domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Lo que no sabemos: ¿Cómo se formaron las galaxias?

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Georges Seurat 031.jpg

                              

         Tarde de domingo en la isla de la Grande Jatte  – Georges Pierre Seurat, 1884

El Art Institute de Chicago tiene una de las mejores colecciones del mundo de pintura de finales del siglo XIX francés, reunida durante la época en que la ciudad era realmente “un matarife para el mundo, jugando con los ferrocarriles de una nación”. Una de las obras más populares es un gran lienzo de George Seurat. Su título formal es La Grande Jatte, pero se conoce coloquialmente como Domingo por la tarde en el parque.

Muestra a un grupo de parisinos paseando por un parque junto al Sena. La pintura incluso inspiró una revista en Broadway llamada Domingo el el parque con George. Saurat utilizó una técnica pictórica que era bastante poco usual en su época. En lugar del pasar el pincel sobre el lienzo en la forma habitual, tocaba el lienzo sólo con la punta.

El resultado es una pintura formada por un gran número de pequeñas motas de color. Este estilo de Pintura se llama puntillismo. A causa de esa técnica, el mirar esa pintura resulta una experiencia extraña. Desde lejos se ve lo que pretendía el pintor, la escena de un parque con figuras en él. Sin embargo, si nos acercamos mucho, la escena desaparece y lo que se verá será una colección de puntos de color sobre un lienzo. La uniformidad, que es aparente cuando miramos a la “imagen grande”, oculta la apariencia real de lo que allí está presente.

¿Nos pasará a nosotros otro tanto cuando miramos el Universo? Seguro que sí, ya que, si tuviéramos las narices pegadas a cualquiera de esas galaxias, no veríamos nada excepto un borrón de luz y de color. ¡Qué extraño es el mundo que nos rodea y cuánto nos cuesta comprenderlo!

Grupo de Galaxias NGC 7771

La pintura de Saurat proporciona una útil analogía para una de las ideas favoritas de los astrónomos acerca de la estructura del Universo: la idea de que si miramos a una escala bastante grande, encontramos que el universo es uniforme y homogéneo. A partir de Einstein los cosmólogos de “punta” han supuesto que esta afirmación es cierta. Claro que, una cosa es lo que se supone y otra muy distinta lo que en realidad pasó.

Las galaxias, por ejemplo,  no pudieron comenzar a formarse hasta después de que radiación y materia se desparejan y otra solución que se sugiere sola, el empujón al colapso gravitatorio mediante concentraciones de masa o cualquier otro procedimiento físico, tal como la turbulencia en las nubes de gas después de la formación de los átomos. Pero ¡ay!, esta línea de argumentación nos lleva hasta una tercera reconsideración del problema en el que finalizamos aceptando que, las turbulencias tampoco sirven.

File:Orion Nebula (M42) part HST 4800px.jpg

El “impulso a través de turbulencia” es una idea simple, cuyas primeras versiones fueron aireadas allá por los años 50. El postulado es este: cualquier proceso tan violento y caótico como las primeras etapas del Big Bang no sería como un río profundo y plácido, sino como una corriente de montaña, llena de espumas y turbulencias.

En este flujo caótico podemos esperar encontrar remolinos, vórtices de gas. En esta teoría, un remolino es en efecto una concentración de masa del tipo Jeans, presionando sobre la materia que le rodea a causa de la atracción gravitatoria. Si el remolino es del tamaño necesario, puede reunir una masa del tamaño de una galaxia antes de que tenga una posibilidad de disiparse. Para entonces esa masa sería suficientemente grande, de forma que se mantendría unida por la fuerza de la gravedad cuando pase el remolino.

Está bien, pero existen algunas dificultades. En primer lugar, un remolino que se forma antes de la marca de los 500.000 años es todavía una concentración de masa, y como cualquier otra concentración de masa será destruída por la presión de la radiación. Por consiguiente, los turbulentos remolinos que sirven como núcleos de concentración para las galaxias deben acceder a la existencia después de la aparición de los átomos.

Resultado de imagen de galaxias en proceso de formación

La diversidad de galaxias es grande y mientras unas tienen miles de millones de años, otras se forman

Galaxia en proceso de formación.  A pesar de la enorme técnica y sofisticación de los aparatos con que contamos para la observación del cosmos, no se ha podido encontrar ninguna a protogalaxia cercana, lo cual indica que todas o la mayoría de las galaxias se formaron hace mucho tiempo.

Lo que esto significa es que los remolinos que se forman justo después de la congelación atómica son los que más probablemente conducirán a las galaxias, porque son los que tienen más tiempo para recoger materia. Si estos remolinos son del tamaño necesario, podrían realmente producir galaxias como las que podemos ver ahí arriba. Sólo tendríamos que suponer que hubiera remolinos del tamaño de galaxias (o próximos a ellas) presentes en el momento de la congelación.

