tiene barreras y, desde luego, nuestro pensamiento tampoco las tiene, gracias a lo cual, estamos en un estadio de conocimiento que a principios del siglo XXI, se podría calificar de bastante aceptable para dar el salto hacia objetivos más valiosos.

Es mucho lo que hemos avanzado en los últimos ciento cincuenta años.  El adelanto en todos los campos del saber es enorme. Las matemáticas, la física, la astronomía, la química, la biología genética, y otras muchas disciplinas científicas que, en el último siglo, han dado un cambio radical a nuestras vidas.

Resultado de imagen de La tecnología del siglo XX!

El crecimiento es exponencial; cuanto más sabemos más rápidamente avanzamos. Compramos ordenadores, teléfonos móviles, telescopios y microscopios electrónicos y cualesquiera otros ingenios e instrumentos que, a los pocos meses, se han quedado anticuados, otros nuevos ingenios mucho más avanzados y más pequeños y con muchas más prestaciones vienen a destituirlos.

¿Hasta dónde podremos llegar?

Con el tiempo suficiente por delante… no tenemos límite. Todo lo que la mente humana pueda idear… podrá hacerlo realidad. A excepción, claro está, de las imposibilidades físicas que, en este momento, no tenemos la capacidad intelectual para enumerar. La verdad es que nuestra especie es inmortal. Sí, lo sé, a nivel individual morimos pero…, debemos tener un horizonte más amplio y evaluar una realidad más global y, sobre todo, a más largo plazo. Todos dejamos aquí nuestro granito de arena, lo que conseguimos no se pierde y nuestras antorchas son tomadas por aquellos que nos siguen para continuar el trabajo emprendido, ampliar los conocimientos, perfeccionar nuestros logros y pasar a la fase siguiente.

Resultado de imagen de Adelantos del futuro

Este es un punto de vista que nos hace inmortales e invencibles, nada podrá parar el avance de nuestra especie, a excepción de nuestra especie misma.

Ninguna duda podemos albergar sobre el hecho irrefutable de que venimos de las estrellas* y de que nuestro destino, también está en las estrellas**.

La humanidad necesita más energía para continuar avanzando. Los recursos naturales fósiles, como el petróleo, el gas o el carbón, son cada vez más escasos y difíciles de conseguir. Se ha llegado a un punto en el que se deben conseguir otras energías.

Imagen relacionadaImagen relacionada

Dentro de unos treinta años estaremos en el camino correcto. La energía de fusión sería una realidad que estará en plena expansión de un comenzar floreciente. Sin residuos nocivos peligrosos como las radiaciones de la fisión nuclear, la fusión nos dará energía limpia y barata en base a una materia prima muy abundante en el planeta Tierra.

Nuestro Sol fusiona hidrogeno en helio a razón de 4.654.000 toneladas por segundo. De esta enorme cantidad de hidrógeno, 4.650.000 toneladas se convierten en helio. Las 4.000 toneladas restantes son lanzadas al espacio en forma de luz y calor, energía termonuclear de la que, una parte, llega al planeta Tierra y hace posible la vida.

Resulta pues que el combustible nuclear de las estrellas es el hidrógeno que mediante su fusión hace posible que genere tal enormidad de energía.  Así lleva el Sol unos 4.500 millones de años y se espera que al menos durante un período similar nos esté regalando su luz y su calor.

Diferencias entre Ma...

Pero ¿tenemos hidrógeno en el planeta Tierra para tal empresa de fusión nuclear?

La verdad es que sí. La fuente de suministro de hidrógeno con la que podemos contar es prácticamente inagotable…

¡El agua de los mares y de los océanos!

