Nov
27
Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo!
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (2)
M81 y M82, entre polvo y gas de la Vía Láctea
NGC 346 en la Pequeña Nube de Magallenes. Entre los cúmulos de SMC y la nebulosa NGC 346 hay una región de formación de estrellas de unos 200 años luz -fotogrrafí arriba-, por el telescopio espacial Hubble. Explorando esta Nebulosa, los astrónomos han identificado una población de estrellas embrionarias concatenadas a tavés de las sombrías, entrelazadas franjas de polvo, que se ven aquí, a la derecha.
Ha habido dos momentos de grandes cambios en la Física occidental. El primero llegó con Galileo y Newton, que hicieron que la ciencia abandonara los antiguos ideales griegos de la razón pura, haciéndola rigurosa y dependiente de los datos experimentales y de la causalidad, rechando conceptos tales como que la luz es una “cualidad”, e intentando cualificar cosas tales como luz y las fuerzas de la materia. Algunos, como Weinberg, siguen considerando a Newton como el científico más importante que ha existido:
Curvas de potencial en un sistema de dos cuerpos (aquí el Sol y la Tierra), mostrando los cinco puntos de Lagrange. Las flechas indican pendientes alrededor de los puntos L –acercándose o alejándose de ellos. Contra la intuición, los puntos L4 y L5son máximos.
Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas
Dos fuerzas contrapuestas iguales que dan estabilidad en el átomo y en las estrellas
Puede que todo surgiera a partir de esa densidad infinita. Allí comenzó el Tiempo y el universo se expandió, se crearon las partículas de materia, que se juntaron para formar los núcleos que al verse arropados por los electrones con sus cargas negativas, venían a equilibrar las positivas de los protones y, de esa manera, se pudieron unir para formar moléculas y materia. Sustancia cósmica primero, estrellas y galaxias después, y, dentro de toda esa vorágine, miles de millones de años más tarde, llegaron a surgir en los mundos ¡la vida! Pensando en todo esto, a uno se le viene a la cabeza pensamientos del pasado, enseñanzas escolares y preguntas que no tienen respuestas.
Lo de no mirar atrás… ¡No me gusta! Si lo hubiéramos hecho , ¿cómo habríamos aprendido lo que sabemos? Todo es una sucesión de hechos que se van traspasando de una generación a la siguiente: El Presente está hecho del Pasadso, y, el Futuro, se está construyendo en el Presente.
Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad. El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta de paradoja y, si no existe tal barrera, debería exisitir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajsar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.
¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez? Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales, pensaremos como nos enseño Einstein, a una mayor escala, en la utilidad de un y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.
Hay en todas las cosas un ritmo que es parte de nuestro Universo.
“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede ver ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”
De “Frases escogidas de Muad´Dib”, por la Irulan.
hemos imaginado estar en otros niveles, tener mentes que, unidaa al Universo no necesitan hacer preguntas, imaginando un futuro que podría ser,
Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí. Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias autoconsistentes. En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.
Siempre nos ha gustado imaginar
Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.
Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera , todo depende bajo el punto de vista desde en el que miremos las cosas.
“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”
Los hay que creen, que la vida, es única en la Tierra. De la misma forma nuestros sentidos actuales solo nos permiten percibir la parte física del Universo. A medida que vayamos evolucionando iremos accediendo a planos más sutiles de la Creación.
Lo cierto es que siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en las constantes son diferentes y la vida no puede existir?
Si la carga del protón, o, la masa del electrón, variaran aunque sólo duera una diezmillonésima… ¡La Vida en nuestro planeta no estaría presente! Así son de important4es las constantes universales que hacen de nuestro Universo el que podemos observar.
En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!
Nuestro Universo es como es las constantes son las que son
Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nosiva para la vida.
Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes). Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!
Un estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el llamada la constante cosmológica, originalmente propuesta por Einstein, sería la verdadera .
En nuestro planeta, como en otros, en cualquier charca caliente y con el adecuado ambiente y la química necesaria… Podría surgir la vida. Son muchos los mundos similares a la Tierra que existen sólo en nuestra Galaxia, y, no digamos por todo el Universo. Creer que la vida está presente sólo en nuestro planeta… Además de pretencioso es ilógico.
Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano. Las tres formas de Universo que nos ponen los cosmólogos para que podamos elegir uno que será el que realmente se asemeja al nuestro. Abierto, plano y cerrado todo será en función de la Densidad Crítica que el Universo pueda tener-
Todo dependerá de cual sea el de la densidad de materia.
De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.
Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas…y ¡vida!
Gráfico: Sólo en el modelo de universo que se expande de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.
No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).
Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Universo.
Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de de partida especiales.
Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el , cada una de las cuales contiene a su vez miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber, como en el nuestro formas de vida, algunas inteligentes.
Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press). Un equipo internacional han podido completar el mapa más preciso y completo hecho hasta el momento y, con este avance, se puede conocer el universo y sus contenidos con una mayor precisión.
Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estadio de evolucioón en el que nos encontramos, las estrellas tuvieron que más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bio-química de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.
Siatuada a 12.900 M de años-kuz, descubren la Galaxia lejana y, seguramente, de la primeras
Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.
emilio silvera
Nov
26
¿Alquimia estelar? ¿Proplasma vivo? ¿De dónde venimos?
por Emilio Silvera ~ Clasificado en Alquimia estelar ~ Comments (1)
Estructuración del protoplasma de la Vida con unas notables facultades para hacer cosas nuevas a partir de otras viejas. ¡Cuánto se habría excitado y cuán complacido habría estado Pasteur si hubiera conocido el famoso experimentio de Miller! Pese a ser el mismo un teísta, Pateur estaba convencido de que Dios creó la vida sobre la Tierra combinando precisamente fuerzas químicas y azar. Reconocía también, como sabemos, que los compuestos or´ganicos de los seres vivos son ópticamente activos, es decir, poseen una asimetría interna capaz de desviar planos de luz polarizada. Estaba impresionado, con el hecho de que, fuera de los tejidos vivos, los compuestos asimétricos se encuentran siempre en forma racémica: una mezcla de moléculas orientadas a la derecha, y otras, orientadas a la izquierda. Solamente en estos tejidos vivos, los compuestos orgánicos tienen una lateralidad bien definida.
En la imagen de arriba podemos ver la estructura de molécula de ciclosporina A en forma de corona, izquierda de la imagen (representación de bolas y varillas) y unida a su diana por la que ejerce su función farmacológica (representada como modelo de esferas). Se une a la ciclofilina (en blanco) y esta a su vez a la Calcineurina. Esta última es la encargada de permitir la respuesta inmune de los linfocitos por lo que ésta queda bloqueada. Siempre hemos querido saber sobre el origen de la vida y los secretos que la rodean y cómo apareció en nuestro mundo.
El protoplasma para mantener su forma debe renovar sus moléculas de materia. El recambio de sustancias es lo que se conoce globalmente como metabolismo. Corresponde a reacciones sencillas de oxidación, reducción, hidrólisis, condensación, etc. Estas reacciones se van modificando y perfeccionando, en los casos más optimistas, hasta llegar a diferenciarse procesos idénticos en alguna o algunas reacciones, A. Baj y Palladin estudiaron la respiración, con todas sus reacciones y catalizadas por su fermento específico. S. Kostichev, A. Liebedev estudiaron la química de la fermentación.
Michurin estudió la relación del organismo y el medio. Los fermentos de las estructuras protoplasmáticas determinaban sus reacciones por la velocidad y la dirección, estableciendo una relación con el medio. Se establecía un círculo de fenómenos relacionados y ordenados regularmente. Se producían asimilaciones y desasimilaciones de sustancias orgánicas con el fin de autoconservación y autorenovación del protoplasma.
En la base de la organización de todo individuo está la célula, y en la célula el protoplasma, en cuya compleja estructura morfológica y química reside el principio de todas las funciones vitales. Inicialmente la organización morfológica de la célula sólo se conocía a través de los medios ópticos. Dentro de los límites de su poder resolutivo; con la introducción del microscopio electrónico amplió notablemente los conocimientos sobre la estructura celular, al conseguirse aumentos hasta 200 veces superior a los obtenidos por los medios ópticos.
Muchas son las veces que aquí, en este lugar dedicado a distintas disciplinas de la Ciencia, hemos hablado de la Vida. Sin embargo, nunca nos hemos parado a explicar la cuestión del proceso del origen de la vida, conociendo antes, aunque sea de manera sencilla y sin profundidad, aquellos principios básicos de la estructura del protoplasma, ese sustrato material que será la base de todos los seres vivos, sin excepción.
