Sep
19
Un viaje hacia atrás en el tiempo
por Emilio Silvera ~ Clasificado en Recordando el pasado ~ Comments (1)
A finales del siglo XIX, poca gente sabía con exactitud a qué se dedicaban los “físicos”. El término mismo era relativamente nuevo. En Cambridge, la física se enseñaba como parte del grado de matemáticas.
En este sistema no había espacio para la investigación: se consideraba que la física era una rama de las matemáticas y lo que se le enseñaba a los estudiantes era como resolver problemas.
En la década de 1.870, la competencia económica que mantenían Alemania, Francia, Estados Unidos, y Gran Bretaña se intensificó. Las Universidades se ampliaron y se construyó un Laboratorio de física experimental en Berlín.
Cambridge sufrió una reorganización. William Cavendish, el séptimo duque de Devonshire, un terrateniente y un industrial, cuyo antepasado Henry Cavendish había sido una temprana autoridad en teoría de la gravitación, accedió a financiar un Laboratorio si la Universidad prometía fundar una cátedra de física experimental. Cuando el laboratorio abrió, el duque recibió una carta en la que se le informaba (en un elegante latín) que el Laboratorio llevaría su nombre.
Primer profesor J. J. Thomson como director del laboratorio
Tras intentar conseguir sin éxito atraer primero a William Thomson, más tarde a lord Kelvin (quien entre otras cosas, concibió la idea del cero absoluto y contribuyó a la segunda ley de la termodinámica) y después a Hermann von Helmohltz, de Alemania (entre cuyas decenas de ideas y descubrimientos destaca una noción pionera del cuanto), finalmente se ofreció la dirección del centro a James Clerk Maxwell, un escocés graduado en Cambridge. Este fue un hecho fortuito, pero Maxwell terminaría convirtiéndose en lo que por lo general se considera el físico más destacado entre Newton y Einstein. Su principal aportación fue, por encima de todo, las ecuaciones matemáticas que permiten entender perfectamente la electricidad y el magnetismo. Estas explicaban la naturaleza de la luz, pero también condujeron al físico alemán Heinrich Hertz a identificar en 1.887, en Karlsruhe, las ondas electromagnéticas que hoy conocemos como ondas de radio.
En el Laboratorio Cavendish de la Universidad de Cambridge, Cockcroft y Walton construyeron este acelerador de 500 kilovolts en 1932. Si lo comparamos con el LHC del CERN nos podemos dar cuenta de cómo la Ciencia ha ido avanzando en relativamente tan poco tiempo y, desde entonces hemos alcanzado un nivel que nos permite trabajar con 14 TeV, una energía de todo punto imposible e impensable en aquellos primeros tiempos.
Maxwell también creó un programa de investigación en Cavendish con el propósito de idear un estándar preciso de medición eléctrica, en particular la unidad de resistencia eléctrica, el ohmio. Esta era una cuestión de importancia internacional debido a la enorme expansión que había experimentado la telegrafía en la década de 1.850 y 1.860, y la iniciativa de Maxwell no solo puso a Gran Bretaña a la vanguardia de este campo, sino que también consolidó la reputación del Laboratorio Cavendish como un centro en el que se trataban problemas prácticos y se ideaban nuevos instrumentos.
Tubo de vacío usado por JJ Thomson en uno de los experimentos realizados para descubrir el electrón. Expuesto en el museo del laboratorio Cavendish. A este hecho es posible atribuir parte del crucial papel que el laboratorio iba a desempeñar en la edad dorada de la Física, entre 1.897 y 1.933. Los científicos de Cavendish, se decía, tenían “sus cerebros en la punta de los dedos.”
Maxwell murió en 1.879 y le sucedió lord Rayleigh, quien continuó su labor, pero se retiró después de cinco años y, de manera inesperada, la dirección pasó a un joven de veintiocho años, Joseph John Thomson, que a pesar de su juventud ya se había labrado una reputación en Cambridge como un estupendo físico-matemático. Conocido universalmente como J.J., puede decirse que Thomson fue quien dio comienzo a la segunda revolución científica que creó el mundo que conocemos.
Ernest Rutherford
Se dedicó al estudio de las partículas radioactivas y logró clasificarlas en alfaa (α), beta (β) y gamma (γ). Halló que la radiactividad iba acompañada por una desintegración de los elementos, lo que le valió ganar el Premio Nobel de Química de 1908. Se le debe un modelo atómico con el que probó la existencia de núcleol en los átomos, en el que se reúne toda la carga positiva y casi toda la masa del átomo. Consiguió la primera transmutación artificial con la colaboración de su discípulo Frederick Soddy.
Henry Cavendish en su Laboratorio
La primera revolución científica comenzó con los descubrimientos de Copérnico, divulgados en 1.543, y los de Isaac Newton en 1.687 con su Gravedad y su obra de incomparable valor Principia Matemática, a todo esto siguió los nuevos hallazgos en la Física, la biología y la psicología.
Pero fue la Física la que abrió el camino. Disciplina en permanente cambio, debido principalmente a la forma de entender el átomo (esa sustancia elemental, invisible, indivisible que Demócrito expuso en la Grecia antigua).
John Dalton
En estos primeras décadas del siglo XIX, químicos como John Dalton se habían visto forzados a aceptar la teoría de los átomos como las unidades mínimas de los elementos, con miras a explicar lo que ocurría en las reacciones químicas (por ejemplo, el hecho de que dos líquidos incoloros produjeran, al mezclarse, un precipitado blanco). De forma similar, fueron estas propiedades químicas y el hecho de que variaran de forma sistemática, combinada con sus pesos atómicos, lo que sugirió al ruso Dimitri Mendeleyev la organización de la Tabla Periódica de los elementos, que concibió jugando, con “paciencia química”, con sesenta y tres cartas en su finca de Tver, a unos trescientos kilómetros de Moscú.
Pero además, la Tabla Periódica, a la que se ha llamado “el alfabeto del Universo” (el lenguaje del Universo), insinuaba que existían todavía elementos por descubrir.
