viernes, 04 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Distancias insuperables (Por el momento)

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al Espacio    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el espacio exterior, el cosmos, lo que conocemos por universo, las distancias son tan enormes que se tienen que medir con unidades espaciales como el año luz (distancia que recorre la luz en un año a razón de 299.792.458 metros por segundo). Otra unidad ya mayor es el pársec (pc), unidad básica de distancia estelar correspondiente a una paralaje trigonométrica de un segundo de arco (1”). En otras palabras, es la distancia a la que una Unidad Astronómica (UA = 150.000.000 Km) subtiende un ángulo de un segundo de arco. Un pársec es igual a 3’2616 años luz, o 206.265 Unidades Astronómicas, o 30’857×1012 Km. Para las distancias a escalas galácticas o intergalácticas se emplea una unidad de medida superior al pársec, el kilopársec (Kpc) y el megapársec (Mpc).

Para tener una idea aproximada de estas distancias, pongamos el ejemplo de nuestra galaxia hermana, Andrómeda, situada (según el cuadro anterior a 725 kiloparsec de nosotros) en el Grupo local a 2’3 millones de años luz de la Vía Láctea.

¿Nos mareamos un poco?

1 segundo luz 299.792’458 Km
1 minuto luz 18.000.000 Km
1 hora luz 1.080.000.000 Km
1 día luz. 25.920.000.000 Km
1 año luz 9.460.800.000.000 Km
2’3 millones de años luz 21.759.840.000.000.000.000 Km

¡Una barbaridad!

Recientemente unos astrónomos han desvelado que, Andrómeda no pertenece al Grupo Local

Andrómeda, la hermana mayor de la Vía Láctea, situada a 2,3 años-luz  de nosotros, viaja en nuestra dirección a una buena velocidad. Sin embargo, se calcula que nos no llegará hasta nosotros hasta dentro de unos pocos miles de millones de años, casí cuando el Sol esté agotando su combustible nuclear de fusión para convertirse en una Nebulosa planetaria con una enana blanca en su centro.

Ahí tenemos la imposibilidad física de viajar a otros mundos, y no digamos a otras galaxias. Las velocidades que pueden alcanzar en la actualidad nuestros ingenios espaciales no llegan ni a 50.000 Km/h. ¿Cuánto tardarían en recorrer los 21.759.840.000.000.000.000 Km que nos separa de Andrómeda?

Incluso el desplazarnos hasta la estrella más cercana, Alfa Centauri, resulta una tarea impensable si tenemos en cuenta que la distancia que nos separa es de 4’3 años luz, y un año luz = 9.460.800.000.000 Km. Así que, para llegar a la “cercana” Alfa Centauri tendríamos que multiplicar por 4 esa inmensa distancia. ¿Cuándo llegaríamos allí? ¿Los viajeros que partieron de la Tierra y muchas generaciones siguientes (si todo transcurre con normalidad) serían los que arribarían al destino. Sin embargo, dudo que, cuando llegaran, no hubieran padecido mutaciones por tan larga estancia en el Espacio.

http://s.libertaddigital.com/fotos/noticias/velocidad-luz-warp-190912.jpg

Muchos son los que han querido imaginar como viajar más rápido que la Luz… ¡Sin superar su velocidad! Todos sabemos, como nos enseñó la Relatividad Especial de Einstein que, la luz, nos marca el límite de la velocidad que se puede alcanzar en el Espacio. Nada podrá nunca viajar más rápido que la luz en el vacío, es decir, más ráipdo que 299.792.458 metros cada segundo. Y, se idean otras formas para poder burlar ese límite y llegar antes que la luz a un determinado lugar. Hasta que no se busque la manera de esquivar la barrera de la velocidad de la luz, los viajes a otros mundos están algo complicados para nosotros.

La única ventaja a nuestro favor: ¡EL TIEMPO! Tenemos mucho, mucho tiempo por delante para conseguir descifrar los secretos del hiperespacio que nos mostrará otros caminos para desplazarnos por las estrella que, en definitiva, será el destino de la humanidad.

Nuestro Sol, antes de que pasen 4.000 millones de años, comenzará una transición de fase que, de estrella en la secuencia principal de HP, pasará a su fase terminal convirtiéndose en una Gigante roja que, eyectará sus capas exteriores al espacio interestelar formando una Nebulosa planetaria y, la estrella, exenta de la energía de fusión, quedará a merced de la fuerza de Gravedad que la comprimirá hasta límites de una densidad que sólo podrá ser frenada por la degeneración de los electrones. En ese punto, volverá el equilibrio entre dos fuerzas y el proceso se parará dejando una enana blanca con un radio parecido al de la Tierra y una densidad de 109 Kg m3.

Lactómeda, la galaxia que resultará de la colisión de la Vía Láctea con Andrómeda

Antes de que todo eso llegue, tenemos que tener en cuenta que habrá que salvar otro gran escollo que se nos viene encima (nunca mejor dicho), ya que, la Galaxia Andrómeda viene hacia La Vía Láctea a razón de 1.000.000 de Km/h y, aproximadamente en unos 3.000 millones de años la tendremos, irremediablemente, colisionando con nuestra Galaxia, con lo cual, las fuerzas de marea que esas enormes masas puden producir, son de impensable magnitud y, el desenlace tardará varios millones de años en finalizar hasta que de las dos grandes Galaxias del Grupo Local, sólo quede una enorme galaxia elíptica y, en el proceso, habrán nacido un sin fin de nuevas estrellas, otras habrán sido despladas de su regiones y lanzadas a distancias enormes, algunas habrán podido colisionar y, en definitiva, lo que allí pueda ocurrir en el futuro lejano, es de incalculable trascendencia para la Humanidad (si aún sigue aquí para ese tiempo).

Sí, existen muchos lugares a los que, cuando llegue el momento podremos viajar. Sin embargo, necesitamos muchos más conocimientos de los que actualmente tenemos para poder realizar esos viajes “imposibles” en las actuales circunstancias. Estamos comenzando, ahora, a poder realizar los primeros intentos de salir al Espacio, y, para cuando realmente podamos efectuar viajes espaciales, habrán pasado muchos, muchos, muchísimos años. No quiero mencionar, lo que podríamos tardar en dominar viajes hiperespaciales a velocidades superlumínicas. Claro que, la imaginación humana es… ¡”infinita”!

Si esto es así (que lo es), tenemos una buena excusa para pensar en posibles modos de escapar hacia otros mundos lejanos en los que poder asentar a la Humanidad lejos de esos acontecimientos de magnitud (para nosotros) infinita y contra los que nada podremos hacer, excepto, si podemos y buscamos el medio… huir a otros lugares más seguros.

Si, las distancias que nos separan de esos otros mundos parece una barrera difícil de franquear, y, sin embargo, tengo una gran esperanza puesta en que, la Humanidad, la inteligencia de los seres que la compone, y, sobre todo su imaginación, con el tiempo por delante tendrá la oportunidad de buscar esas difíciles soluciones que posibiliten nuestro traslado a las estrellas lejanas.

Para lograr eso, con nuestras limitaciones actuales, no tenemos más remedio que valernos de sondas robotizadas y, en el futuro, serán perfectos robots humanoides que, no tendrán ninguna de nuestras barreras para deambular por el cielo y visitar esas regiones lejanas en las que, posiblemente, se encuentren los planetas idóneos para habitats de seres como nosotros.