A finales del siglo XIX y principios del XX, había científicos que creían que los organismos sólo eran “máquinas vivientes” especiales, de estructuras muy complejas y, aseguraban que la estructura del protoplasma era algo así como una máquina, construido conforme a un determinado plan y que estaba formado por “vigas” y “tirantes” como si de un puente se tratara y que, de manera similar a éste, los lazos de unión tenían unida toda la estructura que, de esta manera, se mantenía firme, y, esa estructura de tan estricto orden en la colocación recíproca de las distintas partes del protoplasma, era precisamente, según ellos, la causa específica de la vida. Y, a todo ello, sin olvidarse del Carbono, la base de todo signo de vida que conocemos.
Pero el estudio concreto del protoplasma desmintió esta teoría mecanicista. Fue probado que no existía ninguna estructura parecida a una máquina ni siquiera a las de máxima precisión, en el interior del protoplasma.
Es bien conocido que la masa básica del protoplasma es líquida; nos hallamos ante un coacervado complejo, constituido por una gran cantidad de sustancias orgánicas de un peso molecular considerable, entre estas destacan las proteínas y los lipoides. Por esta razón, se encuentran flotando a su libre albedrío en esa sustancia coacervática fundamental, partículas filamentosas coloides, quizás enormes moléculas proteínicas sueltas, y muy probablemente, auténticos enjambres de esas moléculas. El tamaño de las partículas es tan diminuto que no se distinguen ni a través de los microscopios actuales más sofisticados. Pero encontramos otros elementos visibles en el interior del protoplasma. Cuando las moléculas proteínicas y de otras sustancias se unen formando conglomerados, destacan en la masa protoplasmática en forma de pequeñas gotas, captadas a través del microscopio, o en forma de coágulos, con una determina estructura denominados elementos morfológicos. El núcleo, las plastídulas, las mitocondrias, etcétera.
Estos elementos protoplasmáticos, observables a través del microscopio, son, esencialmente, una manifestación aparente y externa de determinadas relaciones de solubilidad, enormemente complejas, de las distintas sustancias que conforman el protoplasma y que se ha podido comprobar que tiene, un papel determinante, en el curso del proceso de la vida, que no se puede comparar de ningún modo con el papel que desempeña una máquina en su trabajo específico. Esto queda totalmente justificado por la sencilla razón de que una máquina y el protoplasma son dos sistemas distintos y contrarios.
Sin duda, lo que caracteriza la función de una máquina es el desplazamiento mecánico de sus diferentes partes en el espacio. Por esa razón hay que insistir que el elemento más importante de la estructura de una máquina es, precisamente, la colocación de sus piezas; mientras que el proceso vital tiene un carácter totalmente distinto. Se manifiesta esencialmente con el recambio de sustancias, o sea, con la interacción química de las diferentes partes que conforman el protoplasma. Por esto deducimos que el elemento primordial en toda la estructuración del protoplasma es el orden concreto que siguen los procesos químicos en el tiempo, la forma tan armónica en que se combinan, siempre con tendencia a conservar en su conjunto el sistema vital.
Es de vital importancia para la formación del protoplasma que exista una estructura interna determinada. Pero otro factor no menos decisivo es la organización en el tiempo, o sea, que los procesos que se dan en el protoplasma lo hagan en armonía. Cualquier organismo, tanto animal, planta o microbio, vive únicamente mientras pasen por él, de forma continuada y constante, nuevas partículas de sustancias, cargadas de energía. Distintos cuerpos químicos pasan del medio ambiente al organismo; y cuando están dentro, sufren unos determinados y esenciales trastornos, mediante los cuales acaban convirtiéndose en sustancias del propio organismo invadido y serán iguales que aquellos cuerpos químicos que antes formaban parte del ser vivo. Este proceso se conoce con el nombre de asimilación. Sin embargo, de forma paralela a este proceso se da la desasimilación, que se trata precisamente del proceso contrario, es decir, las distintas sustancias que forman la parte del organismo vivo son sensibles a los cambios del propio organismo, se desintegran a menor o mayor velocidad, y son sustituidas por los cuerpos asimilados. De esta forma, los productos de la desintegración se echan al medio envolvente.