Dimitri Mendeléiev en 1897
La tabla de Mendeleyev encajaba a la perfección con los hallazgos de la Física de partículas, con lo que vinculaba física y química de forma racional: era el primer paso hacia la unificación de las ciencias que caracterizaría el siglo XX.
En Cavendish, en 1.873, Maxwell refinaría la idea de átomo al introducir la idea de campo electromagnético (idea que tomó prestada de Faraday), y sostuvo que éste campo “impregnaba el vacío” y la energía eléctrica y magnética se propagaba a través de él a la velocidad de la luz. Sin embargo, Maxwell aún pensaba en el átomo como algo sólido y duro y que, básicamente, obedecían a las leyes de la mecánica.
El problema estaba en el hecho de que, los átomos, si existían, eran demasiado pequeños para ser observados con la tecnología entonces disponible.
Esa situación empezaría a cambiar con Max Planck, el físico alemán que, como parte de su investigación de doctorado, había estudiado los conductores de calor y la segunda ley termodinámica, establecida originalmente por Rudolf Clausius, un físico alemán nacido en Polonia, aunque lord Kelvin también había hecho algún aporte.
El joven Max Planck
Clausius había presentado su ley por primera vez en 1.850, y esta estipulaba algo que cualquiera podía observar, a saber, que cuando se realiza un trabajo la energía se disipaba convertida en calor y que ese calor no puede reorganizarse en una forma útil. Esta idea, que por lo demás parecería una anotación de sentido común, tenía consecuencias importantísimas.
Dado que el calor (energía) no podía recuperarse, reorganizarse y reutilizarse, el Universo estaba dirigiéndose gradualmente hacia un desorden completo:
cántaro roto…
Una casa que se desmorona nunca se reconstruye así misma, una botella rota nunca se recompone por decisión propia. La palabra que Clausius empleó para designar este fenómeno o desorden irreversible y creciente fue “entropía”: su conclusión era que, llegado el momento, el Universo moriría.
En su doctorado, Planck advirtió la relevancia de esta idea. La segunda ley de la termodinámica evidenciaba que el tiempo era en verdad una parte fundamental del Universo, de la física. Sea lo que sea, el tiempo es un componente básico del mundo que nos rodea y se relaciona con la materia de formas que todavía no entendemos.
La noción de tiempo implica que el Universo solo funciona en un sentido, hacia delante, nunca se está quieto ni funciona hacia atrás, la entropía lo impide, su discurrir no tiene marcha atrás. ¿No será nuestro discurrir lo que siempre marcha hacia delante, y, lo que tenemos por tiempo se limita a estar ahí?
En el Laboratorio Cavendish, me viene a la memoria que fue allí, donde Thomson, en 1.897, realizó el descubrimiento que vino a coronar anteriores ideas y trabajos de Benjamín Franklin, Euge Goldstein, Wilhelm Röntgen, Henri Becquerel y otros. El descubrimiento del electrón convirtió a la física moderna en una de las aventuras intelectuales más fascinantes e importantes del mundo contemporáneo.
Thomson descubrió el electrón.
Los “corpúsculos”, como Thomson denominó inicialmente a estas partículas, hoy conocidas como electrones, condujo de forma directa al trascendental avance realizado una década después por Ernest Rutherford, quien concibió el átomo como una especie de “sistema solar” en miniatura, con los electrones diminutos orbitando alrededor de un núcleo masivo como hacen los planetas alrededor del Sol. Rutherford demostró experimentalmente lo que Einstein había descubierto en su cabeza y revelado en su famosa ecuación, E = mc2 (1905), esto es que la materia y la energía eran esencialmente lo mismo.
Todo aquello fue un gran paso en la búsqueda del conocimiento de la materia. El genio, la intuición y la experimentación han sido esenciales en la lucha del ser humano con los secretos, bien guardados, de la N
No podemos olvidar que, si aquel pasado no tendríamos este Presente.
emilio silvera
Sep
19
De lo pequeño a lo grande y, conocer la Naturaleza…¡No será...
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
“Una formulación muy hermosa que, creo, procede de América es la siguiente: alguien que ha golpeado a otro afirma que sólo ha movido sus puños libremente; el juez, sin embargo, replica: «La libertad de movimiento de tus puños está limitada por la nariz de tu vecino».
Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7º K) se formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un superátomo). efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.
Una de las maravillas del Universo ¿Qué está pasando en el diminuto núcleo del átomo?
Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de ésta teoría en vez de las de la mecánica clásica. En estadística cuantica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son los bosones que, tienden a juntarse.
Los bosones tienen un angular n h / 2p, donde n es cero o un entero y h es la constante de Planck. bosonesidénticos, la función de ondas es siempre simétrica. Si solo una partícula puede ocupar un cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n+½) h/2p y cualquier función de ondas de fermiones idénticos es siempre antisimétrica.
La mejor teoría explicar el mundo subatómico nació en 1928 cuando el teórico Paul Dirac combinó la mecánica cuántica con la relatividad especial para explicar el comportamiento del electrón. El resultado fue la mecánica cuántica relativista, que se transformó en un ingrediente primario en la teoría cuántica de campos. Con unas pocas suposiciones y ajustes ad-hoc, la teoría cuántica de campos ha probado ser suficientemente poderosa para formar la base del modelo estándar de las partículas y las fuerzas.
La relación el espín y la estadística de las partículas está demostrada por el teorema espín-estadística. En un espacio de dos dimensiones es posible que existan partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el de aiones; para aniones idénticos la función de ondas no es simétrica (un cambio de fase de+1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.
Resulta fácil comprender cómo un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.
Particularmente creo que, si el neutrón masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).
Sea fuere, la rotación del neutrón nos da la respuesta a esas preguntas:
La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965
¿Qué es el anti-neutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos. Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma que las partículas corrientes forman la materia ordinaria.
La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un anti-deuterón. entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros anti-núcleos más complicados aún si se abordara el problema con más interés.
Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.
…, ¿Hay masas de antimateria en el Universo? ¿Galaxias de antimateria?