Esas son, en realidad, las miras que están puestas en todas esas misiones enviadas a las lunas y planetas cercanos para estudiar su entorno, la atmósfera, la superficie y las radiaciones. Se trata de ir conociendo el entorno y, con los adelantos tecnológicos que ahora mismo tenemos, se hace lo que se va pudiendo y, cada día, se avanza un paso más a la búsqueda de esas soluciones que, ese día muy lejano aún, llegará la debacle a la Tierra y, para entonces, no podremos continuar aquí. La única solución: Escapar a otros mundos.

emilio silvera

Nuevos mundos… ¿Para la vida?

Autor por Emilio Silvera    ~    Archivo Clasificado en Mundo Futuro    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sociedad

Ciencia

Detectan vapor de agua en la atmósfera de un exoplaneta habitable

Resultado de imagen de Constelación de Leo

 

Constelación de Leo

Se trata del “mejor candidato hasta ahora para ser habitable”, puesto que tiene la temperatura correcta, una atmósfera y agua. Orbita en la constelación de Leo.

K2-18b, que se encuentra a unos 100 años luz de la Tierra. Foto: NASA

Un grupo de científicos ha detectado por primera vez vapor de agua en la atmósfera de un exoplaneta de tamaño comparable a la Tierra, lo que le convierte en “el mejor candidato hasta ahora para ser habitable“, según un estudio publicado este miércoles en la revista Nature Astronomy.

El planeta K2-18b tiene una masa ocho veces la de la Tierra y un tamaño dos veces mayor. Fue descubierto en 2015 y puede ser tanto un cuerpo rocoso con una amplia atmósfera como un planeta helado con una alta concentración de agua en su interior.

Un equipo del University College London liderado por Angelos Tsiaras ha analizado ahora K2-18b a través de datos obtenidos por el telescopio espacial Hubble.

Resultado de imagen de Telescopia Espacial Hubble

Los científicos han utilizado una técnica conocida como espectroscopia de tránsito, con la que se analiza la luz que se filtra a través de la atmósfera cuando el planeta pasa por delante de su estrella en busca de huellas de elementos químicos.

Con ese sistema, los investigadores han encontrado evidencias sólidas de la presencia de vapor de agua y sugieren asimismo que podría haber una importante cantidad de hidrógeno en la atmósfera.

El exoplaneta estudiado orbita alrededor de una estrella enana roja, a unos 110 años luz de distancia de la Tierra

“Este es el único planeta que conocemos por ahora fuera del sistema solar que tiene la temperatura correcta para contener agua, una atmósfera y en el que se ha detectado agua. Eso lo hace el mejor candidato hasta ahora para ser habitable”, señaló Tsiaras en una rueda de prensa.

Resultado de imagen de Atmósfera idónea para la vida

       Tener una atmósfera adecuada para la presencia de la vida

A pesar de que la composición precisa de los gases no se ha podido determinar por ahora, los modelos elaborados por los autores indican que hasta la mitad de su atmósfera podría ser agua.

El exoplaneta estudiado orbita alrededor de una estrella enana roja, K2-18, a unos 110 años luz de distancia de la Tierra, en la constelación de Leo.

Dado el alto nivel de actividad de la estrella, los científicos creen que el planeta está expuesto a más radiación que la Tierra, por lo que puede ser un ambiente más hostil para la vida.

Los investigadores esperan que la próxima generación de telescopios espaciales será capaz de estudiar en más detalle este tipo de planetas pequeños.

“Durante las próximas dos décadas esperamos encontrar muchas nuevas supertierras, por lo que es probable que este sea el primer descubrimiento de muchos otros planetas potencialmente habitables“, indicó por su parte Ingo Waldmann, coautor del estudio.

Causalidad ¡Ese Principio!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Todo lo que pasa es causa de lo que antes pasó.  Y, ese Principio de la Física de la Causalidad, no está sólo allí presente, y, es tan cierto que, hasta en los Códigos legales se recogen sus esencias:En el art. 901 del CC, podemos leer: “Un efecto es adecuado a su causa cuando “acostumbra a suceder según el curso natural y ordinario de las cosas” . Como es natural, se refiere al efecto de las condiciones iniciales que marcarán las finales.
      También aquí, está presente la causalidad
En física existe un Principio que llaman !Causalidad! y en virtud del cual el efecto no puede preceder a la causa. Es muy útil cuando se conbina con el principio de que la máxima velocidad del universo es la velocidad de la luz en el vacío. Lo cierto es que, todo lo que ocurre es causa de algo que antes sucedió. Contaremos algunas cosas que tuvieron sus consecuencias.
En 1.893 el físico irlandés George Francis Fitzgerald emitió una hipótesis para explicar los resultados negativos del experimento conocido de Michelson-Morley. Adujo que toda la materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso. Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

 

                       Esquema de un interferómetro de Michelson.

 

Visualización de los anillos de interferencia.

Parecía como si la explicación de Fitzgerald insinuara que la naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, para lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el nombre de contracción de Fitzgerald, y su autor formuló una ecuación para el mismo, que referido a la contracción de un cuerpo móvil, fue predicha igualmente y de manera independiente por H. A. Lorentz (1.853 – 1.928) de manera que, finalmente, se quedaron unidos como contracción de Lorentz-Fitzgerald.

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

El físico holandés Henrik Antón Lorentz, como hemos dicho, promovió esta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas). Se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula para reducir su volumen, aumentaría su masa. Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitzgerald, debería crecer en términos de masa. Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación de Fitzgerald sobre el acortamiento. A 149.637 Km/s la masa de un electrón aumentaría en un 15%; a 262.000 Km/s, en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita. Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita?

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

Mientras que la contracción Fitzgerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas sí podía serlo, aunque indirectamente. De hecho, el muón tomó 10 veces su masa original cuando fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial, que aunque mucho más amplia, recoge la contracción de Fitzgerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

Algunas veces pienso que los artistas en general, y los poetas en particular, tendrían que adaptar e incluir en sus esquemas artísticos y poéticos los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano. Estos adelantos científicos serían así coloreados con las pasiones humanas, y transformados, de alguna forma, en la sangre, y por qué no, los sentimientos de la naturaleza humana. Posiblemente, de haberlo hecho, el grado general de conocimiento sería mayor. De todas las maneras, no dejamos de avanzar en el conocimiento de la Naturaleza.

Hacemos mil y un inventos para poder llegar a lugares que, hasta hace muy poco tiempo se pensaba que nos estaban vedados. Y, a pesar de ello, la cultura científica, en general es pobre. Sólo uno de cada tres puede definir una molécula o nombrar a un solo científico vivo. De veinticinco licenciados escogidos al azar en la ceremonia de graduación de Harvard, sólo dos pudieron explicar por qué hace más calor en verano que en invierno. La respuesta, dicho sea de paso, no es “porque el Sol está más cerca”; no está más cerca. El eje de rotación de la Tierra está inclinado, así que cuando el hemisferio norte se inclina hacia el Sol, los rayos son más perpendiculares a la superficie, y la mitad del globo disfruta del verano. Al otro hemisferio llegan rayos oblicuos: es invierno. Es triste ver cómo aquellos graduados de Harvard podían ser tan ignorantes. ¡Aquí los tenemos con faltas de ortografía!