Por otra parte, en todo esto debemos tener en cuenta un gente que, siendo ineludible para la vida, está siempre presente en todo lo que a ella concierne. El Agua.
El agua pura es un líquido inodoro e insípido. Tiene un matiz azul, que sólo puede detectarse en capas de gran profundidad. A la presión atmosférica (760 mm de mercurio), el punto de congelación del agua es de 0 °C y su punto de ebullición de 100 °C. El agua alcanza su densidad máxima a una temperatura de 4 °C y se expande al congelarse. Como muchos otros líquidos, el agua puede existir en estado sobreenfriado, es decir, que puede permanecer en estado líquido aunque su temperatura esté por debajo de su punto de congelación.
Es muy cierto que la sustancia del organismo vivo siempre se encuentra en movimiento, desintegrándose y volviendo a formarse de manera continua en virtud de la gran cantidad de reacciones de desintegración y síntesis, que se dan guardando una fuerte relación entre ellas. Ya Heráclito, aquel gran dialéctico de la antigua Grecia, nos decía: “nuestros cuerpos fluyen como un arroyo, y de la misma manera que el agua de éste, la materia se renueva en ellos.” Está claro que una corriente o un chorro de agua pueden mantener su forma, su aspecto externo, durante un tiempo, pero su aspecto sólo es la manifestación exterior de ese proceso continuo y constante del movimiento de las partículas del agua. Incluso la misma existencia de este sistema depende, naturalmente, de que las renovadas moléculas de materia pasen constantemente, y a una velocidad determinada por el chorro de agua. Pero si interrumpimos este proceso, el chorro dejará de existir como tal. Lo mismo sucede en todos los sistemas conocidos como dinámicos, los cuales tienen un proceso concreto.
Es un hecho concreto e innegable que los seres vivos también son sistemas dinámicos. Igual que el chorro de agua al que antes hacíamos referencia, su forma y su estructura sólo forman parte de la expresión externa y aparente de un equilibrio, muy competente, formado por procesos que se dan en el ser vivo en sucesión permanente a lo largo de toda su vida. Sin embargo, el carácter de estos procesos es totalmente diferente a los que ocurre en los sistemas dinámicos de la naturaleza orgánica.
Las moléculas de agua llegan al chorro, ya como moléculas de agua, y lo atraviesan sin que se produzca ningún cambio. Pues el organismo toma del medio ambiente sustancias ajenas y desconocidas para él, pero a continuación, mediante procesos químicos muy complejos, son convertidos en sustancias del propio organismo, muy parecidas a los materiales que forman su cuerpo.
Precisamente esto es lo que hace posible las condiciones que mantienen constantemente la composición y estructura del organismo, ignorando este proceso continuo e ininterrumpido de desasimilación que se da en todos los organismos vivos.
Así pues, desde una perspectiva puramente química, el recambio de sustancias, también llamado metabolismo, es un conjunto enorme de reacciones más o menos sencillas, de oxidación, reducción, hidrólisis, condensación, etcétera. Lo que lo hace diferente del protoplasma, es que en el metabolismo, estas reacciones se encuentran organizadas en el tiempo de de cierto modo, las cuales se combinan para poder crear un sistema integral. Dichas reacciones no surgen por casualidad, y de forma caótica, sino que se dan en estricta sucesión, y en un orden armónico concreto.
El ácido pirúvico (ver otros nombres en la tabla) es un ácido alfa-ceto que tiene un papel importante en los procesos bioquímicos. El anión carboxilato del ácido pirúvico se conoce como piruvato. El ácido pirúvico es un compuesto orgánico clave en el metabolismo. Es el producto final de la glucolisis, una ruta metabólica universal en la que la glucosa se escinde en dos moléculas de piruvato y se origina energía (2 moléculas de ATP).
Ese orden será la base de todos los fenómenos vitales conocidos. En la fermentación alcohólica, por ejemplo, el azúcar proveniente del líquido, que es fermentable, penetra en la célula de la levadura, sufriendo determinados trastornos químicos. O sea, primero se le incorpora el ácido fosfórico y luego se divide en dos partes.