Bueno, sabemos que no son las galaxias las que se alejan, sino que es el espacio el que se expande. Lo que no sabemos es encontrar antimateria en el espacio interestelar y, si la hay y está presente… ¡Aún no la hemos podido localizar! Algunos dicen que hay galaxias de antimateria y, yo digo que tengo un pariente en la galaxia Astrinia del cúmulo Ultramón a diez mil millones de años-luz de nuestra región.
No parece que dichas observaciones, al menos hasta el , hayan sido un éxito.
Según estimaciones recientes, resumidas en gráfico de la NASA, alrededor del 70% del contenido energético del Universo consiste en energía oscura, cuya presencia se infiere en su efecto sobre la expansión del Universo pero sobre cuya naturaleza última no se sabe casi nada.
¿Es posible que el Universo este formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? dado que la materia y la antimateria son equivalentes en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaria la otra, y el Universo debería estar compuesta de iguales cantidades de la una y de la otra.
Este es el dilema. La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los causares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros como el único mecanismo conocido para producir la energía requerida.
Estábamos hablando de mecánica cuántica y me pasé, sin que me diera , al ámbirto de la antimateria y el espacio del macro universo de las galaxias. Sin embargo, y aunque parezcan temas dispares, lo cierto es que, a medida que profundizamos en estas cuestiones, todas nos llevan, de una u otra manera, a relacionar el “mundo de lo muy pequeño” con el “mundo” de lo muy grande que, al fín y al cabo, está hecho de lo que existe en el primero, es decir, partículas infinitesimales de materia y… ¡de antimateria! para que todo quede compensado.
Sus dimensiones y masa le permiten ¡lo imposible! para nosotros. La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos fuerza de Van der Vaalls. esta fuerza tiene un alcance muy corto. para ser más precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente proporcional a 1/r7. Esto significa que si se reduce la distancia entre dos átomos a la mitad, la fuerza de Van der Vaalls con la que se atraen uno a otro se hace 2 x 2 x 2 x 2 x 2 x 2 x 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza.
La mecánica cuántica domina en el micromundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua. Se parece más a una ola de histeria que se expande: es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.
Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza para describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros.
La fuerza nuclear fuerte es la más potente del Universo
Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.
Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.
¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son. En realidad, es la propia Naturaleza la que marca esos límites que Stoney-Planck, supieron plasmar en ecuaciones que los marcan.
Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño. La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33 de centímetros, más joven que el tiempo de Planck, 10-43 segundos y supere la temperatura de Planck de 1032 grados. Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.
En los intentos más recientes de crear una teoría nueva para describir la naturaleza cuántica de la gravedad ha emergido un nuevo significado para las unidades naturales de Planck. Parece que el concepto al que llamamos “información” tiene un profundo significado en el universo. Estamos habituados a vivir en lo que llamamos “la edad de la información”. La información puede ser empaquetada en formas electrónicas, enviadas rápidamente y recibidas con más facilidad que nunca antes. Nuestra evolución en el proceso rápido y barato de la información se suele mostrar en una forma que nos permite comprobar la predicción de Gordon Moore, el fundador de Intel, llamada ley de Moore, en la que, en 1.965, advirtió que el área de un transistor se dividía por dos aproximadamente cada 12 meses. En 1.975 revisó su tiempo de reducción a la mitad hasta situarlo en 24 meses. Esta es “la ley de Moore” cada 24 meses se obtiene una circuiteria de ordenador aproximadamente el doble, que corre a velocidad doble, por el mismo precio, ya que, el coste integrado del circuito viene a ser el mismo, constante.
Siempre hemos tratado de buscar información del Universo para saber de nuestro entorno, de nuestro Sistema solar, de nuestra Galaxias, de las galaxias lejanas, y, de las mismas estrellas que alumbran los mundos y permite la vida con su luz y su calor. Hemos llegado a saber que somos “polvo de estrellas”, que los materiales que nos conforman están “fabricados” en sus “hornos nucleares”, la fusión crea elementos que, más tarde, forman parte de los mundos y de los seres vivos.
La velocidad de la luz en el vacío es por definición una constante universal de valor 299.792.458 m/s(suele aproximarse a 3·108 m/s), o lo que es lo mismo 9,46·1015 m/año; la segunda cifra es la usada para definir al intervalo llamado año luz. La información se transmitirá a esa velocidad como máximo, nuestro Universo, no permite mayor rapidéz, al menos, por los métodos convencionales.
Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros. Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos.
(Longitud de Planck que al cuadrado sería de 10-66 cm2)
Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2. Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.
Stoney Planck
No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias.
Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón
“Tras medir alfa en unas 300 galaxias lejanas, vimos un patrón constante: este número, que nos dice la fuerza del electromagnetismo, no es igual en otras partes que en la Tierra, y parecer variar de forma continua a lo largo de un eje”. Algunos se empeñan en variar la constante de estructura fina y, si eso llegara a producirse… las consecuencias serían funestas para nosotros. Otros estudios nos dicen que esa constante, no ha variado a lo largo de los miles de millones de años del Universo y, así debe ser, o, si varió, lo hizo en una escala ínfima.
α = 2πe2 / hc ≈ 1/137 |
αG = (Gmp2)2 / hc ≈ 10-38 |
Si varÍan algunas de las dos en sólo una diezmillonésima, muchas de las cosas que conforman el Universo serían imposible y, la consecuencia sería, la ausencia de vida. La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala. La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.
Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck). Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.
El número puro adimensional
“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben. En el cartel sólo pondría esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”
Lederman
Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba. La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón, por el producto de la velocidad de la luz y la constante de Planck. Tanta palabrería y numerología no significan otra cosa sino que ese solo numero, 137, encierra los misterios del electromagnetismo (el electrón, e–), la relatividad (la velocidad de la luz, c), y la teoría cuántica (la constante de Planck, h).