Resultado de imagen de Fusión de galaxiasResultado de imagen de Fusión de galaxias

Con todo, la teoría plantea un extraño tema filosófico. Podemos mirar las galaxias visibles, extrapolar hacia atrás en el tiempo y proponer un conjunto de turbulentos remolinos que las produzcan. Esto no resuelve el problema, sólo plantea la vieja cuestión de otro modo, retrocediendo una muesca. En lugar de preguntas: “¿Por qué las galaxias son como son?”, preguntamos “¿Por qué eran los remolinos como eran?” Y, seguimos sin avanzar en el problema de saber como se formaron las galaxias.

Tampoco las galaxias han tenido tiempo para formar cúmulos, y, sin embargo, ahí están. ¿Qué sabemos de los enigmas del Universo? En realidad, vamos sabiendo algo pero, lo cierto es que, son muchas más las preguntas que las respuestas.

Resultado de imagen de El cúmulo de galaxias Hidra

                     Aquí podemos contemplar el hermoso cúmulo de galaxias de Hydra

Miramos la bella imagen y vemos como dos brillantes y supermasivas estrellas destacan en el primer plano, pertenecen a la Vía Láctea, y están más cerca a nosotros. Más allá, lejos en el fondo, relucen las galaxias del cúmulo que, en el centro exhiben unas predominantes galaxias de más de 150.000 años-luz de diámetro, dos son elípticas de color amarillo (NGC 3311 y NGC 3309) la Azulada, es la espiral NGC 3312 y, justo por encima de la izquierda de NGC 3312 aparece una misteriosa pareja de galaxias superpuestas que están catalogadas como NGC 3314.

Estas imágenes, cuando se contemplan por personas no expertas, pueden también llevar al engaño. Por ejemplo, mientras que las estrellas del primer plano se encuentran a cientos de años-luz de distancia, el cúmulo de galaxias de Hydra está a más de 100 millones de años-luz. Es una de los tres grandes cúmulos que hay dentro de los 200 millones de años-luz de la Vía Láctea. También es conocido como Abell 1060. En nuestro Universo, las galaxias están gravitacionalmente unidad en cúmulos y, a su vez, estos cúmulos en supercúmulos mucho mayores de muchos miles o cientos de miles de galaxias. La Imagen tiene un diámetro de cera del millón y medio de años-luz.

La gravedad es la gran fuerza estabilizadora del universo. Nunca lo abandona del todo; siempre está actuando, tratando de unir pedazos de materia. En cierto sentido, la historia entera del universo se puede pensar como un último y fútil intento de superar la gravedad. Sería asombroso, dada la naturaleza universal de la fuerza gravitatoria, que no hubiera desempeñado un papel importante en la formación de las galaxias.

Supongamos que el universo ha comenzado como una colección de materia uniformemente emplastada, en la que ninguna parte tenía mayor concentración de materia que otra. En esta situación se podría esperar se que la fuerza de la gravedad tuviera que actuar para unir todo lo que hay en el universo en un imposible sol central. Claro que, una cosa es pensarlo y otra muy distinta es la realidad.

El problema es que en cualquier colección de materia, por uniformemente distribuida que esté, habrá ligeras concentraciones en alguna parte. Incluso, aunque tengamos que descender al nivel microscópico para verlo, el movimiento aleatorio de los átomos resultará al final en un estado de la cuestión en el que hay un pequeño exceso de átomos en algunos puntos y un pequeño déficit en otros.

[lefevre_06.jpg]

No es difícil visualizar lo que pasa a continuación. En un momento dado, el pequeño extra de materia se acumula en alguna parte, bien por causa del movimiento atómico o por alguna otra razón. Debido al momentáneo exceso de materia en ese punto, la fuerza gravitatoria ejercida por los puntos de alrededor. Por consiguiente entrará más masa en el área en que tuvo lugar la concentración original. Con más masa, la concentración puede ejercer todavía más fuerza gravitatoria y atraer todavía más materia hacia ella. No importa lo equitativa que fuera la distribución inicial, una vez que se ha formado la más pequeña concentración, la masa uniforme se romperá en pequeños pedazos cada uno formado alrededor de la concentración original de masa. Esta inestabilidad inherente a una masa de materia fue señalada por primera vez en los años veinte por el astrofísico británico sir James Jeans.

Resultado de imagen de El cúmulo de galaxias Hidra

A primera vista parece un rayo de esperanza. El universo debe romperse en pequeñas unidades de masa, y con suerte, estas unidades se convertirían en galaxias. Incluso resulta que, aunque sólo hemos hablado de un universo, el resultado de Jeans sigue siendo verdad si hay la expansión de Hubble. Pero el problema no es tan sencillo. La misma teoría que nos dice que una distribución uniforme de materia es inestable frente a la rotura de pequeños pedazos, también nos dice cuánto tardará el proceso de rotura.