Resultado de imagen de El hidrógeno es el elementos más abundante del Universo

Todos sabemos que el hidrógeno es el elemento más ligero y abundante del universo. Está presente en el agua y en todos los compuestos orgánicos.  Químicamente, el hidrógeno reacciona con la mayoría de los elementos.  Fue descubierto por Henry Cavendisch en 1.776. El hidrógeno se utiliza en muchos procesos industriales, como la reducción de óxidos minerales, el refinado del petróleo, la producción de hidrocarburos a partir de carbón y la hidrogenación de los aceites vegetales y, actualmente, es un candidato muy firme para su uso potencial en la economía de los combustibles de hidrógeno en la que se usan fuentes primarias distintas a las energías derivadas de combustibles fósiles (por ejemplo, energía nuclear, solar o geotérmica) para producir electricidad, que se emplea en la electrólisis del agua. El hidrógeno formado se almacena como hidrógeno líquido o como hidruros de metal.

Resultado de imagen de El Hidrógeno es la materia prima del Universo

Bueno, tantas explicaciones sólo tienen como objeto hacer notar la enorme importancia del hidrógeno. Es la materia prima del universo, sin él no habría estrellas, no existiría el agua y, lógicamente, tampoco nosotros podríamos estar aquí sin ese preciado elemento.

Cuando dos moléculas de hidrógeno se junta con una de oxígeno (H2O), tenemos el preciado líquido que llamamos agua y sin el cual la vida no sería posible.

Así las cosas, parece lógico pensar que conforme a todo lo antes dicho, los seres humanos deberán fijarse en los procesos naturales (en este caso el Sol y su producción de energía) y, teniendo como tiene a su disposición la materia prima (el hidrógeno de los océanos), procurar investigar y construir las máquinas que sean necesarias para conseguir la fusión, la energía del Sol.

https://www.sciencenews.org/sites/default/files/17498

Esa empresa está ya en marcha y, como he dicho al principio de este comentario, posiblemente en unos treinta años sería una realidad que nos dará nuevas perspectivas para continuar el imparable avance en el que estamos inmersos.

Pero no me gustaría cerrar este comentario sobre la fusión sin contestar a una importante pregunta…

¿Y por qué la fusión?

Porque tiene una serie de ventajas muy significativas en seguridad, funcionamiento, medio ambiente, facilidad en conseguir su materia prima, ausencia de residuos peligrosos, posibilidad de reciclar los escasos residuos que genere, etc.

Resultado de imagen de Centrales de energía de  fusión nuclear

Esquema de un reactor nuclear de fusión tipo tokamak, como ITER

  • Los recursos combustibles básicos (deuterio y litio) para la fusión son abundantes y fáciles de obtener.
  • Los residuos son de helio, no radiactivos.
  • El combustible intermedio, tritio, se produce del litio.
  • Las centrales eléctricas de fusión no estarán expuestas a peligrosos accidentes como las centrales nucleares de fisión.
  • Con una elección adecuada de los materiales para el propio dispositivo de fusión, sus residuos no serán ninguna carga para las generaciones futuras.
  • La fuente de energía de fusión es sostenible, inagotable e independiente de las condiciones climáticas.

sun_diagram

Para producir la energía de fusión sólo tenemos que copiar lo que hace el Sol. Tenemos que hacer chocar átomos ligeros de hidrógeno para que se fusionen entre sí a una temperatura de 15 millones de grados Celsius, lo que, en condiciones de altas presiones (como ocurre en el núcleo del Sol) produce enormes energías según la formula E = mc2 que nos legó Einstein demostrando la igualdad de la masa y la energía.

Ese estado de la materia que se consigue a tan altas temperaturas, es el plasma, y sólo en ese estado se puede conseguir la fusión.

Aunque en Europa la aventura ya ha comenzado, y para ello se han unido los esfuerzos económicos de varias naciones, la empresa de dominar la fusión no es nada fácil, pero…, démosle…

https://lamentiraestaahifuera.files.wordpress.com/2011/12/sunelements.png

Siempre será la Naturaleza la que nos indique el camino a seguir. En las estrellas se “fabrican” los elementos mediante la fusión nuclear, los elementos sencillos se han cada vez más complejos a medida que avanza el proceso y, finalmente, son las explosiones supernovas las que nos traen los elementos más complejos como el Uranio, el nº 92 de la Tabla Periódica.