Una de las cuales experimentará un proceso de reducción, mientras que la otra se oxidará, quedando convertida, finalmente, en ácido pirúvico, que más tarde se descompondrá en anhídrido carbónico y acetaldehído. Este último se reducirá, quedando transformado después en alcohol etílico. Como resultado, podemos observar que el azúcar queda convertido en alcohol y anhídrido carbónico.
Esto nos demuestra que en la célula de la levadura, lo que determina la producción de estas sustancias es el extraordinario rigor con que se dan todas estas reacciones, las cuales se suceden de forma muy ordenada. Sólo con que sustituyésemos en esta cadena de transmutaciones un único eslabón o si alterásemos en lo más mínimo el orden de dichas transmutaciones ya no tendríamos como resultado alcohol etílico, sino cualquier otra sustancia. En efecto, en las bacterias de la fermentación de la leche, el azúcar, al principio sufría los mismos cambios en la levadura, pero cuando se llega a la fermentación del ácido pirúvico, éste ya no se descompone, todo lo contrario, se reduce al instante. Esto explica que en las bacterias de la fermentación láctica el azúcar no se transforme en alcohol etílico, sino en ácido láctico.
Las encimas
La enzimología, al igual que las disciplinas experimentales que han surgido como ramas del tronco común que es la biología, tiene una historia propia construida a través de observaciones, experiencias, pruebas y teorías.
Se inició con el estudio de los procesos de fermentación y de putrefacción y Antoine-Laurente Lavoisier fue el primero en plantear sobre bases cuantitativas el proceso de la fermentación alcohólica, al observar una relación entre cantidad de azúcar presente y productos formados durante el proceso.
Un estudio de la síntesis de distintas sustancias en el protoplasma demuestra que éstas no se crean de repente, y no provienen de un acto químico especial, sino que son el resultado de una cadena larguísima de trastornos químicos.
No puede constituirse un cuerpo químico complejo, propio de un ser vivo en concreto, sin que se produzcan centenares o miles de reacciones en un orden regular, constante, y ya previsto con rigurosidad, lo cual constituirá la base de la existencia del protoplasma.
La Biología Físico-Química
La bioquímica, es la rama de la Química y de la Biología que tiene por objetivo principal el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de Carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas las que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía.
Porque cuanto más compleja es la sustancia, más reacciones intervienen en su formación dentro del protoplasma y estas reacciones deben coordinarse entre sí con mayor rigor y exactitud. En efecto, investigaciones bastante recientes han demostrado que en la síntesis de las proteínas a partir de los aminoácidos toman parte gran cantidad de reacciones que se producen en una sucesión muy ordenada. Únicamente como consecuencia de esta rigurosa armonía, de esta sucesión ordenada de las reacciones, se da en el protoplasma vivo ese ritmo estructural, esa regularidad en la sucesión de los distintos aminoácidos que también podemos apreciar en las proteínas actuales.
Por consiguiente, las moléculas proteínicas, así originadas y con una estructura determinada se agrupan entre sí, y ciertas leyes las hacen tender a la formación de auténticos conglomerados moleculares que se acaban separando de la masa protoplasmática y se distinguen como elementos morfológicos, visibles a través del microscopio, como formas protoplasmáticas características por su gran movilidad. De esta manera, la composición química propia del protoplasma, como su estructura, son la manifestación del orden en que se producen estos procesos químicos que se dan de forma continua y permanente en la materia viva.
Hidrógeno
Todos sabemos de su importanica para la vida
En el siglo XVI se observó que cuando el ácido sulfúrico actuaba sobre el hierro se desprendía un gas combustible. En 1766 Henry Cavendish demostró que dicho gas era una sustancia distinta a otros gases también combustibles, confundiendo el gas obtenido, al que llamo <<aire inflamable>>. Provenía del hierro y no del ácido sulfúrico, también demostró que el gas en el aire y en el oxígeno se formaba Agua
La Atmósfera
Es la capa de gas que rodea a un cuerpo celeste que tenga la suficiente masa como para atraer ese gas. Los gases son atraídos por la gravedad del cuerpo, y se mantienen en ella si la gravedad es suficiente y la temperatura de la atmósfera es baja. Algunos planetas están formados principalmente por gases, con lo que tienen atmósferas muy profundas. Si no se dan ciertos parámetros, el protoplasma de la vida, nunca habría hecho acto de presencia.