Todo eso está relacionado: leyes fundamentales, constantes, materia y espacio tiempo… ¡nosotros! Es posible (digo posible), que finalmente no seámos ni tanto ni tan poco como a veces creemos. Dejémos en un término medio nuestra valía en el contexto del Universo, aunque, poder crear ideas y pensamientos… ¡No es cosa baladí!
emilio silvera
Sep
19
¡La Ciencia! A merced de Gobiernos de cortas miras
por Emilio Silvera ~ Clasificado en Noticia comentada ~ Comments (0)
El físico Pablo Jarillo. Fundación BBVA
El físico valenciano “fichado” por Obama y el MIT: “En España m,e decían: “Echa el freno” Investigación Física de materiales
La investigación de Pablo Jarillo-Herrero sobre el grafeno fue premiada por la Casa Blanca y condujo a un hallazgo revolucionario el año pasado.
Noticias relacionadas
El grafeno entró en la vida de Pablo Jarillo-Herrero (Valencia, 1976) en 2005, recién doctorado en Física por la Universidad Tecnológica de Delft (Holanda). “Me pareció un material tan bonito que lo tuve que investigar”, explica este licenciado en Ciencias Físicas por la Universidad de Valencia.
Flash-forward a 2012, cuando su investigación le hace merecedor del galardón más prestigioso que concede el gobierno estadounidense para jóvenes investigadores, el Presidential Early Career Award for Scientists and Engineers. Jarillo recibe un millón de dólares como financiación y estrecha en persona la mano a Barack Obama en la Casa Blanca.
Un pequeño salto adelante más en esta vertiginosa carrera: es 2018 y Jarillo, al frente de su equipo del Instituto Tecnológico de Massachusets (MIT), revoluciona el ya de por sí pródigo campo del grafeno: han descubierto que, superponiendo dos láminas de este material y girándolas en lo que coloquialmente llaman el ‘angulo mágico’, adquiere una nueva y codiciada capacidad: la superconductividad.
Los materiales superconductores permiten transmitir electricidad sin pérdidas, como sufren incluso los conductores comunes más eficaces como el cobre. Una red eléctrica que usase la energía al 100% abre la puerta a un mundo más eficiente, pero hay un problema: solo funciona hoy en día solo a temperaturas de frío extremo, muy por debajo del cero.
El reto de una superconductividad a altas temperaturas, o a temperatura ambiente, ha centrado la XXVI edición de la Escuela de Verano ‘Nicolás Cabrera’ organizada por la Fundación BBVA y en la que Jarillo participa como ponente.
Teniendo en cuenta lo reciente que es el campo del grafeno y lo joven que es usted, cabe pensar que tienen, mano a mano, décadas de descubrimiento por delante.
Sí, yo creo que sí [ríe]. El descubrimiento de la superconductividad del grafeno ha generado un nuevo campo y mucho entusiasmo, no solo en mi grupo sino en laboratorios de todo el mundo. Yo creo que sí, que va a dar para décadas de investigación. Es bastante complejo, no creo que lo entendamos demasiado pronto [ríe].
El reto que se aborda ahora es el de la superconductividad a temperatura ambiente.
Claro, la superconductividad que hemos descubierto es a baja temperatura. Para temperatura ambiente ya existe un material, pero lo hace bajo condiciones extremas de presión. No tiene ninguna posibilidad de aplicación, por lo que se buscan materiales que sean superconductores y se pueda hacer algo con ellos.
Porque, retrotrayéndonos a la historia del grafeno, todo comienza con el estudio del grafito, el mismo de la mina de un lápiz.
Exacto. En el año 2004, dos científicos rusos que trabajaban entre Holanda e Inglaterra descubrieron que, si tienes grafito, puedes aislar una sola capa. Eso es el grafeno. Y tiene unas propiedades electrónicas muy inusuales. A partir de ahí muchísima gente se puso a investigarlo. Se habían descubierto muchas características peculiares, únicas y extraordinarias, pero no un comportamiento emblemático de los materiales como es la superconductividad. El descubrimiento que nosotros hicimos el año pasado es que si tú pones dos capas una encima de la otra y la rotas un pequeño ángulo, solo un grado, resulta que puede superconducir. Fue una sorpresa total.
A esta técnica le ha puesto un nombre fantástico: twistrónica.
[Ríe] Efectivamente, twistronics, de twist, rotar… como hacer un Twist.
Y esto da prueba de las propiedades increíbles del grafeno: se estira, se dobla, se modifica…
En la historia de la ciencia de materiales, nunca antes se había podido “girar” un ángulo entre dos estructuras bidimensionales cristalinas. Un material tridimensional crece con la estructura en función de su naturaleza. Y un semiconductor, como el transistor de un teléfono móvil, está hecho de arseniuro de galio, y solo puede crecer por la superposición de capas alineadas. Pero al descubrir los materiales bidimensionales, podemos poner dos láminas e inclinarlas en el ángulo que queramos. Y entonces puede adquirir propiedades que no tenía originalmente. El grafeno no era superconductor y ahora superconduce, y no solo eso: yo puedo aplicarle un voltaje para convertirlo en aislante, en un metal, hacer mogollón de cosas.
¿El ‘ángulo mágico’ se puede usar como interruptor entre distintas funciones del grafeno?
Sí. Desde el punto de vista ingenieril, lo que hemos hecho es un trasistor-superconductor: una cosa que la puedes poner en estado superconductor o en estado aislante, eléctricamente, como un switch. El ‘ángulo mágico’ ha sido lo primero que ha conseguido hacer algo así, y por eso hay tanta gente entusiasmada.
Porque las expectativas sobre el grafeno van desde su uso en la ropa a chips para la computación cuántica…
Yo creo que ahí se han creado expectativas poco realistas. Sobre todo de cuándo va a ocurrir, si es que ocurre alguna vez. Me puedo imaginar lo de incorporar electrónica flexible a los tejidos gracias a los materiales bidimensionales. Pero el grafeno no va a reemplazar al silicio en nuestros ordenadores, porque es muy bueno en lo que hace y hay una gran inversión e inercia detrás. Lo que si podría permitir es tener aplicaciones que no tenemos ahora.
¿Por eso no le gusta llamar al grafeno ‘el material de Dios’, por no crear expectativas desbordantes?
Bueno, es simplemente porque eso no tiene ningún significado. Es añadir un calificativo que no aporta ninguna información.