¡TIEMPO!

Sí, es el tiempo el factor que juega a nuestro favor para conseguir nuestros logros más difíciles, para poder responder preguntas de las que hoy no tenemos respuesta, y es precisamente la sabiduría que adquirimos con el paso del tiempo la que nos posibilita para hacer nuevas preguntas, más profundas que las anteriores y que antes, por ignorancia, no podríamos hacer.  Cada nuevo conocimiento nos abre una puerta que nos invita a entrar en una nueva región donde encontramos otras puertas cerradas que tendremos que abrir para continuar nuestro camino. Sin embargo, hasta ahora, con el “tiempo” suficiente para ello, hemos podido franquearlas hasta llegar al momento presente en el que estamos ante puertas cerradas con letreros en los que se puede leer: fusión, teoría M, viajes espaciales tripulados, nuevas formas de materia, el gravitón, la partícula de Higgs, las ondas de energía de los agujeros negros, hiperespacio, otros universos, materia oscura, y otras dimensiones.

Resultado de imagen de La Humanidad se encuentra ante muchas puertas cerradas que debe abrir para seguri adelante

       Siempre estaremos delante de puertas cerradas

Todas esas puertas y muchas más nos quedan por abrir. Además, tenemos ante nuestras narices puertas cerradas que llevan puesto el nombre de: genética, nanotecnología, nuevos fármacos, alargamiento de la vida media, y  muchas más en otras ramas de la ciencia y del saber humano.

Aunque es mucho lo que se ha especulado sobre el tema, en realidad, el tiempo sólo transcurre (que sepamos) en una dirección, hacia delante. Nunca ha ocurrido que unos hechos, que unos sucesos, se pudieran borrar, ya que para ello habría que volver en el tiempo anterior al suceso para evitar que sucedieran. Está claro que en nuestro universo, el tiempo sólo transcurre hacia lo que llamamos futuro.

Imagen relacionadaResultado de imagen de La rotación de la Tierra disminuye por las fuerzas de mareas

Siempre encontramos las huellas del paso del tiempo, aparecen sutiles efectos que delata el sentido del paso del tiempo, aunque es algo que no se puede ver ni tocar, su paso se deja sentir, lo nuevo lo va convirtiendo en viejo, con su transcurrir, las cosas cambian. La misma Tierra, debido a las fuerzas de marea, con el paso del tiempo va disminuyendo muy lentamente su rotación alrededor de su eje (el día se alarga) y la distancia media entre la Tierra y la Luna crece. El movimiento de un péndulo, con el tiempo disminuye lentamente en su amplitud por las fuerzas de rozamiento. Siempre está presente ese fino efecto delator del sentido del paso del tiempo que va creando entropía destructora de los sistemas que ven desaparecer su energía y cómo el caos lo invade todo.

Nos podríamos hacer tantas preguntas sobre las múltiples vertientes en que se ramifica el tiempo que, seguramente, este libro sería insuficiente para poder contestarlas todas (de muchas no sabríamos la respuesta).

Resultado de imagen de El Tiempo rige nuestras vidasResultado de imagen de La misma persona con 25 y 60 años

                                         El Tiempo pasa, o, ¿En realidad pasamos nosotros?

  • ¿Por qué consideramos que el tiempo rige nuestras vidas?
  • ¿Cómo explicarías “qué es el tiempo”?
  • ¿Por qué unas veces te parece que el tiempo “pasa rápido” y otras veces “muy lento”?
  • ¿Crees que el tiempo estaba antes del Big Bang? ¿Por qué?
  • ¿En algún momento se acabará el tiempo?
  • ¿Cómo el ser humano “fue consciente” de la existencia del tiempo?
  • ¿Qué cosa es el tiempo?
  • ¿Por qué no lo vemos ni tocamos pero notamos sus efectos?
  • ¿Por qué la velocidad relativista puede frenar el transcurrir del tiempo?