Por supuesto, hay momentos brillantes en los que la gente se sorprende. Hace años, en una línea de metro de Manhattan, un hombre mayor se las veía y deseaba con un problema de cálculo elemental de su libro de texto de la escuela nocturna; no hacía más que resoplar. Se volvió desesperado hacia el extraño que tenía a su lado, sentado junto a él, y le preguntó si sabía cálculo. El extraño afirmó con la cabeza y se puso a resolverle al hombre el problema. Claro que no todos los días un anciano estudia cálculo en el metro al lado del físico teórico ganador del Nobel de Física, T. D. Lee.

Leon Lederman cuenta una anécdota parecida a la del tren, pero con final diferente. Salía de Chicago en un tren de cercanías cuando una enfermera subió a él a la cabeza de un grupo de pacientes de un hospital psiquiátrico local. Se colocaron a su alrededor y la enfermera se puso a contarlos: “uno, dos tres…”. Se quedó mirando a Lederman y preguntó “¿quién es usted?”; “soy Leon Lederman” – respondió – “ganador del premio Nobel y director del Fermilab”. Lo señaló y siguió tristemente “sí claro,  cuatro, cinco, seis…”. Son cosas que ocurren a los humanos; ¡tan insignificantes y tan grandes! Somos capaces de lo mejor y de lo peor. Ahí tenemos la historia para ver los ejemplos de ello.

Resultado de imagen de Incultura científica reinante

Pero ahora más en serio, es necesario preocuparse por la incultura científica reinante, entre otras muchas razones porque la ciencia, la técnica y el bienestar público están cada día más conectados. Y, además, es una verdadera pena perderse la concepción del mundo que, en parte, he plasmado en estas páginas. Aunque aparezca incompleta, se puede vislumbrar que posee grandiosidad y belleza, y va asomándose ya su simplicidad.

“El proceso de la ciencia es el descubrimiento a cada paso de un nuevo orden que de unidad a lo que desde hacía tiempo parecía desunirlo.”

– Es lo que hizo Faraday cuando cerró el vínculo que unió la electricidad y el magnetismo.

– Es lo que hizo Clerk Maxwell cuando unió aquélla y éste con la luz.

– Es lo que hizo Einstein con sus Teorías.

– Es lo que hizo Planck con el cuanto de acción, h.

Einstein unió el tiempo y el espacio, la masa a la energía y relacionó las grandes masas cosmológicas con la curvatura y la distorsión del tiempo y el espacio para traernos la gravedad en un teoría moderna; y dedicó los últimos años de su vida al intento de añadir a estas similitudes otra manera nueva y más avanzada, que instaurara un orden nuevo e imaginativo entre las ecuaciones de Maxwell y su propia geometría de la gravitación.

 

 

Clic para ampliarClic para ampliar

Clic para ampliarClic para ampliar

Clic para ampliarClic para ampliar

 

Algunos momentos de la vida del Maestro

Cuando Coleridge intentaba definir la belleza, volvía siempre a un pensamiento profundo: la belleza, decía, “es la unidad de la variedad”. La ciencia no es otra cosa que la empresa de descubrir la unidad en la variedad  desaforada de la naturaleza, o más exactamente, en la variedad de nuestra experiencia que está limitada por nuestra ignorancia.”

 

Resultado de imagen de El sueño de viajar a las estrellas

¡El sueño de viajar a las estrellas! Alcanzar esos mundos lejanos

 

Hay muchas cosas que no podemos controlar, sin embargo, algo dentro de nosotros, nos envía mensajes sobre lo que podría ser importante para que nos fijemos mejor y continuemos profundizando.

Para comprender mejor el panorama, hagamos una excursión hasta la astrofísica; hay que explicar por qué la física de partículas y la astrofísica se han fundido no hace muchos años, en un nivel nuevo  de intimidad, al que alguien llamó la conexión espacio interior/espacio exterior.

Mientras los expertos del espacio interior construían aceleradores, microscopios cada vez más potentes para ver qué pasaba en el dominio subnuclear, los colegas del espacio exterior sintetizaban los datos que tomaban unos telescopios cada vez más potentes, equipados con nuevas técnicas cuyo objeto era aumentar su sensibilidad y la capacidad de ver detalles finos. Otro gran avance fueron los observatorios establecidos en el espacio, con sus instrumentos para detectar infrarrojos, ultravioletas, rayos X y rayos gamma; en pocas palabras, toda la extensión del espectro electromagnético, muy buena parte del cual era bloqueado por nuestra atmósfera opaca y distorsionadora.

                                                                              ¿Hasta donde llegaremos?

La síntesis de la cosmología de los últimos cien años es el modelo cosmológico estándar. Sostiene que el universo empezó en forma de un estado caliente, denso, compacto, hace unos 15.000 millones de años. El universo era entonces infinitamente, o casi infinitamente, denso; infinita, o casi infinitamente, caliente. La descripción “infinito” es incómoda para los físicos; los modificadores son el resultado de la influencia difuminadota de la teoría cuántica. Por razones que quizá no conozcamos nunca, el universo estalló, y desde entonces ha estado expandiéndose y enfriándose. Tendríamos que poner la mirada en una fluctuación del vacío para saber de cómo nació nbuestro Universo.

Resultado de imagen de El Big Bang

Una Teoría que se ajusta a lo que podemos observar y… De momento, se dio por buena

Ahora bien, ¿cómo se han enterado de eso los cosmólogos? El modelo de la Gran Explosión (Big Bang) nació en los años treinta tras el descubrimiento de que las galaxias (conjuntos de 100.000 millones de estrellas, aproximadamente) se estaban separando entre sí, descubrimiento hecho por Edwin Hubble, que andaba midiendo sus velocidades en 1.929.

Hubble tenía que recoger de las galaxias lejanas una cantidad de luz que le permitiera resolver las líneas espectrales y compararlas con las líneas de los mismos elementos de la Tierra. Cayó en la cuenta de que todas las líneas se desplazaban sistemáticamente hacia el rojo. Se sabía que una fuente de luz que se aparta de un observador hace justo eso. El desplazamiento hacia el rojo era, de hecho, una medida de la velocidad relativa de la fuente y del observador.

Resultado de imagen de Las galaxias se alejan - Imagen GIFs

En las galaxias cercanas la fuerza de Gravedad hace que se fusionen

Más tarde, Hubble halló que las galaxias se alejaban de él en todas las direcciones; esto era una manifestación de la expansión del espacio. Como el espacio expande las distancias entre todas las galaxias, la astrónoma Hedwina Knubble, que observase desde el planeta Penunbrio en Andrómeda, vería el mismo efecto o fenómeno: las galaxias se apartaría de ella.

Cuanto más distante sea el objeto, más deprisa se mueve. Esta es la esencia de la ley de Hubble. Su consecuencia es que, si se proyecta la película hacia atrás, las galaxias más lejanas, que se mueven más deprisa, se acercarán a los objetos más próximos, y todo el lío acabará juntándose y se acumulará en un volumen muy, muy pequeño, como, según se calcula actualmente, ocurría hace 15.000 millones de años.