¿Y cómo lo llamaría usted?
Es un material extraordinario. ¿Puedes decir que es el más fino del mundo? Sí. Nada puede ser más fino que el espesor de un átomo. ¿Es el más fuerte? También. Y el que mejor conduce la electricidad. Hay muchos calificativos. Algunos lo llaman “material superlativo”, que tampoco te dice mucho: significa que, en muchos campos, es “lo más”. Un “supermaterial”, vaya, eso dice un poco más [ríe].
El físico valenciano Pablo Jarillo. Fundación BBVA
El químico Omar Yaghi, premiado en una edición anterior, lamentaba que la ciencia básica estuviera “bajo ataque”: se penaliza la investigación que no tiene resultados inmediatamente aplicables
Estoy totalmente de acuerdo. Si uno piensa en los orígenes de las mayores revoluciones tecnológicas -la electricidad, la máquina de vapor, el láser-, encontramos físicos, químicos o biólogos que estudiaban por pura curiosidad científica. En muchos casos, las aplicaciones prácticas no llegaron hasta décadas o siglos después. Por poner un ejemplo: los satélites de GPS funcionan con relojes atómicos que se inventaron para investigar propiedades de mecánica cuántica totalmente básicas. Nadie imaginaba que un día permitirían localizar la posición como se puede hacer ahora. La precisión en centímetros se basa en algunos conceptos de la Teoría de la Relatividad General de Einstein, que nadie pensó en su día que serviría para nada.
El MIT capta a los jóvenes talentos
¿En una preocupación también presente en el MIT?
Si uno pone mucha presión en resultados a muy corto plazo, obtiene resultados muy incrementales. Mejoras de tecnología que ya tienes. Avanzas de manera lineal, si es que avanzas. Y es más de lo mismo. Es muy importante que la sociedad sea capaz de tener paciencia. Invertir en conocimiento puro genera a largo plazo mucho más crecimiento. En el MIT lo tienen claro. Pero se nutren sobre todo de fondos federales de investigación. Y el Gobierno de EEUU, como todos los del mundo, presiona por esa inmediatez. La inversión en ciencia básica está decreciendo.
¿Qué percepción hay sobre España, ahora que la ciencia vuelve a tener su Ministerio con un ingeniero e investigador -antes que astronauta- al frente?
Pedro Duque lleva relativamente poco como para ver un cambio significativo. A mi me parece muy normal que la ciencia tenga un Ministerio en sí. España tenía un gran atraso derivado de la dictadura que tuvimos durante 40 años. Volver a subirse al tren costó mucho, y no se han hecho las inversiones que cabría esperar. En algunos sectores hay grupos muy competitivos, pero de media, no estamos al nivel de otros países europeos, de EEUU, Japón o China. Creo que en este país hay menos tradición científica entre la clase gobernante, no entienden el beneficio a largo plazo.
Los presidentes de EEUU se implican personalmente en grandes proyectos científicos: Kennedy y la llegada del hombre a la Luna, Clinton y el genoma humano, Obama y el mapa del cerebro…
Durante la II Guerra Mundial, EEUU juntó un gran equipo de físicos, matemáticos y químicos de prestigio para desarrollar la bomba atómica. Y el poder político se dio cuenta de las ventajas, en este caso militares y con consecuencias lamentables. Pero desde entonces, durante décadas y hasta hace poco, se ha confiado en los científicos y han llegado logros mejores para la Humanidad. El presidente tiene por tradición un comité de asesores científicos y un asesor presidencial de muy alta categoría. Obama se reunía con él cada semana. Tenía al otro lado del teléfono a los expertos que necesitase para tomar decisiones informadas. Es una pena que no exista en España.
Quizás esa tradición en EEUU se traduce en mejores condiciones para su personal investigador.
Pero no solo eso. En EEUU se apuesta mucho por la gente joven, más que en Europa. A mi me dieron un montón de dinero y me dijeron: “Pensamos que tienes buenas ideas, haz lo que te parezca”. Yo creo que hay que apostar por los jóvenes, en general son más innovadores.
¿Se puede hablar de meritocracia? ¿Es más difícil acceder a la universidad pero los excelentes obtienen mayores oportunidades?
¿Más difícil cómo? ¿Económicamente? Sí y no. Cuando solicitas la admisión en el MIT, nadie te pregunta si puedes pagar. Si te admiten, te preguntan: “¿Tienes dinero?” Y si dices que no, no pasa nada: estudias gratis. Si lo tienes, pagas. No pasa en todas partes, solo en los centros que pueden permitírselo, pero yo tengo muchos estudiantes en el MIT que no están pagando ni un dólar. El aspecto de la meritocracia es el que más me gusta. A la gente que tiene ganas y trabaja duro se le intenta dar todas las posibilidades. Nadie te pone techos. En España, lo normal es decirte: “Para el carro, echa el freno”. Cuando estaba en la carrera, comiendo con un profesor, le pregunté por qué no iba a EEUU con los mejores en su campo: “¡Uy¡”, me dijo, “tienes una idea un poco distorsionada. Tú, con llegar aquí, date con un canto en los dientes”.
Sep
18
Las estrellas y la Vida
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Hay una veintena de estrellas que se encuentran dentro de un radio de acción marcado por los doce años-luz de distancia al Sol. ¿Cuál de ella se nos presenta como la más probable para que, algunos de sus planetas pudieran albergar alguna clase de vida, incluso Vida Inteligente? La estrella más cercana a nosotros es Alfa Centauri que, en realidad es un sistema estelar situado a unos 4.37 años-luz de nosotros (unos 42 billones de kilómetros). En realidad, se trata de un sistema de tres estrellas.
Alfa Centauri contiene al menos un planeta del tamaño terrestre con algo más de la masa de la Tierra que está orbitando a Alfa Centauri B. Sin embargo, su cercanía a la estrella, unos 6 millones de kilómetros lo hace tener una temperatura de más de 1.ooo ºC lo que parece ser muy caliente para albergar alguna clase de vida.