Resultado de imagen de Nuestro sistema solar

En realidad, si nos detenemos a pensar detenidamente y en profundidad en el entorno en que nos encontramos, una colonia de seres insignificantes, pobladores de un insignificante planeta, de un sistema solar dependiente de una estrella mediana, amarilla, del tipo G-2, nada especial y situada en un extremo de un brazo espiral, en la periferia (los suburbios del Sistema Solar) de una de entre miles de millones de galaxias… si pensamos en esa inmensidad, entonces caeremos en la cuenta de que no somos tan importantes, y el tiempo que se nos permite estar aquí es un auténtico regalo. Ese tiempo, corto espacio de tiempo en relación al tiempo cosmológico, es por cierto un espacio suficiente para nacer, crecer, aprender, dejar huella de nuestro paso por este mundo a través de nuestros hijos y a veces (si somos elegidos) por nuestro trabajo, tendremos la oportunidad (casi siempre breve) de ser felices y muchas oportunidades para el sacrificio y el sufrimiento, y así irán pasando nuestras vidas para dejar paso a otras que, al igual que nosotros, continuaran el camino iniciado en aquellas cuevas remotas del pasado, cuando huyendo del frío y de los animales salvajes, nos refugiábamos en las montañas buscando cobijo y calor.


* El material de que estamos hechos se formó hace miles de millones de años en estrellas lejanas que explotaron en supernovas y dejaron el espacio regado de la materia que somos.

** El final del Sol, dentro de 4.000 millones de años, nos obligará a que antes tengamos que emigrar a otros mundos lejanos.

emilio silvera

Creemos cosas que…, ¿serán ciertas?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Esta es la nueva instatánea del universo poco después de la gran explosión conocida como Big Bang. El mapa revela las fluctuaciones de temperatura apenas 380.000 años después. La ha realizado el satélite Planck. Está formada por 15 millones de pixels y envejece la edad de nuestro universo unos 80 millones de años hasta colocarlo en 13.890 millones de años.

Hubo un tiempo, en el Universo muy temprano, en el que la temperatura estaba por encima de algunos cientos de veces la masa del protón, cuando la simetría aún no se había roto, y la fuerza débil y electromagnética no sólo eran la misma matemáticamente, sino realmente la misma. Un físico que hubiera podido estar allí presente, en aquellos primeros momento, no habría podido observar ninguna diferencia real entre las fuerzas producidas por el intercambio de estas cuatro partículas: las W, la Z y el Fotón.

Muchas son las sorpresas que nos podríamos encontrar en el universo primitivo, hasta la presencia de agua ha sido detectada mediante la técnica de lentes gravitacionales en la galaxia denominada MG J0414+0534 que está situada en un tiempo en el que el Universo sólo tenía dos mil quinientos millones de años de edad.

se detecta la mas distante señal de agua en el universo

La imagen está hecha con datos del telescopio Hubble y muestra las cuatro imágenes lente de un polvoriento quásar rojo, conectados por un arco gravitacional del quàsar de la galaxia anfitriona . La galaxia lente se ve en el centro, entre las cuatro imágenes lente. Crédito: John McKean / HST Archivo de datos

El equipo investigador pudo detectar el vapor de agua presente en los chorros de emisión de un agujero negro supermasivo. Este tipo de objeto es bastante raro en el universo actual. El agua fue observada en forma de mases, una emisión de radiación de microondas provocada por las moléculas (en este caso de agua) al ser amplificadas por una onda o un campo magnético.

Siguiendo con el trabajo, dejemos la noticia de más arriba (sólo insertada por su curiosidad y rareza), y, sigamos con lo que decíamos al principio de las fuerzas y simetría la antes de que, el universo se expandiera y enfriara para que, de una sóla, surgieran las cuatro fuerzas que ahora conocemos.

mundo brana

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil. Seguramente ese será el motivo por el cual, encontrar  al Bosón mediador de la fuerza, el Gravitón, resulta tan difícil.