(Lo que mostró realmente Jeans fue que una masa en gravitación es inestable para la rotura en piezas de cierto tamaño. Si una masa es más pequeña que el pedazo más pequeño en el que puede ser dividida, la masa será estable. En otro caso, se romperá. Esta prueba se conoce como el criterio de Jeans para los expertos tiene una bien conocida fórmula, la longitud de Jeans).

La cuestión viene a ser: ¿pueden actuar las fuerzas gravitatorias con suficiente rapidez después que ha tenido lugar el desplazamiento, para reunir la materia en grupos del tamaño de una galaxia, antes de que la expansión de Hubble ponga todo fuera del alcance? Una de las grandes conmociones para la comunidad astronómica de los años treinta fue que la respuesta a esta pregunta fue un rotundo “¡NO!” Lo que parecía ser el mecanismo más probable para la formación de galaxias –el mecanismo de inestabilidad gravitatoria que acabamos de describir- no funcionará en un universo en expansión.

Quizá este hecho fue lo que condujo a Jeans, al final de su vida, a proponer un universo en el que la materia se iba creando continuamente en los vacíos que dejaba la expansión galáctica. En esta visión, la formación de galaxias es un proceso continuo, no confinado a ningún tiempo particular de la historia del universo. Esta teoría de Jeans que, al final se clasificó como universo estacionario, sería abandonada después de la acumulación de pruebas muy convincentes a favor del big bang.

Resultado de imagen de Big bang

La idea del universo estacionario fue un modelo cosmológico desarrollado en 1948 por Hermann Bondi, Thomas Gold y Fred Hoyle como una alternativa a la teoría del Big Bang que, finalmente, prevalecería como la teoría más probable y la que más se acercaba a la observación del espacio interestelar y que vino a confirmar la radiación de fondo cósmico como la huella dejada por aquella explosión primera.

Todo lo relacionado con la formación de las galaxias resulta muy enigmático y para los entendidos también, ya que, a ciencia cierta, como se pudieron formar… Nadie lo sabe pero, las conjeturas abundan…

Resultado de imagen de ... y se formaron los primeros átomos

Se cree que unos 10.000 años después del Big Bang la temperatura había descendido a unos 100.000 grados centígrados y se formaron los primeros átomos de hidrógeno.

Después de formase los átomos, la situación habría sido marcadamente diferente. El hecho clave aquí es que la radiación no interacciona tan fuertemente con los átomos como con las partículas cargadas en un plasma. Podéis consultar la propia memoria para ver que esta afirmación es cierta. Si habéis estado en la cima de una montaña o de un edificio alto y habéis mirado desde allí al paisaje circundante, probablemente han podido ver lindes, por ejemplo, hasta unos cincuenta o quizá cien km de distancia. En algunos lugares, como las cimas de las montañas que se elevan en el aire límpido del norte de España, pueden ver incluso más lejos.

Pero antes de que vean esas lindes, es necesario que la luz viaje desde el objeto visto hasta su ojo. La simple experiencia de ver a lo lejos, por tanto, nos dice que la luz puede viajar por el aire largas distancias sin ser dispersada o distorsionada. Esto no puede suceder en un plasma. Que suceda en el aire, que está hecho de átomos y moléculas, muestra que la interacción de la luz con esas dos formas de materia debe ser muy diferente.

Resultado de imagen de El en universo primitivo, la materia estaría en forma de plasma

Así que en el universo inicial, la secuencia de los acontecimientos debe haber sido algo así. Hasta unos 100 000 años la materia estaba en forma de plasma y no se podían haber formado objetos del tamaño de una galaxia. A los 200 000 años, los átomos comenzaron a aparecer y la interacción de la luz con la materia comenzó a debilitarse. La formación de los átomos no tuvo lugar de golpe, sino que continuó hasta la cota del millón de años. Entre esos dos momentos, el maquillaje del universo viró desde el plasma a los átomos, y cuando terminó la transición quedaban pocas partículas cargadas libres. La forma dominante de la materia era el

En algún momento durante de la formación de los átomos, la fuerza de la interacción entre la materia y radiación disminuyó hasta el punto en el que la radiación ya no se quedara atrapada dentro del plasma. La radiación circulaba libremente y, desde ese momento en adelante, tuvo poco efecto sobre el proceso de formación de los átomos, la radiación se desparejó la de la materia.

Aunque el desparejamiento fue gradual, me gustaría hacer una referencia ocasional al proceso. Hablaré de él como si hubiera ocurrido hacia la cota de los 500 000 años, pues éste es un número redondo a medio camino de la congelación de los átomos. Esto es simplemente para abreviar; no quiero dar entender que el universo fuera opaco hasta 500 000 años más un segundo.