Resultado de imagen de Criaturas bidimensionales habitantes del plano

La más famosa de las metáforas científicas te pide que imagines que eres una criatura bidimensional, un habitante del Plano. Conoces el este y el oeste, el norte y el sur, pero arriba y abajo no existen; sacaos el arriba y debajo de vuestras mentes. Vivís en la superficie de un globo que se expande. Por toda la superficie hay residencias de observadores, planetas y estrellas que se acumulan en galaxias por toda la esfera; todo bidimensional. Desde cualquier atalaya, todos los objetos se apartan a medida que la superficie se expande sin cesar. La distancia entre dos puntos cualesquiera de este universo crece. Eso es lo que pasa, precisamente, en nuestro mundo tridimensional. La otra virtud de esta metáfora es que, en nuestro universo, no hay ningún lugar especial. Todos los sitios o puntos de la superficie sin democráticamente iguales a todos los demás. No hay centro; no hay borde. No hay peligro de caerse del universo. Como nuestra metáfora del universo en expansión (la superficie del globo) es lo único que conocemos, no es que las estrellas se precipiten dentro del espacio. Lo que se expande es que espacio que lleva toda la barahúnda. No es fácil visualizar una expansión que ocurre en todo el universo. No hay un exterior, no hay un interior. Sólo hay este universo que se expande. ¿En qué se expande? Pensad otra vez en vuestra vida como habitante del Plano, de la superficie del globo: en nuestra metáfora no existe nada más que la superficie.

Resultado de imagen de Inmenso depósito de agua pesada en las profundidades de una vieja mina pàra cazar neutrinos

Instalaciones en las entrañas de la Tierra (en las profundidades de una vieja mina abandonada) que posibilitan viajar a lo más profundo de la materia. El gran depósito está lleno de agua pesada que delatará la llegada de oleadas de neutrinos.

Resultado de imagen de Sondas espaciales que nos envian imágenes de otros mundosResultado de imagen de Sondas espaciales que nos envian imágenes de otros mundosResultado de imagen de Sondas espaciales que nos envian imágenes de otros mundosResultado de imagen de Sondas espaciales que nos envian imágenes de otros mundosResultado de imagen de Sondas espaciales que nos envian imágenes de otros mundosResultado de imagen de El HubbleResultado de imagen de El HubbleResultado de imagen de El Hubble

                  Hemos inventado tecnología que ha posibilitado que no estemos confinados en el planeta

Es mucho lo que podemos imaginar. Sin embargo, lo cierto es que,  como nos decía Popper:
“Cuánto más profundizo en el conocimiento de las cosas más consciente soy de lo poco que se. Mientras que mis conocimientos son finitos, mi ignorancia es ilimitada.”
Resultado de imagen de El Big Bang y la expansión del Universo

Dos consecuencias adicionales de gran importancia que tiene la teoría del Big Bang acabaron por acallar la oposición, y ahora reina un considerable consenso. Una es la predicción de que la luz de la incandescencia original (presuponiendo que fue muy caliente) todavía está a nuestro alrededor, en forma de radiación remanente. Recordad que la luz está constituida por fotones, y que la energía de los fotones está en relación inversa con la longitud de onda. Una consecuencia de la expansión del universo es que todas las longitudes se expanden. Se predijo, pues, que las longitudes de onda, originalmente infinitesimales, como correspondía a unos fotones de gran energía, han crecido hasta pertenecer ahora a la región de las microondas, en la que las longitudes son unos pocos milímetros.

En 1.965 se descubrieron los rescoldos del Big Bang, es decir, la radiación de fondo de microondas. Esos fotones bañan el universo entero, y se mueven en todas las direcciones posibles. Los fotones que emprendieron viaje hace miles de millones de años cuando el universo era más pequeño y caliente, fueron descubiertos por una antena de los laboratorios Bell en Nueva Jersey.

File:WMAP Leaving the Earth or Moon toward L2.jpg

 

                                                  Imagen del WMAP de la anisotropía de la temperatura del CMB.

 

Así que el descubrimiento hizo imprescindible medir la distribución de las longitudes de onda, y se hizo. Por medio de la ecuación de Planck, esta medición de la temperatura media de lo que quiera (el espacio, las estrellas, polvo, un satélite, los pitidos de un satélite que se hubiese colado ocasionalmente) que haya estado bañándose en esos fotones.

Las mediciones últimas efectuadas por la NASA con el satélite COBE dieron un resultado de 2’73 grados sobre el cero absoluto (2’73 ºK). Esta radiación remanente es una prueba muy potente a favor de la teoría del Big Bang caliente.

Los astrofísicos pueden hablar tan categóricamente porque han calculado qué distancias separaban a dos regiones del cielo en el momento en que se emitió la radiación de microondas observadas por el COBE. Ese momento ocurrió 300.000 años después del Big Bang, no tan pronto como sería deseable, pero sí lo más cerca del principio que podemos.

Resulta que temperaturas iguales en regiones separadas del espacio que nunca habían estado en contacto y cuyas separaciones eran tan grandes que ni siquiera a la velocidad de la luz daba tiempo para que las dos regiones se comunicasen, y sin embargo, sí tenían la misma temperatura. La teoría del Big Bang no podía explicarlo; ¿un fallo?, ¿un milagro? Se dio en llamar a eso la crisis de la causalidad, o de la isotropía.

         Considerado a grandes escalas, el Universo es isotrópico

De la causalidad porque parecía que había una conexión causal entre distintas regiones del cielo que nunca debieran haber estado en contacto; de la isotropía porque donde quiera que mires a gran escala verás prácticamente el mismo patrón de estrellas, galaxias, cúmulos y polvo estelar. Se podría sobrellevar esto en un modelo del Big Bang diciendo que la similitud de las miles de millones de piezas del universo que nunca estuvieron en contacto es puro accidente. Pero no nos gustan los “accidentes”: los milagros están estupendamente si jugamos a la lotería, pero no en la ciencia. Cuando se ve uno, los científicos sospechan que algo más importante se nos mueve entre bastidores. Me parece que mi inclinación científica me hace poco receptivo a los milagros. Si algo para habrá que buscar la causa.

Resultado de imagen de Universo hecho de Hidrógeno y Helio

El elemento más común del Universo es el Hidrógeno, y, el estado de la materia más abundante es el plasma presente en las estrellas que, a cientos de miles de millones habitan en las galaxias

El segundo éxito de gran importancia del modelo del Big Bang tiene que ver con la composición de nuestro universo. Puede parecer que el mundo está hecho de aire, tierra, agua y fuego, pero si echamos un vistazo arriba y medimos con nuestros telescopios espectroscópicos, apenas sí encontramos algo más que hidrógeno, y luego helio. Entre ambos suman el 98% del universo que podemos ver. El resto se compone de los otros noventa elementos. Sabemos gracias a nuestros telescopios espectroscópicos las cantidades relativas de los elementos ligero, y hete aquí que los teóricos del Big Bang dicen que esas abundancias son precisamente las que cabría esperar. Lo sabemos así.

 

El universo prenatal tenía en sí toda la materia del universo que hoy observamos, es decir, unos cien mil millones de galaxias, cada una con cien mil millones de soles. Todo lo que hoy podemos ver estaba comprimido en un volumen muchísimos menos que la cabeza de un alfiler. La temperatura era alta, unos 1032 grados Kelvin, mucho más caliente que nuestros 273 ºK actuales. Y en consecuencia la materia estaba descompuesta en sus componentes primordiales.