De manera similar, aunque menos clara, las teorías de supersimetrícas conjeturaban que las cuatro fuerzas tal vez estaban ligadas por una sola simetría en niveles de energías mayores que caracterizaban al universo ya antes del big bang. La introducción de un eje histórico en la cosmología y la física de partículas (como decía ayer en uno de los trabajos), beneficio a ambos campos. Los físicos proporcionaron a los cosmólogos una amplia gama de herramientas útiles para saber cómo se desarrolló el universo primitivo. Evidentemente, el Big Bang no fue una muralla de fuego de la que se burló Hoyle, sino un ámbito de sucesos de altas energías que muy posiblemente pueden ser comprensibles en términos de teoría de campo relativista y cuántica.

Claro que..

Nuevo golpe a la teoría de la supersimetría

Resultado de imagen de una partícula exótica, bautizada como “el quark bello”

 

“Un nuevo golpe se ha asestado aparentemente a la teoría de la supersimetría. Expertos en el tema han reportado que hay evidencia nueva sobre la actividad de las partículas subatómicas que es consistente con el Modelo Estándar (ME) de la física de partículas. De hecho, nuevos datos que provienen del Gran Colisionador de Hadrones mostró que una partícula exótica, bautizada como “el quark bello”, se comporta como lo ha predicho el Modelo Estándar, de acuerdo a un artículo del Nature Physics.

En intentos anteriores para medir la rara transformación del quark bello a lo que se denomina el quark-up (donde se supone, por ejemplo, que el núcleo del protón contiene tres quarks, dos de ellos ya identificados y un tercero, el up, que aún está por demostrarse su existencia), el cual ha llevado a resultados conflictivos. Esto fue lo que llevó a los científicos a crear una explicación más allá del ME, posiblemente una supersimetría.”

 

 

La cosmología, por su parte, dio un tinte de realidad histórica a las teorías unificadas. Aunque ningún acelerador concebible podrían alcanzar las titánicas energías supuestas por las grandes teorías unificadas y de la supersimetría, esas exóticas ideas aún  pueden ser puestas a prueba, investigando su las partículas constituyentes del universo actual son compatibles con el tipo de historia primitiva que implican las teorías.

Gell-Mann, el premio Nobel de física, al respeto de todo esto decía: “Las partículas elementales aparentemente proporcionan las claves de algunos de los misterios fundamentales de la Cosmología temprana… y resulta que la Cosmología brinda una especia de terreno de prueba para alguna de las ideas de la física de partículas elementales.”

Resultado de imagen de Moléculas, átomos y conexiones para llegar finalmente a formar pensamientosResultado de imagen de Moléculas, átomos y conexiones para llegar finalmente a formar pensamientos

                           Moléculas, átomos y conexiones para llegar finalmente a formar pensamientos

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero en las energías extremadamente altas del big bang original  y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así (que lo es), cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que no es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

              Abajo se muestra lo que podemos ver si aumentamos lo suficiente el microscopio electrónico

                                                                  Mitocondria

Son orgánulos celulares encargados de suministrar la mayor parte de la energía necesaria para la actividad celular (respiración celular). Actúan, por lo tanto, como centrales energéticas de la célula y sintetizan ATP a expensas de los carburantes metabólicos.

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados a átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Sion embargo, nos queda la duda de: ¿qué podrá haber más allá de los Quarks?

¿Qué no podremos hacer cuando conozcamos la naturaleza real del átomo y de la luz? El fotón,  ese cuánto de luz que parece tan insignificante, nos tiene que dar muchas satisfacciones y, en él, están escondidos secretos que, cuando sean revelados, cambiará el mundo. Esa imagen de arriba que está inmersa en nosotros en en todo el Universo, es la sencillezde la complejidad. A partir de ella, se forma todo: la muy pequeño y lo muy grande.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos y átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones. Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quark que constituyen cada nucleón.