Resultado de imagen de Si echamos azúcar en el té la bebida se vuelve turbia

He encontrado una analogía muy útil para visualizar el proceso de desparejamiento. Cuando os toméis una bebida, como té helado servida en un vaso alto, observen lo que sucede si remueven el azúcar. Al principio, la bebida se vuelve turbia, porque el azúcar está en forma de terrones relativamente grandes y los terrones grandes dispersan la luz con eficacia. Saben que la dispersión es eficaz porque la luz no puede atravesar todo el vaso, sino que es dispersada. Esta luz dispersa es la que da al té su apariencia turbia. En este estado, el té es análogo al universo antes de la formación de los átomos, cuando la radiación estaba interaccionando con el plasma. Tras unos pocos momentos, el té se vuelve repentinamente transparente de nuevo. Lo que ha sucedido es que el azúcar se ha disuelto y ahora existe en forma de moléculas que interaccionan débilmente con la luz. La luz pasa ahora a través del té sin ser dispersada y la niebla ha desaparecido. Este cambio de turbio a transparente en el té se parece a lo que sucedió en el universo cuando se formaron los átomos. El universo se volvió transparente al despejarse la radiación, y no quedaba nada que contrarrestase la fuerza de la gravedad cohesionando la materia.

Así, la interacción de la radiación y la materia impide el comienzo de procesos que pudieran conducir a las galaxias antes de que el universo tuviera 500 000 años de edad. Esto resulta ser un problema importante, a causa de la lógica que nos dice que las galaxias no tuvieron tiempo de formarse.

http://www.educarm.es/templates/portal/ficheros/websDinamicas/32/cumulosdegalaxias.jpg

Todo esto de las Galaxias siempre me ha planteado muchas dudas pues, lógicamente, las galaxias no pudieron haberse formado antes que los átomos. Podemos pensar en el Universo durante las primeras etapas de la expansión de Hubble como formado por dos constituyentes: materia y radiación. La materia sufrió una serie de congelaciones al construir gradualmente estructuras más y más complejas. A medida que tienen lugar esos cambios en la forma de la materia, la manera en que interaccionan materia y radiación cambia radicalmente. Esto, a su vez, desempeña un papel fundamental en la formación de galaxias.

Resultado de imagen de http://www.cookingideas.es/imagenes/antimateria.jpg

Físicos rusos, fueron los primeros en obtener antimateria con ayuda de la luz

Aquella primera “sopa de plasma primordial” posibilitó que se juntaran protones y neutrones para formar el elemento más simple del Universo: El Hidrógeno. El elemento número uno de la Tabla Periódica que, evolucionado en las estrellas nos lleva a la complejidad de la materia.

La luz y otros tipos de radiación interaccionan fuertemente con partículas libres eléctricamente cargadas, del tipo de las que existen en el plasma que constituía el universo antes de que los átomos se formaran. A causa de esta interacción, cuando la radiación se mueve por el plasma, colisiona con partículas, rebotando y ejerciendo una presión del mismo modo que las moléculas de aire, al rebotar sobre las paredes de un neumático, mantienen el neumático inflado, Si se diese el caso de que una conglomeración de materia del tamaño de una galaxia tratase de formarse antes de la congelación de los átomos, la radiación que traspasaría el material habría destruído el conglomerado. Por la misma razón, la radiación tendería a quedar atrapada dentro de la materia. Si tratase de salir, sufriría colisiones y rebotaría.

http://farm3.staticflickr.com/2273/1813695464_ab42701060_z.jpg?zz=1

No es fácil sobreestimar la importancia de esta afirmación. Lo que significa es que mientras que la materia permaneció como plasma (es decir, mientras los átomos no se habían congelado) ninguna galaxia podría haberse formado, o ni siquiera empezado a formarse. Se deduce que hubo un período determinado, que comenzó alrededor de los 100.000 años, en el que tuvo lugar la formación de Galaxias. Antes de ese Tiempo, la interacción de la radiación con la materia habría impedido que se formase cualquier cosa como nuestro Universo actual.

El problema de explicar la existencia de la galaxias ha resultado ser uno de los más espinosos de la cosmología. Con todo derecho no deberían estar ahí y, sin embargo, ahí están. Es difícil comunicar el abismo de frustración que este simple hecho produce entre los científicos. Una y otra vez han surgido nuevas revelaciones y ha parecido que el problema estaba resuelto. Cada vez la solución se debilitaba, aparecían nuevas dificultades que nos transportaban al punto de partida.