Una imagen aceptable de aquello es la de una “sopa caliente”, o plasma, de quarks y leptones (o lo que haya dentro, si es que hay algo) en la que chocan unos contra otros con energías del orden de 1018 GeV, o un billón de veces la energía del mayor colisionador que cualquier físico pueda imaginarse construir. La gravedad era rugiente, con su poderoso (pero aún mal conocido) influjo en esta escala microscópica.

Tras este comienzo fantástico, vinieron la expansión y el enfriamiento. A medida que el universo se enfriaba, las colisiones eran menos violentas. Los quarks, en contacto íntimo los unos con los otros como partes del denso grumo que era el universo infantil, empezaron a coagularse en protones, neutrones y los demás hadrones. Antes, esas uniones se habrían descompuesto en las inmediatas y violentas colisiones, pero el enfriamiento no cesaba; aumentaba con la expansión y las colisiones eran cada vez más suaves.

                                         La máquina del big bang reveló que, en aquellos primeros momentos…

Aparecieron  los protones y los neutrones, y se formaran núcleos estables. Este fue el periodo de nucleosíntesis, y como se sabe lo suficiente de física nuclear se pueden calcular las abundancias relativas de los elementos químicos que se formaron. Son los núcleos de elementos muy ligeros; los más pesados requieren de una “cocción” lenta en las estrellas.

Claro que, los átomos (núcleos más electrones) no se formaron hasta que la temperatura no cayó lo suficiente como para que los electrones se organizaran alrededor de los núcleos, lo que ocurrió 300.000 años después, más o menos. Así que, en cuanto se formaron los átomos neutros, los fotones pudieron moverse libremente, y ésta es la razón de que tengamos una información de fotones de microondas todavía.

La nucleosíntesis fue un éxito: las abundancias calculadas y las medidas coincidían. Como los cálculos son una mezcla íntima de física nuclear, reacciones de interacción débil y condiciones del universo primitivo, esa coincidencia es un apoyo muy fuerte para la teoría del Big Bang.

En realidad, el universo primitivo no era más que un laboratorio de acelerador con un presupuesto ilimitado. Nuestros astrofísicos tenían que saberlo todo acerca de los quarks y los leptones y las fuerzas para construir un modelo de evolución del universo. Los físicos de partículas reciben datos de su experimento grande y único. Por supuesto, para los tiempos anteriores a los 10-13 segundos, están mucho menos seguros de las leyes de la física. Así que, los astrofísicos azuzan a los teóricos de partículas para que se remanguen y contribuyan al torrente de artículos que los físicos teóricos lanzan al mundo con sus ideas: Higgs, unificación de cuerdas vibrantes, compuestos (qué hay dentro de los quarks) y un enjambre de teorías especulativas que se aventuran más allá del modelo estándar para construir un puente que nos lleve a la descripción perfecta del universo, de la Naturaleza. ¿Será posible algún día?

Resultado de imagen de Los inicios de la Teoría de cuerdasResultado de imagen de Los inicios de la Teoría de cuerdas

Esperemos a ver qué pasa con la historia que comenzaron Grabielle Veneziano, John Schwartz, André Neveu, Pierre Ramond, Jeff Harvey, Joel Sheik, Michael Green, David Gross y un dotado flautista de Hamelin que responde al nombre de Edward Witten.

La teoría de cuerdas es una teoría que nos habla de un lugar muy distante. Dice Leon Lederman que casi tan distante como Oz o la Atlántida; hablamos del dominio de Planck. No ha forma de que podamos imaginar datos experimentales en ese tiempo tan lejano; las energías necesarias (las de la masa de Planck) no están a nuestro alcance, lo que significa que no debemos perseverar.

Por lejos que esté… Siempre querremos llegar. ¿Qué habrá allí dónde nuestra vista no llega? ¿Cómo será aquel universo?

¿Por qué no podemos encontrar una teoría matemáticamente coherente (sin infinitos) que describa de alguna manera Oz? ¡Dejar de soñar, como de reír, no es bueno!

Pero en verdad, al final de todo esto, el problema es que siempre estarmos haciendo preguntas: Que si la masa crítica, que si el universo abierto, plano o cerrado… Que si la materia y energía del universo es más de la que se ve. Pasa lo contrario que con nuestra sabiduría (queremos hacer ver que hay más… ¡de la que hay!), que parece mucha y en realidad es tan poca que ni podemos contestar preguntas sencillas como, por ejemplo: ¿Quiénes somos?

Resultado de imagen de La imagen movida que no te deja ver con claridad

          Ahí, ante esa pregunta “sencilla” nos sale una imagen movida que no deja ver con claridad

Sin embargo, hemos sabido imaginar para poder desvelar algunos otros secretos del universo, de la Naturaleza, del Mundo que nos acoge y, sabemos cómo nacen, viven y mueren las estrellas y lo que es una galaxia. Podemos dar cuenta de muchas cuestiones científicas mediante modelos que hemos ideado para explicar las cosas. No podemos físicamente llegar a otras galaxias y nos hemos inventado telescopios de inmensa capacidad para llegar hasta las galaxias situadas a 12.000 millones de años luz de la Tierra. También, hemos sabido descifrar el ADN y, si ninguna catástrofe lo remedia… ¡Viajaremos por las estrellas!

Claro que, sabemos representar los Modelos de Universo que imaginamos, y, aún no hemos llegado a saber lo que el Universo es. ¡Nuestra imaginación! que siempre irá por delante de la realidad que nos rodea y que no siempre sabemos ver. Todo es, como dijo aquel, la belleza que se nos regala: “La unidad de la variedad”. Además, no debemos olvidar que, todo lo grande está hecho de cosas pequeñas.

emilio silvera

¿Dónde están las respuestas?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Einstein y las cosas que decía »

René Descartes, filósofo, matemático y físico  francés, considerado el padre de la filosofía moderna, así como uno de los nombres más destacados de la revolución científica. El método científico ( del latín scientia = conocimiento; camino hacia el conocimiento) es un método de investigación usado principalmente en la producción de conocimiento en las ciencias. Para ser llamado científico, un método de investigación debe basarse en la empírica y en la medición, sujeto a los principios específicos de las pruebas de razonamiento.  El método científico es: «un método o procedimiento que ha caracterizado a la ciencia natural desde el siglo XVII, que consiste en la observación sistemática, medición, experimentación, la formulación, análisis y modificación de las hipótesis»
El método científico está sustentado por dos pilares fundamentales. El primero de ellos es la reproducinilidad, es decir, la capacidad de repetir un determinado experimento, en cualquier lugar y por cualquier persona. Este pilar se basa, esencialmente, en la comunicación y publicidad de los resultados obtenidos (por ej. en forma de artículo científico). El segundo pilar es la refutabilidad. Es decir, que toda proposición científica tiene que ser susceptible de ser falsada o refutada. Esto implica que se podrían diseñar experimentos, que en el caso de dar resultados distintos a los predichos, negarían la hipótesis puesta a prueba.

 

¡Son posibles tántas cosas!