– Nitrógeno (78%) y
– Oxígeno (21%)
– El 1% restante lo forman el argón (0,9%), el dióxido de Carbono (0,03%), y distintas proporciones de vapor de agua, y trazas de hidrógeno, ozono, metano, monóxido de Carbono, helio, neón, kriptón y xenón.
Ozonosfera y sodiosfera
Desde 15 hasta 60 kilómetros de altitud, el ozono, que en las zonas próximas al suelo se encuentra sólo en pequeñas cantidades, aparece en porcentajes más sensibles y forma la ozonosfera. Este ozono absorbe la radiación ultravioleta procedente del Sol, haciendo posible de es modo la existencia de vida en la Tierra.
Pues bien, debemos preguntarnos de qué depende ese orden, propio de la organización del protoplasma, y cuáles son sus causas inmediatas. Un estudio minucioso sobre esta cuestión dejará demostrado que el orden indicado no es simplemente algo externo, que queda al margen de la materia viva, teoría defendida por los idealistas; en cambio, hoy día, sabemos perfectamente que la velocidad, la dirección y el encadenamiento de las diferentes reacciones, todo lo que forma el orden que estamos viendo, depende totalmente de las relaciones físicas y químicas que se establecen en el protoplasma vivo.
Las propiedades químicas de las sustancias integradoras del protoplasma, en primer lugar, y también las de las sustancias orgánicas que intervienen son las que constituyen la base de todo ello. Dichas sustancias orgánicas poseen enormes posibilidades químicas y pueden generar gran variedad de reacciones. Pero, aprovechan estas posibilidades con mucha “pereza”, lentamente, a veces a una velocidad ínfima. En muchas ocasiones, se necesitan meses e incluso años, para que llegue a producirse alguna de las reacciones efectuadas entre las mismas sustancias orgánicas. Por esto, los químicos, para acelerar el proceso de las reacciones entre las sustancias orgánicas, usan a menudo en su trabajo diferentes sustancias de acción enérgica-ácidos y álcalis fuertes, etcétera.
Para conseguir tal aceleramiento cada vez con más frecuencia, los químicos recurren a la utilización de los catalizadores. Hace ya mucho tiempo que habían notado que sólo con añadir una pequeña dosis de algún catalizador a la mezcla donde se estaba realizando una reacción, se producía un gran aceleramiento de ésta. Además, otra propiedad propia e los catalizadores es que no se destruyen durante el proceso de la reacción, y cuando esta finaliza, comprobamos que queda exactamente la misma cantidad de catalizador que añadimos a la mezcla al principio. Así que, cantidades insignificantes de catalizador son suficientes, muchas veces, pata provocar la rápida transmutación de masas considerables de diferentes sustancias. Esta cualidad, hoy día, es de gran utilidad para la industria química, que usa como catalizadores distintos metales, sus óxidos, sus sales y otros cuerpos orgánicos o inorgánicos. Las reacciones químicas dadas en animales y vegetales entre las distintas sustancias orgánicas se suceden a gran velocidad. De lo contrario, la Vida no pasaría tan rápida como en realidad pasa. Se sabe que la gran velocidad de las reacciones químicas producidas en el protoplasma es debida a la presencia constante de catalizadores biológicos especiales llamados fermentos.
Hace tiempo que estos fermentos fueron descubiertos, y ya con anterioridad, los científicos se habían fijado en ellos. Pues resultó que los fenómenos se podían extraer del protoplasma vivo y así separarse en forma de solución acuosa o como polvo seco de fácil solubilidad. Esto me hace pensar en lo que ocurre en las Nebulosas. No hace mucho se consiguieron fermentos en forma cristalina y se resolvió su composición química. Estos resultaron ser proteínas, y muchas veces, en combinación con otras sustancias de distinta naturaleza. Estos fermentos, por el carácter de su acción, se asemejan a los catalizadores inorgánicos. Sin embargo, se diferencian de ellos por la increíble intensidad de sus efectos.
En este sentido, los fermentos superan a los catalizadores inorgánicos de acción en centenares de miles, y en ocasiones hasta en millones de veces. Así que en los fermentos de naturaleza proteínica se da un mecanismo increíblemente perfecto y racional que hace posible acelerar las reacciones químicas entre las distintas sustancias orgánicas. Los fermentos también se caracterizan por la excepcional especifidad de su acción.