Alfa Centauri, seguramente por su cercanía a nosotros, ha ejercido siempre una sugestiva atracción para nosotros cuando miramos el cielo nocturno. Resulta ser, en su conjunto, la tercera estrella más brillante de todas, y junto con Hadar (Beta Centauri), las dos en la imagen de arriba, es una muy importante y útil referencia para la localización de la Cruz del Sur. Además, y como se trata de una estrella triple, Alpha Centauri A, la componente principal, se constituye en una buena candidata para la búsqueda de planetas del mismo tipo que la Tierra.
Las tres estrellas se formaron a partir de la misma nebulosa de materia interestelar. El trio de estrellas se van orbitando las unas a las otras a un ritmo como de vals, unidas por los lazos invisibles de la fuerza gravitatoria que generan y con la que se influyen mutuamente. Lo cierto es que las estrellas triples gozan de pocas probabilidades para albergar la vida, porque no pueden mantener a sus planetas en una órbita estable y segura, la inestabilidad que producen las tres estrellas en esos posibles planetas, parece que sería insoportable para formas de vida inteligente. Claro que, las distancias a las que se encuentran unas estrellas de otras es grande y… ¿quién sabe? Nunca podemos afirmar nada sin haberlo confirmado.
La siguiente estrella más allá de Alfa Centauri es la estrella de Barnard, situada a 6 años-luz aproximadamente de nuestro Sol, o, lo que es lo mismo, a unos sesenta mil billones de kilómetros de distancia. Esta estrella parece contar con una familia de planetas. Sin embargo, es una estrella muy vieja, casi tanto como el propio universo, y, por tanto, es deficitaria en la mayoría de los elementos químicos esenciales para la vida. Es poco prometedora para buscar vida en sus alrededores.
Las 10 estrellas más cercanas al Sol se encuentran en un rango de distancia entre los 4 y 10 años luz. Para tener una idea, la Vía Láctea mide unos 100.000 años luz, lo cual convierte a estas estrellas en verdaderas vecinas:
En un radio de 12,5 años-luz
- Alfa Centauri (que, en realidad, es un sistema de tres estrellas): a 4,2 años luz.
- Estrella de Barnard: a 5,9 años luz.
- Wolf 359: a 7,7 años luz.
- Lalande 21185: a 8,2 años luz
- Sirio (un sistema binario de estrellas): a 8,6 años luz
- Luyten 726-8 (otro sistema binario): a 8,7 años luz.
- Ross 154: a 9,7 años luz
- Ross 248: a 10,3 años luz
- Epsilon Eridani: a 10,5 años luz.
- Lacaille 9352: a 10,7 años luz
Una supertierra orbita a la estrella de Barnard
Más allá de Barnard existe un cierto numero de estrellas, todas ellas poco prometedoras para la existencia de vida y de inteligencia porque, o son demasiado pequeñas y frías para emitir la clase de luz que la vida tal como la conocemos requiere, o demasiado jóvenes como para que haya aparecido la vida inteligente en los planetas que las circundan. No encontraremos otra estrella que pueda albergar la vida y seres inteligentes hasta que no viajemos a una distancia próxima a los once años-luz del Sol.
Épsilon Eridani está situada a unos 10,5 años-luz del Sol, es una de las estrellas más cercanas al Sistema Solar y la tercera más próxima visible a simple vista. Está en la secuencia principal, de tipo espectral K2, muy parecida a nuestro Sol y con una masa algo menor que éste, de unas 0,83 masas solares. Es joven, sólo tiene unos 600 millones de años de edad mientras que el Sol tiene 4.600 millones de años.
Épsilon emite menos luz visible y luz ultravioleta que nuestra estrella, pero probablemente sea suficiente para permitir allí el comienzo de la vida que, si tenemos en cuenta el corto tiempo que ha pasado, no llegaría a poder ser inteligente. Claro que, los cálculos realizados sobre la vida de las entrellas en general y sobre esta en particular… ¡No son fiables! Y, siendo así (que los), tampoco podemos estar seguro de lo que en sus alrededores pueda estar presente. Se le descubrió un planeta orbitando a su alrededor, Épsilon Eridani b, que se descubrió en el año 2000. La masa del planeta está en 1,2 ± 0,33 de la de Júpiter y está a una distancia de 3,3 Unidades Astronómicas. Se cree que existen algunos planetas de reciente formación que orbitan esta estrella.
El sol (izquierda) es de mayor tamaño y algo más caliente que Tau Ceti (derecha).
Más allá de Épsilon Eridani hay nueve estrellas que se encuentran todavía dentro de un margen de distancia del Sol que no sobrepasan los 12 años-luz. Sin embargo, todas ellas, menos una, son demasiado jóvenes, demasiado viejas, demasiado pequeñas o demasiado grandes para poder albergar la vida y la inteligencia. La excepción se llama Tau Ceti.
Tau Ceti está situada exactamente a doce años-luz de nosotros y satisface todas las exigencias básicas para que en ella (en algún planeta de su entorno) haya podido evolucionar la vida inteligente: Se trata de una estrella solitaria como el Sol -al contrario que Alfa Centauri- no tendría dificultad alguna en conservar sus planetas que no serían distorsionados por la gravedad generada por estrellas cercanas. La edad de Tau Ceti es la misma que la de nuestro Sol y también tiene su mismo tamaño y existen señales de que posee una buena familia de planetas. No parece descabellado pensar que, de entre todas las estrellas próximas a nosotros, sea Tau Ceti la única con alguna probabilidad de albergar la vida inteligente.
La noticia que publicaron los medios decía: ¡Descubren un nuevo planeta extrasolar que se encuentra en una zona habitable! El planeta orbita en torno a la estrella Tau Ceti, a doce años luz del Sol. Hay cinco cuerpos cuya masa oscila entre dos y seis veces la de la Tierra.
¿Quién sabe lo que en algunos de esos planetas que orbitan la estrella Tau Ceti pudiera estar pasando? Y, desde luego, dadas las características de su sistema planetario y la cercanía que parece existir entre alguno de los mundos allí presentes, si algún ser vivo inteligente pudiera contemplar el paisaje al amanecer, no sería extraño que pudiera ser testigo de una escena como la que arriba contemplamos. ¿Es tan bello el Universo! Cualquier escena que podamos imaginar en nuestras mentes… ¡Ahí estará! en alguna parte.