Algunos quieren encontrar las respuestas en la religión (que si ha sido escogida voluntariamente… ¡bien está!). Pero, como todos sabemos, es cosa de fe. Creer en aquello que no podemos ver ni comprobar no es precisamente el camino de la ciencia que empieza por imaginar, después conjeturar, más tarde teorizar, se comprueba una y mil veces la teoría aceptada a medias y sólo cuando todo está amarrado y bien atado, todas esas fases pasan a la categoría de una ley o norma que se utiliza para continuar investigando en la buena dirección. Einstein solía decir: “La religión sin Ciencia es ciega.”

 

Resultado de imagen de La teoría del Caos

 

El enjambre de nervios y neuronas de nuestro cerebro no es el mejor ejemplo para escenificar la Teoría del Cáos, ya q1ue, ante tal maraña de complejidad inimaginable, se desarrolla un trabajo bien definido en el que, cada cosa hace por sepàrado su trabajo para que al final…. ¡Suene la melodía!

 

Otros han sido partidarios de la teoría del caos y argumentan que a medida que el nivel de complejidad de un sistema aumenta, entran en juego nuevos tipos de leyes. Entender el comportamiento de un electrón o un quark es una cosa; utilizar este conocimiento para comprender el comportamiento de un tornado es otra muy distinta. La mayoría está de acuerdo con este aspecto. Sin embargo, las opiniones divergen con respecto a si los fenómenos diversos y a veces inesperados que pueden darse en sistemas más complejos que las partículas individuales son realmente representativos del funcionamiento de los nuevos principios de la física, o si los principios implicados son algo derivado y están basados, aunque sea de un modo terriblemente complicado, en los principios físicos que gobiernan el ingente número de componentes elementales del universo.

 

 

“La teoría del todo o teoría unificada fue el sueño incumplido de Einstein. A este empeñó dedicó con pasíón los últimos 30 años de su vida. No lo logró, y hoy continúa sin descubrirse. Consiste en una teoría definitiva, una ecuación única que dé respuesta a todas las preguntas fundamentales del Universo. Claro que, Einstein no sabía que las matemáticas para plasmar esa Teoría mágica… ¡No se habían inventado en su tiempo ni tampoco en el nuestro!

 

Resultado de imagen de La teoría del todo no la película

No será nada fácil llegar a esa soñada Teoría del todo

 

La teoría del todo debe explicar todas la fuerzas de la Naturaleza, y todas las características de la energía y la materia. Debe resolver la cuestión cosmológica, es decir, dar una explicación convincente al origen del Universo. Debe unificar relatividad y cuántica, algo hasta ahora no conseguido. Y además, debe integrar otros universos en caso de que los haya. No parece tarea fácil. Ni siquiera se sabe si existe una teoría del todo en la Naturaleza. Y, en caso de que exista, si es accesible a nuestro entendimiento y a nuestras limitaciones tecnológicas para descubrirla.”

Einstein se pasó los últimos treinta años de su vida en la bíusqueda de esa teoría que nunca pudo encontrar. En los escaparates de la 5ª Avenida de Nueva York, exponían sus ecuaciones y la gente, sin entender lo que veían, se arremolinaban ante el cristal para verlas.

 

 

 

De todas las maneras, casi todo el mundo está de acuerdo en que el hallazgo de la Gran Teoría Unificada (teoría del Todo), no significaría de modo alguno que la psicología, la biología, la geología, la química, y también la física, hubieran resuelto todos sus problemas.

El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que esta planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas.  Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.

 

 

 

 

 

La búsqueda de esa teoría final que nos diga cómo es el universo, el tiempo y el espacio, la materia y los elementos que la conforman, las fuerzas fundamentales que interaccionan, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que ha realizado durante los últimos décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado.

Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

 

 

 

 

El Universo de lo muy grande y el de lo muy pequeño… ¡Es el mismo universo! Simplemente se trata de mirar en distintos ámbitos del saber, y, la importancia de las medidas… ¡también es relativia! Porque, ¿podríamos valorar la importancia de los electrones. La existencia de los fotones,  o, simplemente la masa del protón? Si alguno de esos objetos fuese distinto, el Universo también lo sería.

La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza.

 

 

Resultado de imagen de Ecuaciones de campo de la Teoría MResultado de imagen de Ecuaciones de campo de la Teoría M

 

Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.

Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo.

 

 

Desde un punto de vista filosófico uno esperaría que una buena teoría no solo proporcionara una teoría cuántica de la gravedad consistente, sino que además dé una explicación al origen del propio espacio-tiempo, algo que las teorías de cuerdas no proporcionan. Sin embargo, llama poderosamente la atención que, cuando los físicos están desarrollando las ecuaciones de campo de la teoría de cuerdas, como por arte de magia, sin que nadie las llame, allí aparecen las ecuaciones de campo de la Relatividad General… ¡Eso apunta a que, la Teoría de cuerdas está en el buen camino! Otra cosa es que la podamos verificar algún día.

 

Resultado de imagen de Estructura del Espaciotiempo

 

“El espacio-tiempo es una estructura suave, al menos así lo sugiere un nuevo estudio, anotando una posible victoria para Einstein sobre los teóricos cuánticos que vinieron después de él.”

 

Resultado de imagen de Estructura del Espaciotiempo

Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impedía ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar.

La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble belleza y de logros y avances tecnológicos que ahora ni podemos imaginar.

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.

Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.

El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino revelador de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch que, según parece, nunca será un hecho y, el universo, tendrá una “muerte” térmica, es decir, cuando el alejamiento de las galaxias lo haga más grande, más oscuro y más frío. En el cero absoluto de los -273 ºC, ni los átomos se moverán.

Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.

Pero… ¿somos en verdad tan insignificantes

emilio silvera

¿Que pinta el Azar en todo esto?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Poder de la Naturaleza...El Poder de la Naturaleza...

    Todo lo que ocurre en la Naturaleza tiene una causa anterior, nada es fruto del Azar

Sí, la Naturaleza nos muestra constantemente su poder. Fenómenos que no podemos evitar y que nos hablan de unos mecanismos que no siempre comprendemos. Nuestro planeta por ejemplo, se comporta como si de un ser vivo se tratara, la llaman Gaia y realiza procesos de reciclaje y renovación por medio de terremotos y erupciones volcánicas, Tsunamis y tornados devastadores que cambian el paisaje y nosotros, lo único podemos hacer es acatar el destino que ignoramos de lo que está por venir.

Resultado de imagen de Las cosas caen al suelo por la GravedadResultado de imagen de El Sol sale por el EsteResultado de imagen de La predicción del tiempoResultado de imagen de TerremotosResultado de imagen de Erupciones volcánicas

El mundo nos parece un lugar complicado. Sin embargo, existen algunas verdades sencillas que nos parecen eternas, no varían con el paso del tiempo (los objetos caen hacia el suelo y no hacia el cielo, el Sol se levanta por el Este, nunca por el Oeste, nuestras vidas, a pesar de las modernas tecnologías, están todavía con demasiada frecuencia a merced de complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico es más un arte que una ciencia, los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatoria, los cambios en las Sociedades fluctúan a merced de sucesos que sus componentes no pueden soportar y exigen el cambio.