Imagen relacionada

                                 Juan Martín Maldacena resultó ganador de la Medalla Lorentz

Cada pocos años, la American  Physical Society, la Asociación Profesional  de físicos, tienen una sesión en una de sus reuniones en la que los Astrofísicos hablan de los más nuevos métodos de afrontar el problema de las galaxias. Si te molestas en asistir a varias de esas reuniones, dos son las sensaciones contradictorias que te embargan: Por una parte sientes un gran respeto por la ingenuidad de algunas propuestas que son hechas “de corazón” y, desde luego, la otra sensación es la de un profundo escepticismo hacia las ideas que allí se proponen, al escuchar alguna explicación de cómo las turbulencias de los agujeros negros, las explosiones durante la formación de galaxias, los neutrinos pesados y la materia oscura fría resolvía todos aquellos problemas…, puedes llegar a la conclusión de que, en verdad, no sabemos nada y queremos, ocultar nuestra ignorancia con respuestas ¿descabellas? Bueno, algunas veces sí.

Lo cierto es que, a pesar de lo que se pueda leer en la prensa en comunicados oficiales y otros medios, todavía no tenemos ese “bálsamo milagroso” que nos permita responder a una pregunta simple:

¿Por qué está el Universo lleno de galaxias?

emilio silvera

¿El Medio Ambiente?

Autor por Emilio Silvera    ~    Archivo Clasificado en el Mundo y nosotros    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Grupos de seres primitivosResultado de imagen de Grupos de seres primitivos

Resultado de imagen de Grupos de seres primitivosResultado de imagen de Grupos de seres primitivos

 

Por aquella época el medio ambiente no sufría ningún daño causado por la actividad humana ni de ninguna otras especies. Se tomaba de la Tierra todo aquello que se podía necesitar para sobrevivir y el curso de las cosas seguía su ritmo natural, sin alteraciones artificiales que provocara cambios indeseables.

Imagen relacionadaImagen relacionadaImagen relacionadaImagen relacionadaResultado de imagen de Inventaron la máquina de vapor y la luzResultado de imagen de Inventaron la máquina de vapor y la luz

Pasó el Tiempo y las necesidades de los humanos se hicieron mayores, llegaron los inventos con las máquinas de vapor, el telégrafo y el ferrocarril, desapareció el gas de las ciudades y las calles se alumbraron eléctricamente.

Resultado de imagen de El alumbrado llegó a las ciudades

El alumbrado público alejó la oscuridad de las antiguas calle lúgubres y peligrosas. Los hogares desecharon las velas y otros rústicos artilugios y se vieron iluminadas de manera asombrosa.

Resultado de imagen de Serrerias y Talleres del siglo XiX

Todo cambió de manera drástica cuando entró en escena la racionalidad científica del siglo XIX. Las nuevas profesiones, las matemáticas, las grandes bibliotecas, las escuelas, los investigadores, los telescopios que nos llevaron a otros mundos.

Resultado de imagen de La Astronomía de GalileoResultado de imagen de La Astronomía de Galileo

Un mundo nuevo se había abierto a las mentes de los miembros de nuestra especie. Llegamos a comprender que había más mundos, más estrellas aparte del Sol, y que, nuestra especie junto con otras muchas, estaba confinada en este pequeño planeta.

Resultado de imagen de La población aumentaba de manera imparable

Pero el aumento imparable de la población mundial obligaba a los Gobiernos del mundo a buscar soluciones para sus muchas necesidades. Se esquilmaron bosques, se abrieron minas a la búsqueda de toda clase de minerales para el consumo de las necesidades humanas.

Resultado de imagen de Contaminación de mares y océanosResultado de imagen de Contaminación de mares y océanosResultado de imagen de Contaminación de mares y océanosResultado de imagen de Contaminación de mares y océanos

Todas aquellas actividades incontroladas precipitaron el deterioro de ríos, mares y océanos quer contaminados hacían peligrar a miles de especies que vivían en ese ecosistema deteriorado por la actividad humana.

Imagen relacionadaImagen relacionadaImagen relacionadaImagen relacionada

Inmensas “montañas” de hielo se desprenden de su lugar natural y quedan a la deriva debido al calentamiento global del planeta que produce nuestra actividad incontrolada y producción sin límites, prevalece los intereses de las grandes compañías y se desprecia el mal que se pueda causar.

Resultado de imagen de Centrales nuclearesResultado de imagen de Centrales nucleares

Nuestro irracional “sentido común” nos está llevando a la debacle. Como decían algunas de las pancartes de los manifestantes callejeros… ¡No tenemos una Tierra B!

¡Despertaos! La Humanidad está en peligro.

emilio silvera

Desde los átomos hasta las estrellas: Un largo viaje

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Pues yo he sido a veces un muchacho y una chica,

Un matorral y un pájaro y un pez en las olas saladas.”

 

Teoría de los Cuatro Elementos

 

 

Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo. Pero sí, con sus palabras, nos quería decir que, la materia, una veces está conformando mundos y, en otras, estrellas y galaxias.

Sí, hay cosas malas y buenas  pero todas deben ser conocidas para poder, en el primer caso aprovecharlas, y en el segundo, prevenirlas.

Pero demos un salto en el tiempo y viajemos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de eneromes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más sobre los átomos y las estrellas.