Es cierto que la vida, podría estar cerca de nosotros y que, por una u otra circunstancia que no conocemos, aún no hayamos podido dar con ella. Sin embargo, lo cierto es que podría estar mucho más cerca de lo que podemos pensar y, desde luego, es evidente que el Sol y su familia de planetas y pequeños mundos (que llamamos lunas), son también lugares a tener en cuenta para encontrarla aunque, posiblemente, no sea inteligente.
La distancia nos hace ver un conjunto de estrellas casi juntas, cuando en realidad, están separadas por miles de millones de kilómetros las unas de las otras.
Con certeza, ni sabemos cuentos cientos de miles de millones de estrellas puede haber en nuestra propia Galaxia, la Vía Láctea. Sabemos más o menos la proporción de estrellas que pueden albergar sistemas planetarios y, sólo en nuestro entorno galáctico podrían ser cuarenta mil millones de estrellas las que pudieran estar habilitadas para poder albergar la vida en sus planetas.
Estas cifras asombrosas nos llevan a plantear muchas preguntas, tales como: ¿Estarán todas esas estrellas prometedoras dando luz y calor a planetas que tengan presente formas de vida, unas inteligentes y otras no? ¿O sólo lo están algunas? ¿O ninguna a excepción del Sol y su familia. Algunos astrónomos dicen que la ciencia ya conoce la respuesta a esas preguntas. Razonan que la Tierra es una clase de planeta ordinario, que contiene materiales también ordinarios que pueden encontrarse por todas las regiones del Universo, ya que, la formación de estrellas y planetas siempre tienen su origen en los mismos materiales y los mismos mecanismos y, en todas las regiones del Universo, por muy alejadas que estén, actúan las mismas fuerzas, las mismas constantes, los mismos ritmos y las mismas energías.+
Gliese 581 ¿Otra promesa vida?
Planetas como la Tierra y muy parecidos los hay en nuestra propia Galaxia a miles de millones y, si la vida hizo su aparición en esta paradisíaca variedad de planeta, estos astrónomos se preguntan, ¿por qué no habría pasado lo mismo en otros planetas similares al nuestro? ¿Tiene acaso nuestro planeta algo especial para que sólo en él esté presente la vida? La Naturaleza, amigos míos, no hace esa clase de elecciones y su discurrir está regido por leyes inamovibles que, en cualquier circunstancia y lugar, siempre emplea los caminos más “simples” y lógicos para que las cosas resulten como nosotros las podemos contemplar a nuestro alrededor. Y, siendo así (que lo es), nada aconseja a nuestro sentido común creer que estamos sólos en tan vasto Universo.
El célebre astrónomo, con una sonrisa oía la pregunta del joven periodista:
– ¿Verdad señor que sería un milagro encontrar vida en otros planetas?
– El milagro joven, ¡sería que no la encontráramos!
emilio silvera
Sep
18
¿De dónde venimos? ¿Hacia dónde vamos? ¿Quiénes somos?
por Emilio Silvera ~ Clasificado en El Universo cambiante ~ Comments (0)
Miramos la Naturaleza y su asombrosa belleza, y, no siempre podemos explicar lo que vemos. Miramos el Universo y sus maravillas y sólo podemos asombrarnos. Nos pasamos todo el tiempo haciendo preguntas que, la mayoría de las veces nadie sabe contestar. Aprendemos a base de equivocarnos una y otra vez y, la observación y el estudio, la teoría y las matemáticas nos han llevado a discernir en qué lugar estamos pero… ¿No habremos tomado el camino hacia ninguna parte?
“¿Dónde estaríamos nosotros cuando se conformaron los cimientos de la Tierra?”
El titulo de ésta pagína es la pregunta que se hicieron los filósofos desde tiempos inmemoriales, y, en relación a las preguntas que se plantean, con los conocimientos que actualmente tenemos podríamos exponer diverdsas respuestas que serían el resultado de las distintas perspectivas que, cada una de ellas, pueden mostrarnos. Lo cierto es que, a ciencia cierta, nadie sabría contestar y todas esas posibles respuestas serían aproximaciones más o menos acertadas a los problemas planteados.
Muchas cosas han pasado desde que se formó la Tierra hasta llegar a nuestros días
“Nosotros, los humanos, llegamos muchísimo más tarde, cuando los materiales que formaron la Tierra estaban más fríos y se formaron los océanos, cuando había ya una atmósfera y, lo cierto es que, los materiales que hicieron posible nuestra presencia aquí, estaban en aquella nebulosa que se esparcía en el esapcio interestelar que hoy ocupa nuestro Sistema solar, una supernova hace ahora miles de millones de años, fue el pistoletazo de salida. Después, el Tiempo, aliado con la materia y la fuerza de gravedad, hicieron posible que surgiera el Sol y, a su alrededor, los planetas y lunas de nuestro entorno, y, con la ayuda de lo que hemos llamado evolución y los ingredientes precisos de atmósfera, agua, radioactividad y otros parámetros necesarios, surgío aquella primera célula replicante que lo comenzó todo, es decir, la aventura de la Vida.”
Una Tierra ígnea, incandescente, sin vida
Todas estas explicaciones, son muy pobres para describir los acontecimientos que aquí tuvieron lugar antes de que nosotros hiciéramos acto de presencia como seres humanos verdaderos. Ya me gustaría saber para poder contestar a todas las preguntas que me plantean.