Resultado de imagen de Cómo era el mundo de nuestros abuelosResultado de imagen de Cómo era el mundo de nuestros abuelosResultado de imagen de Parejas sexagenarias de hoyResultado de imagen de Grupo en la Sociedad moderna comentando el trabajo

 La inmensa complejidad que está presente en el cerebro humano y de cómo se genera lo que llamamos “la mente”, a partir de una maraña de conexiones entre más de cien mil millones de neuronas, más que estrellas existen en nuestra Galaxia, la Vía Láctea. Es algo grande que, en realidad, no hemos alcanzado a comprender.

La mente humana es de tal complejidad que no hemos podido llegar a comprender su funcionamiento. ¿Por qué unas personas tienen una gran facilidad para tocar el piano, otros para comprender las matemáticas complejas y algunos para ver lo que nadie ha sido capaz de detectar en el ámbito de la Naturaleza, pongamos por ejemplo un paisaje, o, llegar a comprender fenómenos físicos que configuran el mundo, el Universo y la vida?

Es precisamente a escala humana, donde se dan las características (posiblemente) más complejas del Universo, las que se resisten más a rendirse ante métodos y reglamentos fijos que las pretenda mantener estáticas e inamovibles por el interés de unos pocos. Las Sociedades son dinámicas en el tiempo y en el espacio y, su natural destino es el de evolucionar siempre, el de buscar las respuestas a cuestiones patra ellas desconocidas y que al estar inmersas en el corazón de la Naturaleza, se sirven de la Ciencia para poder llegar al lugar más secreto y arrancar esas respuestas que tánto, parecen necesitar para continuar hacia el futuro.

Claro que, ese futuro, no depende de esas Sociedades Humanas que de alguna manera, están a merced de sucesos como aquel de Yucatán, cuando al parecer, hace ahora 65 millones de años, perecieron los Dinosaurios que reinaron en el Planeta durante 150 millones de años hasta que llegó aquél fatídico (para ellos) pedrusco que, en realidad, posibilitó nuestra llegada.

 Extinción de los dinosaurios

Aquellos terribles animales que poblaban la Tierra hubiera hecho imposible nuestra presencia en el planeta. Formas de vida incompatibles con nuestra especie que desaparecieron -según parece- por causas naturales venidas del espacio exterior para que más tarde, pudiéramos nosotros hacer acto de presencia en el planeta que nos acoge.

Aquello se considera una extinción masiva ocurrida en la Tierra, algo tan claramente reflejado en el registro fósil que se utiliza para marcar el final de un período de tiempo geológico, el Cretáseo, y el comienzo de otro, el Terciario. Puesto que la “C” ya se ha utilizado como inicial  en un contexto similar en relación con el período Cámbrico, este marcador se suele denominar frontera K-T, con una “K” de Kreide, que es el nombre del Cretáceo en alemán. No fueron solos los dinosaurios los que resultaron afectados, aunque son los que aparecen con mayor protagonismo en los relatos populares cuando se habla de este desastre.

Esqueletos de dinosaurios expuestos en el Museo Real de Ontario, Canadá.


Alrededor del 70 por ciento de todas las especies que vivían en la Tierra al finales del cretáceo habían desaparecidos a principios del Terciario, lo cual indica que se trató realmente de una “extinción en masa” y explica por qué los geólogos y los paleontólogos utilizan la frontera K-T como un marcador importante en el registro fósil. Dadas las dificultades que plantean unas pruebas de tiempos tan remotos, y la lentitud con la que se acumulan los estratos geológicos, todo lo que podemos decir realmente sobre la velocidad a la que se produjo aquella extinción es que sucedió en menos de unas pocas decenas de miles de años, pero en ningún caso durante muchos millones de años; sin embargo, esto se considera un cambio brusco en relación con la escala de tiempo utilizada en geología.

Las preguntas obvias que esto plantea son las mismas que surgen tras un gran terremoto -por qué sucedió, y si podría suceder de nuevo y, en su caso, cuándo- En el caso del suceso K-T hay un candidato muy adecuado para ser el desencadenante que hizo que la extinción se produjera, por ejemplo, hace 60 0 55 millones de años. Los restos del enorme cráter que data justo de entonces ha sido descubierto bajo lo que es ahora la península de Yucatán, en Méjico,  y por todo el mundo se han hallado estratos de hace 65 millones de años que contienen restos de iridio, un metal pesado que es raro en la corteza terrestre, pero del que sabemos que es un componente de algunos tipos de meteoritos. La capa de iridio es tan delgada que tuvo que depositarse en menos de 10.000 años (quizá mucho menos), lo cual es coherente con la teoría de que el suceso K-T fue desencadenado en su totalidad, de manera más o menos instantánea, por un gran golpe que llegó del espacio interestelar.

Resultado de imagen de El meteorito “Gran Calabaza” se acerca a la Tierra

                                                                              La catástrofe está servida

No sería difícil explicar por que pudo suceder todo esto. La energía cinética contenida en un impacto de este calibre sería equivalente a la explosión de unos mil millones de megatoneladas de TNT y arrojaría al espacio unos detritos en forma de grandes bloques que se desplazarían siguiendo trayectorias balísticas (como las de los misiles balísticos intercontinentales) y volverían a entrar en la atmósfera por todo el globo terráqueo, difundiendo calor y aumentando la temperatura en todas las regiones. Se produciría un efecto de calentamiento de 10 kilowatios por cada metro cuadrado de la superficie terrestre durante varias horas, un fenómeno que ha sido descrito gráficamente por Jay Melosh. A continuación, unas diminutas partículas de polvo lanzadas al interior de la parte superior de la atmósfera se extendería alrededor del todo el planeta y, combinada con el humo de todos los incendios desencadenados por el “asado a la parrilla”, bloquearían el paso de la luz del Sol, causando la muerte de todas las plantas que dependían de la fotosíntesis y congelando temporalmente el planeta.

Si el planeta se congela, ¿dónde nos meteremos? ¿cuántas criaturas tendrán la oportunidad de sobrevivir?

Hay pruebas de que, en épocas pasadas, la Tierra sufrió visitas inesperadas desde el espacio que trajo muerte y desolación.  Hace unos 35 millones de años, la Tierra soportó unos impactos parecidos sin que se produjera una extinción del calibre del suceso K-T. Aunque los factores desencadenantes tengan la misma magnitud. Por otra parte, existen pruebas de que los Dinosaurios y otras especies estaban ya en decadencia en los dos últimos millones de años del Cretáceo. Parece que los grandes lagartos habían experimentado altibajos durante los 150 millones de años que se pasaron vagando por la Tierra. Hay opiniones para todos y algunos dicen que su desaparición se debió, en realidad, al aumento del Oxígeno en nuestra atmósfera.

El suceso K-T es en realidad sólo una entre cinco catástrofes similares (en la medida en que afectó en aquella época a la vida en la Tierra) a las que los geólogos denominan en conjunto las “cinco grandes” -y no es en absoluto la mayor-. Cada una de ellas se utiliza como marcador entre períodos geológicos y todas han sucedido durante los últimos 600 millones de años.

La razón por la que nos centramos en este pasado geológico relativamente reciente es que fue en esa época cuando los seres vivos desarrollaron por primera vez algunas características, tales como las conchas, que podían fosilizarse fácilmente, dejando rastros que pueden reconocerse en los estratos que se estudian en la actualidad.