     Conseguimos tener los átomos en nuestras manos

El intento de lograr tal comprensión exigió una colaboración cada vez mayor entrelos astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar.

La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).

El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversas partículas de familias diferentes: unas son bariones que en el seno del átomo llamamos nucleones, otras son leptones que giran alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.

Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los trs principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.

De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción infinitesimal del total atómico.

Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los Estrabones y Tolomeos de la cartografía atómica, en Manchester , de 1909 a 1911, sonderaron el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Rutherford pudo calcular la carga y el diámetro máximo del núcleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.

Todos sabemos ahora, la función que desarrollan los electrones en el atomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)

Resultado de imagen de el modelo de bohr

Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo. Cuando un electróncae  de una órbita externa a una órbita interior emite un fotón. La longitud de onda de este fotón está determinada por las órbitas particulares entre las que el electrón efectúa la transición. E esta es la razón de que un espectro que registra las longitudes de onda de los fotones, revele los elementos químicos que forman las estrellas u otros objetos que sean estudiados por el espectroscopista. En palabras de Max Planck, el fundador de la física cuántica, el modelo de Bohr del átomo nos proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral.

http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Es un gran triunfo del ingenio humano el saber de qué, están conformadas las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.

Resultado de imagen de El espectro de las estrellasResultado de imagen de El espectro de las estrellas

Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.

En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.

 

Imagen de Sirio A, la estrella más brillante del cielo tomada por el Telescopio Hubble  (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blanco-azuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad debajo de la asombrosa variedad de las estrellas.

Resultado de imagen de Las estrellas tienen caracterísitcas espectralers distintasImagen relacionadaImagen relacionadaImagen relacionada

Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperto salta entusiasmado cuando recorre con el telescopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.

                                                                                 Las Híades

Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell.

El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustó los esfuerzos de las físicos teóricos para comprender como la fusión nuclear podía producir energía en las estrellas.

Resultado de imagen de Los espectros de las estrellas

                           El espectro de las estrellas nos dicen de que están hechas

La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.

                                               Plasma en ebullición en la superficie del Sol

Hasta el momento todo lo que hemos repasado está bien pero, ¿que pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.

Resultado de imagen de Las reglas de la mecánica cuántica

Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica.  La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.

Diagrama del proceso triple-α

El proceso del llamado Efecto Triple Alfa, es el camino que recorre la Naturaleza para llegar al Carbono

George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb. Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.

emilio silvera

Podría pasar dentro de algunos cientos de años

Autor por Emilio Silvera    ~    Archivo Clasificado en El Futuro incierto    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Éste es el concepto artístico de un Toro de Stanford. Un hábitat espacial que podría albergar de 10.000 a 140.000 personas. Fue propuesto en 1.975. Crédito: Donald Davis – NASA Ames Research Center.

Podemos tratar de simular la gravedad mediante un sistema de rotación. Sin embargo, A diferencia de la gravedad real, que nos empuja hacia el centro del planeta, esta gravedad artificial nos empuja fuera del eje de rotación. Además, es preferible que construyamos naves con tamaños muy grandes. Cuanto más grandes, mejor, porque en una nave que tenga un eje demasiado pequeño, la diferencia de gravedad que experimentaríamos entre la cabeza y los pies sería muy significativa, dificultando nuestros movimientos en el interior de la estructura.

Pero claro, desde 1.975, las cosas han cambiado muchísimo, y, ahora, un Consejo Mundial que cuenta con muchos recursos, tiene Bases Estelares situadas en los sitios m´ñas estratégicos del Sistema solar. Son cosas del pasado los océanos de Europa y Encelado que están siendo explotados, y, también, las riquezas de productos minerales y combustibles energéticos de Titán.

https://vignette.wikia.nocookie.net/stargate/images/2/20/Odyssey_beam_weapons.jpg/revision/latest?cb=20100203064931

Con nuestra enorme nave espacial, de nombre Esperanza, habíamos salido de la Tierra allá por el año 3.211, en una gélida mañana de la Luna Titán del planeta Saturno, en la que, un conjunto de Naciones de nuestro planeta, había instalado una completa y confortable Estación Espacial. En dicha Instalación que, era más que eso, una nueva ciudad poblada por más de 4.000.000 de habitantes entre Compañías mineras, tecnicos de todo tipo, y personal especializado en viajes espaciales, fue la elegido por el Consejo terrestre para que, desde este seguro lugar tecnológico, saliera la Misión Esperanza que, con destino al planeta LHS 1140b, situado a 20 años luz de la Tierra que, además de estar en la zona habitable de su estrella, tenía todos los ingredientes necesarios para contener la Vida.