Uno de los misterios de la Naturaleza dentro de los protones y neutrones que, conformados por tripletes de Quarks, resulta que, si estos fueran liberados, tendrían independientemente, más energía que el protónque conformaban. ?cómo es posible eso?

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang. Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo. El acelerador de 200 Kev diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang. Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo.  El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo.  El nuevo LHC proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

Resultado de imagen de El Tevatrón del FermilabResultado de imagen de El Tevatrón del Fermilab

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada.  A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes,  durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica.  Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más esclarecedora del Universo primitivo que la que teníamos antes.

A los cien millones de años desde el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

Anti-hidrógeno

He aquí la primera imagen jamás obtenida de antimateria, específicamente un “anti-átomo” de anti-hidrógeno. Este experimento se realizó en el Aparato ALPHA de CERN, en donde los anti-átomos fueron retenidos por un récord de 170 milisegundos (se atraparon el 0.005% de los anti-átomos generados).

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro brilla un quasar blanco-azulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

Para determinar dónde obtuvo la célula es esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Claro que, nuestra historia está relacionada con todo lo que antes de llegar la vida al Universo pudo pasar. ¡Aquella primera célula! Se replicó en la sopa primordial llamada Protoplasma vivo y, siguió evolucionando hasta conformar seres de diversos tipos y, algunos, llegaron a adquirir la conciencia.

                       Macromolécula

Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

   Célula cerebral

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas de una rareza y de una incleible y extraña belleza que sólo la Naturaleza es capaz de conformar.

          Molécula de ADN

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que se  constituyen en protonesneutrones.

           Átomo de Carbono

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad. Una vez que fueron eliminados los antiquarks, se unieron en tripletes para formar protones y neutrones que, al formar un núcleo cargado positivamente, atrayeron a los electrones que dieron lugar a formar los átomos que más tarde, conformaron la materia que podemos ver en nuestro universo.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleaones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Los Quarks dentro del núcleo están sometidos a la Interacción fuerte, es decir, la más potente de las cuatro fuerzas fundamentales del Universo, la que mantiene a los Quarks confinados dentro del núcleo atómico por medio de los Gluones.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang. En aquel suceso la materia se podría haber formado así:

PRIMER CAMINO

Los núcleos de deuterio colisionan con un protón formando 3He, y seguidamente con un neutrón formando 4He

SEGUNDO CAMINO

El deuterio colisiona primero con un neutrón formando 3H (habitualmente conocido como tritio), y posteriormente con un protón para formar de nuevo 4He

 

 

 

 

 

“Este núcleo fue el más pesado que se formó en el universo primitivo, debido a que en el momento en que esto fue posible, la densidad de energía ya era demasiado baja para permitir que los núcleos colisonarán con suficiente energía para fundirse. En el momento en que comenzó la nucleosíntesis, la abundancia relativa de protones y neutrones era: 13% de neutrones y 87% de protones. Todos los neutrones fueron utilizados para formar los núcleos de Helio. Los protones quedarían de esa manera como núcleos de hidrógeno. Por lo tanto, tenemos que en el momento en que se completó la nucleosíntesis primigenia, el universo consistía en prácticamente un 25% de He y un 75% H (en peso) con ligeras trazas de otros elementos ligeros.”

 

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

El acelerador de 200 KeV diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang.

foto

           Aquel acelerador nada tenía que ver con el LHC de ahora, casi un siglo los separa

Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. El nuevo supercolisionador superconductor proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

El Tevatrón del Fermilab ya estaba en el camino de la modernidad en los avances de la Física

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica. Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.

                                                   Recreación del Universo primitivo

 Bueno amigos, el trabajo era algo más extenso y entrábamos a explicar otros aspectos y parámetros implicados en todo este complejo laberinto que abarca desde lo muy grande hasta la muy pequeño, esos dos mundos que, no por ser tan dispares, resultan ser antagónicos, porque el uno sin el otro no podría exis tir. Otro día, seguiremos abundando en el tema apasionante  que aquí tratamos.

emilio silvera