La especulación sobre el origen del Universo es una vieja y destacada actividad humana. Vieja por el simple hecho de que la especie humana, no tiene ningún certificado de nacimiento y, tal desconocimiento de sus orígenes, les hace ser curiosos, deseosos de saber el por qué están aquí y pudo suceder su venida. Estamos obligados a investigar nuestros orígenes nosotros sólos, sin la ayuda de nadie, es el caso que, ningún ser inteligente nos puede contar lo que pasó y, siendo así, nos vemos abocados a tener que hurgar en el pasado y valernos de mil ingeniosos sistemas para tratar de saber. Así que, si investigamos sobre el mundo del que formamos parte, esas pesquisas terminarán por decirnos más, sobre nosotros mismos que sobre el universo que pretendemos describir. En realidad, todos esos pensamientos, que no pocas veces mezclan lo imaginario con la realidad, todo eso, en cierta medida, son proyecciones psicológicas, esquemas proyectados por nuestras mentes sobre el cielo, como sombras danzantes de un fuego fatuo que no siempre nos transmite algún mensaje.
Aquellos mitos de la creación pre-científicos dependían en su supervivencia menos de su acuerdo con los datos de la observación (de los que, de todos modos había pocos) que del grado en que eran satisfactorios, o tranquilizantes o poeticamente atractivos. Aficionados a ellos puesto que eran nuestros, esos cuentos poníann de relieve lo que más importaba a las sociedades que los conservaban. Los sumerios vivían en una confluencia de ríos, y, concebían la creación como una lucha en el barro entre dos dioses. Los mayas, obsesionados por los juegos de balón, conjeturaban que su creador se transformaba en balón cada vez que planeta Venus desaparecía detrás del Sol. El pescador tahitiano, hablaba de un dios pescador que arrastro sus islas desde el fondo del océano. Los espadachines japoneses formaron sus islas de gotas de sangre que caían de una espada cósmica. Para los griegos amantes de la lógica, la creación fue obra de los elementos: Para Tales de Mileto, el universo originalmente fue Agua; para Anaxímenes, fue Aire; para Heráclito, Fuego…Todos los pueblos tenían su propia génesis… Y, ¿cuál será la nuestra?
En Cosmología, las condiciones “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo después del comienzo del tiempo. ¿Qué pasó en ese brevísimo intervalo de tiempo? Nadie lo sabe. Pero, a pesar de ello, nosotros pretendemos saber cómo comenzamos nuestra andadura en este mundo que, en realidad, comenzó en otro lugar muy lejano y muy caliente.
Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes.
Nuestros ancestros miraban asombrados la salida y puesta del Sol
Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo Marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que tiene el Universo.
Hablaremos ahora del Big Bang (lo único que tenemos para agarrarnos a lo que “parece que fue”), esa teoría aceptada por todos y que trata de explicar cómo se formó nuestro universo y comenzó su evolución hasta llegar a ser como ahora lo podemos observar. De acuerdo a esta teoría, el universo se originó a partir de un estado inicial de alta temperatura y densidad, y entonces ha estado siempre expandiéndose. La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, la temperatura y la densidad eran infinitas.
La mayoría de los cosmólogos interpretan singularidad una indicación de que la realtividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.
El Tiempo de Planck es una unidad de tiempo considerada como el intervalo temporal más pequeño que ser medido. Se denota mediante el símbolo tP. En cosmología, el Tiempo de Planck representa el instante de tiempo más antiguo en el que las leyes de la física pueden ser utilizadas para estudiar la Naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la siguiente:
5.39124(27) × 10−43 segundos
Esta que es una de las célebres unidades de Planck, está formada por una combinación de la constante de estructura fina racionalizada (, la constante gravitacional (G), y la velocidad de la luz elevada a la quinta potencia.
La Era de planck: Es la era que comenzó cuando el efecto gravitacional de la materia empezó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang. Este hecho marcó el comienzo de la era de la materia.
La materia salió de ese clima de enormes temperaturas inimaginables y, durante varias etapas o eras (de la radiación, de la materia, hadrónica y bariónica… llegamos al momento presente habiendo descubierto muchos de los secretos que el Universo guardaba celosamente para que nosotros, los pudiéramos desvelar.
Era de la radiación
Periodo 10-43 s (la era de Planck) y 300.000 después del Big Bang… Durante periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación. La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual los partículas lentas dominaron la expansión del universo.
Era hadrónica
Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, protones, neutrones, piones, kaones entre otras. del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.
Era Leptónica
Intervalo que comenzó 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y antileptones en gran en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o un segundo después del Big Bang. Después, los leptones se unieron a los hadrónes formar átomos.
El universo es el conjunto de todo lo que existe, incluyendo ( he dicho) el espacio, el tiempo y la materia. El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein-de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.
En 1932 Einstein y de Sitter propusieron que la constante cosmológica debe tomar valor cero, y construyeron un modelo cosmológico homogéneo e isótropo que representa el caso intermedio los modelos abierto y cerrado de Friedmann. Einstein y de Sitter supusieron que la curvatura espacial del Universo no es ni positiva ni negativa, sino nula.
La geometría espacial de modelo es por lo tanto la geometría plana de Euclides; sin embargo el espacio-tiempo en su conjunto no es plano: hay curvatura en la dirección temporal. El tiempo comienza también en una Gran Explosión y las galaxias se alejan continuamente entre sí, sin embargo la velocidad de recesión (constante de Hubble) disminuye asintóticamente a cero a medida que el tiempo avanza.
“El Universo de Einstein-de Sitter es un caso particularmente sencillo de un universo de materia fría no relativista donde la tendencia a la expansión y la atracción gravitatoria están en un punto crítico, de tal manera que la energía total es cero. Aunque actualmente este modelo está prácticamente descartado por las observaciones, su manipulación matemática es de tal simplicidad que nos sirve como ejercicio de gran utilidad para entender cómo se relacionan los distintos parámetros en cosmología.”
Debido a que la geometría del espacio y las propiedades de la evolución del Universo están unívocamente definidas en el modelo de Einstein-de Sitter, mucha gente lo considera el modelo más apropiado describir el Universo real.
Durante los últimos años de la década de los 70 surgió un firme soporte teórico para ideas a partir de los estudios en física de partículas. Además, las observaciones experimentales sobre la densidad media del Universo apoyan esta concepción, aunque las evidencias aún no son concluyentes.
Todo esto está muy bien pero… ¿De donde venimos? ¿Hacia donde vamos? ¿Quiénes somos?
¡Si supiera contestar esas preguntas!
emilio silvera