Resultado de imagen de Planeta LHS 1140b alumbrado por una enana roja

La “Súper Tierra”, un planeta rocoso y templado que orbita a una estrella enana roja y que, por sus características iniciales, podría contener agua, lo que lo convierte en un muy buen candidato para albergar vida, fue bautizado como LHS 1140b, se encuentra fuera del Sistema Solar, y orbita en torno a una estrella tipo M, una estrella enana roja “algo más pequeña que nuestro Sol y menos luminosa pero de las más abundantes de la galaxia.

Después de un profundo estudio de todos los pros y los contras que los expertos habían valorado durante meses, se decidió que la Nave Espacial Espoeranza, con capacidad de más de 6.000 viajeros, entre tripulación, científicos, equipos médicos, y otros expertos en distintas ramas, partieran hacia LHS 1140b, donde buscarían formas de vida y, verían que otras cuestiones de interés podía ofrecer aquel planeta. Y, si los informes eran pñositivos, dejar sentadas las Bases para futuros viajes con más naves y personal.

https://2.bp.blogspot.com/-s89JeGXF1Q8/WPYz7Tk8sfI/AAAAAAABV5k/Sor1cc3U2B8OL6BIjT2P1Vs_cHJf35GUwCEw/s1600/58f5380cc361885b408b46ab.jpg

Hacia más de dos siglos que se habían construido nuevas ciudades en planetas extraterrestres que, por ahora, contaban con millones de habitantes y que, como delegaciones de la Tierra, habían construido Sociedades de envidiables costumbres y normas de convivencia, donde los viejos hábitos de la Tierra habían quedado olvidados.

Resultado de imagen de Naves estelares de la Serie Stargate

En nuestro largo viaje por el Espacio Interestelar, muchos eran los mundos que habíamos dejado atrás pero, no sin que antes de abandonar el lugar, enviáramos una pequeña nave auxiliar a explorarlo y tomar buenos videos de sus condiciones y posibilidades para posteriores misiones.

En esta época de 3.211, nuestras naves no habían logrado todavía entrar en el Hiperespacio (se estaba cerca de lograrlo), y, las velocidades alcanzadas eran de 120.000 Km/s., casi la mitad de la velocidad de la Luz, y, para ello, los técnicos, habían afrontado con éxito muchas dificultades que tales velocidades creaban y tenían que evitar, y, una vez logrado todo eso, así como la Gravedad artificial perfecta, la Misión se puso en marcha.

Resultado de imagen de Grandes colonias extraterrestres

El Tiempo de llegado al nuevo mundo, se había calculado en 44 años, siempre que las cosas rodaran bien y no aparecieran inconvenientes no previstos que retrasaría el viaje. La Nave era autónoma y contaba con todos los pertrechos necesarios y los medios para fabricar alimentos, medicinas, vestimenta y otros objetos necesarios, y, de la misma manera, contaba con un moderno hospital con todos los adelantos, además de escuela para los pequeños que nacerían por el camino.

Imagen relacionada

Los desocupados que habían terminado el turno de trabajo dentro de la nave, podían acudir, a una Sala Holográfica y pedirle al programa, luchar con Dinosaurios o integrarse en las guerras de Alejandro Magno. Nada allí era imposible. También podían convivir con Einstein, o, pasar el día con Tesla.

Resultado de imagen de Dentro de 2.500 años, los trajes espaciales para solucionar problemas en el Espacio, serán muy distintos a los de ahora

Los pesados trajes espaciales se habrán olvidado. Ahora, en el año 3.211, eran finos y adaptados al cuerpo, estaban hechos de fullereno y en láminas finas como un cabello humano y más duras que el propio acero, sus aleaciones no podían traspasarla las radiaciones del espacio. Y, el sistema diminuto de oxígeno concentrado les daba 12 horas de autonomía.

Imagen relacionada

Región del universo en la que se están creando estrellas

Por el largo recorrido, nuestra nave Esperanza, ha tenido que pasar por regiones y mundos de inusitada belleza, en algunos, como en la Tierra, las aguas rumorosas corrían con ese dulce y adormecedor rumor que lleva la libertad, y, en otras regiones, pudimos contemplar con arrobo como grupos de estrellas nuevas radiaban en el ultravioleta rabioso, ionizando toda la zona y sacando los colores a los elementos de los que la nebulosa estaba conformada.

Resultado de imagen de Viajando por el Espacio Interestelar

Para nuestra sorpresa, nuestros instrumentos de a bordo avisaron de que, una nave de enormes dimensiones se acercaba a nosotros a una gran velocidad, nos encontrábamos a muchos miles de kilómetros del Sistema solar y, no esperábamos dicho encuentro. Era el primer contacto que nuestra especie tenía con seres de otros mundos.

Ambas naves tratamos de conseguir alguna comunicación y, finalmente, sólo intercambiamos algunas ecuaciones muy significativas que representaban el átomo y algunas contantes, así como, las fuerzas fundamentales, ninguna otra información pudimos entregar a los inesperados viajeros que, por su parte, además, nos enviaron al ordenador datos de su sistema planetario.