Nuevas especies de fósiles de invertebrados marinos, que vivieron hace 465 millones de años, se han hallado en diversos yacimientos de la provincia de Ciudad Real en España, y, por todas partes del mundo, si se profundiza en la Tierra, se encuentran fósiles y conchas de tiempos pasados. En la imagen recreada arriba se recoge el descubrimiento especies nuevas,  de animales marinos con concha que han posibilitado su hallazgo después de tantos millones de años.

Pero centrémonos en las “cinco grandes extinciones” que, tomándolas cronológicamente se produjeron hace unos 440 millones de años (que marcaron la frontera entre los períodos Ordovícico y Silúrico), hace 360 millones de años (entre el Devónico y el Carbonífero), 250 millones de años (entre el Pérmico y el Triásico), 215 millones de años (en la frontera entre el Triásico y el Jurásico) y 65 millones de años (en la frontera K-T).

Extinction intensity.svg

                                   Millones de años

Intensidad de la extinción marina a través del tiempo. El gráfico azul muestra el porcentaje aparente (no el número absoluto) de los géneros de animales marinos extintos durante un determinado intervalo de tiempo. Se muestran las ultimas cinco grandes extinciones masivas. 

Hay otras muchas extinciones en el registro fósil pero, las más importantes son las mencionadas. La más espectacular de todas ellas es el suceso que tuvo lugar hace unos 250 millones de años, al final del Pérmico. Se extinguieron al menos el 80 por ciento, y posiblemente hasta el 95 por ciento, de todas las especies que vivían en nuestro planeta en aquellos tiempos, tanto en la tierra como en los océanos, y lo hizo durante un intervalo de menos de 100.000 años. Sin embargo, dado que también se calcula que el 99 por ciento de todas las especies que han vivido en la Tierra se han extinguido, esto significa que son el doble las que han desaparecido en sucesos de -aparente- menor importancia.

La cuestión que nos intriga es si las extinciones en masa son realmente acontecimientos especiales, de carácter diferente al de las extinciones de menor importancia, o si son el mismo tipo de suceso, pero a gran escala -¿son las extinciones de vida en la Tierra unos hechos cuya naturaleza es independiente de su magnitud, como los terremotos y todos los demás fenómenos que la Naturaleza nos envía periódicamente que dan lugar a catástrofes y pérdidas de muchas vidas? La respuesta sincera es “no lo sabemos”, pero hay bastantes evidencias como para intuir que ésta es una posibilidad muy real.

 http://upload.wikimedia.org/wikipedia/commons/f/f7/Voluntary_Human_Extinction_Movement_logo.png

El logotipo del Movimiento por la Extinción Humana Voluntaria es un globo terráqueo sobre el que aparece la letra V y sobre ella otra pequeña tierra y el acrónimo VHEMT de Voluntary Human Extinction Movement.

Gracias a un meticuloso trabajo de investigación de Jack Sepkoski, de la Universidad de Chicago que, pudo trazar un gráfico en el que mostraba como ha fluctuado durante los últimos 600 millones de años el nivel de extinciones que se produjo en cada intervalo de cuatro millones de años.

grafica de las extinciones los últimos 250 My

                         Extinciones segun Sepkoski

El gráfico nos muestra que la muerte de los dinosaurios fue también la muerte de los invertebrados marinos. La pregunta que se puede plantear es que clase de aleatoriedad es ésta, si realmente son sucesos aleatorios. Resulta que es una ley potencial -nuestro viejo amigo, el ruido 1/f-. El origen de esta señal aleatoria, de enorme interés por su ubicuidad y propiedades matemáticas, sigue siendo un misterio, a pesar de la atención que se le ha dedicado.

Imagen relacionadaResultado de imagen de La Tierra en su recorrido espacial puede pasar por zonas nosiva y peligrosas

Claro que la Tierra, no es un objeto inamovible, sino que, por el contrario recorre el Espacio a unos 30 Km por segundo, y, en su deambular, atravieza regiones que pueden contener elementos nosivos y gérmenes que, si llegan a la superficie del planeta… ¡Puede causar una gran catástrofe!

Ahora bien, no parece probable que todas las extinciones de vida que han sucedido en la Tierra hayan tenido como causa impactos procedentes del espacio. Lo que parece estar diciéndonos el registro fósil es que las extinciones se producen en todas las escalas, todos los tiempos, y que (como en el caso de los terremotos) puede producirse una extinción de cualquier magnitud en cualquier época. Algunas extinciones podrían ser desencadenadas por impactos de meteoritos; otras, por períodos glaciares. Una cosa sí que nos queda clara: es necesario un gran desencadenante para que ocurra un gran suceso, y, no podemos olvidar que estamos inmersos en un Sistema Complejo -la vida en la Tierra- que es autoorganizador, se alimenta a partir de un flujo de energía, y existe al borde del Caos. Si comprendemos eso, estaremos preparados para entender lo que todo esto significa para la vida en sí misma, siempre expuesta a las fuerzas del Universo.

Resultado de imagen de Extinciones y plagas

Por otra parte, a lo largo de nuestra Historia hemos conocido situaciones de muertes masivas como por ejemplo: La Peste de la Guerra del Peloponeso (430 a.C.), La Plaga Antonina (165 y 180), La Plaga de Justiniano (541 y 542), La Peste Negra (1348 y 1350), o, La Gripe Española (1918) y, todas ellas son en realidad de origen desconocido.  Esto me lleva a pensar que la Tierra, nuestro planeta, viaja por el espacio como una gran nave espacial y recorre regiones interestelares en las que no sabemos qué puede haber, y, ¿quién puede negar que al atravesar esas regiones, no estén presenten en esllas esporas fuertemente acorazadasa contra la radiación que, atravesando la atmósfera terrestre se instalen tan ricamente en nuestro mundo para florecer y sembrar la muerte entre nosotros? Lo cierto es que son muchas las cosas que no sabemos.

Resultado de imagen de Andrómeda se fusiona con la Vía L´Resultado de imagen de El Sol se convierte en gigante rojaResultado de imagen de El Sol se convierte en nebulosa planetaria y estrella enana blanca

Andrómeda se nos viene encima y, en unos miles de millones de años, se fusionará con la Vía Láctea- El Sol, como todo en el Universo, morirá: Primero se convertirá en gigante rojam y, más tarde, en nebulosa planetaria y estrella enana blanca-

De todas las maneras, no podemos negar que grandes cambios nos acechan y, como la medida del “tiempo” es distinta para la escala humana que para la del Universo, en cualquier momento podrá tener lugar un acontecimiento de índole diversa (la caída de un meteorito, una pandemia devastadora, cataclismos tectónicos de gran magnitud, explosiones supernovas  de inmensa intensidad que barra nuestra atmósfera y siembre de radiación el planeta…) que vendrá a transformar todo lo que nosotros consideramos importante y que, para la Naturaleza, no es nada.

De todas las maneras, en una cosa sí tenemos que estar de acuerdo: ¡La vida! Esa cosa tan frágil pero tan fuerte, se ha resistido a desaparecer a lo largo de los millones de años que lleva en el planeta y, eso nos lleva a sospechar que, lo mismo habrá sucedido en otros lugares y la Vida, debe estar por todas partes… ¡A pesar de todo!

emilio silvera

La fuente de la mayor parte del contenido de este trabajo,  hay que buscarla en los pensamientos del maestro J. Gribbin, un Astrofísico de nuestro tiempo.