Aquello podía ser el principio de una buena amistad.

Resultado de imagen de Las dos naves espaciales se despidieron y cada cual siguió su camino

Nos hicimos señales de Paz, y, ambas naves, encendieron sus motores lumínicos y partieron veloces  hacia sus destinos.

El resto del viaje estuvo lleno de incidencias todas interesantes y, para cuando llegamos al destino, habían pasado 48 años. Lo que pasó después os lo contaré en otro momento.

emilio silvera

El Alma Inmortal

Autor por Emilio Silvera    ~    Archivo Clasificado en ¿Alma inmortal?    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                               

 

                                          

El insigne apóstol del Espiritualismo que fue León Denis, ha dejado como herencia a la humanidad pensamientos llenos  de sabiduría en el vasto campo de la vida espiritual, para bien explicarnos, qué somos, de donde venimos y hacia donde vamos los seres humanos que poblamos este planeta.

Resultado de imagen de El Alma y el Universo

El problema está en que formamos parte del secreto que tratamos de desvelar

Nos dice Denis, que el Estudio del Universo nos conduce al estudio del alma, a la indagación del principio que nos anima y dirige nuestros actos.

Resultado de imagen de Las moléculas de nuestro cuerpo se renuevan continuamenteResultado de imagen de Las moléculas de nuestro cuerpo se renuevan continuamenteResultado de imagen de Las moléculas de nuestro cuerpo se renuevan continuamenteResultado de imagen de Las moléculas de nuestro cuerpo se renuevan continuamente

La Fisiología nos enseña que las diferentes partes  del cuerpo humano se renuevan en un período de algunos años. Bajo la acción de dos grandes corrientes vitales, se produce un cambio perpetuo de moléculas en nosotros; las que desaparecen del organismo son sustituidas una a una por otras que provienen de la alimentación. Desde las sustancias blandas del cerebro hasta las partes más duras de la armadura ósea,  todo nuestro ser físico se halla sometido a continuos cambios. Nuestro cuerpo se deshace y se reforma muchas veces durante la vida, sin embargo, a pesar de las modificaciones constantes, a través  de las transformaciones del cuerpo material, continuamos siendo las mismas personas. La materia de nuestro cerebro puede renovarse, pero nuestro pensamiento subsiste, y, con él, nuestra memoria., el recuerdo de un pasado del que nuestro cuerpo actual no participó. Hay, pues, en nosotros un principio distinto de la materia, una fuerza indivisible que persiste y se mantiene en medio de esos perpetuos cambios.

Sabemos que la materia no puede por sí misma organizarse, y producir la vida. Desprovista de unidad, se disgrega y se divide hasta lo infinito. En nosotros, por el contrario, todas las facultades, todas las abarca, las une, las ilumina;  y esta unidad es la conciencia, la personalidad, el yo; en una palabra: el alma.

Resultado de imagen de El Alma

El alma es el principio de la vida, la causa de la sensación; es la fuerza invisible e indisoluble que rige nuestro organismo y mantiene el acuerdo entre todas las partes de nuestro ser. Las facultades del alma no tienen nada de común con la materia. La inteligencia, la razón, el juicio, la voluntad no podrían ser confundidos con la sangre de nuestras venas o con la carne de nuestros músculos. Lo mismo ocurre con la conciencia, con ese privilegio  con que hemos de pesar y discernir el bien del mal. Ese lenguaje íntimo que se dirige a todo hombre, al más humilde como al más elevado, esa voz cuyos murmullos pueden turbar el esplendor de las mayores glorias, que no tiene nada de material.

Unas corrientes opuestas se agitan en nosotros. Los apetitos, los deseos pasionales tropiezan contra la razón y el sentimiento del deber. Ahora bien, si nosotros no fuésemos más que materia, no reconoceríamos  esas luchas, esos combates; nos dejaríamos llevar sin pesar, sin remordimiento, por nuestras tendencias naturales. Por el contrario, nuestra voluntad se halla frecuentemente en un conflicto, respecto de nuestros instintos. Por ella, podemos escapar de la influencia de la materia, dominarla y hacer de ella un dócil instrumento.

Imagen relacionada

Así, pues, débil o poderoso, ignorante o esclarecido, un espíritu vive en nosotros y rige este cuerpo que, bajo su dirección, no es más que un servidor, un simple instrumento. Este espíritu  es libre y perfectible, y, por consiguiente, responsable. Cuanto más grande y noble es el ideal más sutíl y gloriosas son las obras que inspira. ¡Dichosa el alma a la que un noble entusiasmo  sustenta en su marcha: amor a la verdad, a la justicia, a la patria, a la humanidad!.. Dicen que el Alma está con nosotros pero… ¿Dónde está?

Ideas de León Denis recopiladas por Dante Pracilio.