La Teoría Celular
Llegados a este punto debemos profundizar un poco más en la constitución de los seres vivos. Para ello debemos saber la teoría celular, enunciada por Matthias Schleiden (1804-1881) y Theodor Schwann (1810-1882).
La teoría celular de Schleiden y Schwann señala un rasgo común para todos los seres vivos: todos están compuestos por células y por productos elaborados por ellas. Aunque la idea de que la célula es el “átomo” de la vida nos parezca evidente, su importancia y la dificultad de su descubrimiento son parejas a la dificultad del descubrimiento de la existencia de átomos en química, y marca un cambio de paradigma en la manera de concebir la vida.
La teoría celular se basó en los adelantos realizados mediante los aparatos de observación debidos inicialmente a Robert Hooke (1635-1703) y a Anton Van Leeuwenhoek (1632-1723). Hooke construyó cientos de microscopios. Los más avanzados estaban formados por dos lupas combinadas como ocular y objetivo (microscopio compuesto).
Aunque con ellos llegó a alcanzar 250 aumentos, eran preferibles los de una sola lente, como los que construyó van Leeuwenhoek, ya que presentaban menos aberración cromática. Con esos instrumentos consiguieron descubrir infusorios (aquellas células o microorganismos que tienen cilios u otras estructuras de motilidad para su locomoción en un medio líquido), bacterias, la existencia de capilares en la membrana interdigital de las ranas.
Ahora sabemos que tanto los paramecios como los organismos superiores están formados por una o más células, almacenan y transportan la energía, duplican su material genético y utilizan la información que ese material contiene para sintetizar proteínas siempre de la misma forma. Todos estos procesos, que están presentes en todas las células, son los que forman la maquinaria de la vida.
Sustancias orgánicas que nos dan las vitaminas
Por supuesto, esto es a causa de las particularidades del efecto catalítico de las proteínas; pues la sustancia orgánica (el sustrato) que sufre alteraciones en el transcurso del proceso metabólico, forma ya al principio, una unión bastante compleja aunque de corta duración, con la correspondiente proteína-fermento. Esta fusión tan completa, no es estable, pues sufre distintos trastornos con mucha rapidez: el sustrato sufre las transformaciones correspondientes y el fermento se regenera, para poder unirse de nuevo a otras porciones del sustrato.
Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo. De no ser así, sus posibilidades químicas se producirán muy lentamente y entonces perderán toda su importancia en el impetuoso proceso vital. Por esta razón el cómo se modifique una sustancia orgánica en el transcurso del metabolismo, depende, además de la estructura molecular de esta sustancia, y de las posibilidades químicas de la misma, también de la acción de fermentación de las proteínas protoplasmáticas, las cuales se encargan de llevar esa sustancia al proceso metabólico general.
Los fermentos, además de ser un poderoso acelerador de los procesos químicos sufridos por la materia viva; son también un mecanismo químico interno, el cual se encarga de que esos procesos sean conducidos por un cauce muy concreto. La gran especificidad de las proteínas-fermentos consigue que cada una de ellas forme enlaces complejos sólo con determinadas sustancias y catalice solamente algunas reacciones. Por esto, cuando se produce éste o el otro proceso vital, y con más motivo, cuando se verificas todo el proceso metabólico, actúan miles de proteínas-fermento de distintas clases. Cada una de estas proteínas puede catalizar de forma específica una sola reacción, y sólo el conjunto de acciones de todas ellas, en muy precisa combinación, hará posible ese orden regular de los fenómenos que entendemos como base del metabolismo.
Con el uso de los distintos fermentos específicos que se obtienen a partir del organismo vivo, en el laboratorio, pueden reproducirse de forma aislada cada una de las reacciones químicas, y todos los eslabones que forman el proceso metabólico. Así desenredamos el ovillo tan sumamente complicado de las transmutaciones químicas producidas durante el metabolismo, donde miles de reacciones individuales se mezclan. Por este mismo procedimiento se puede descomponer el proceso metabólico en sus diferentes etapas químicas, se puede analizar las sustancias integradora de la materia viva, y además los distintos procesos realizados en ella.
De esa manera se demostró que la respiración funciona a partir de una serie de reacciones como la oxidación o la reducción, dichas reacciones se dan con muchísimo rigor en un orden estricto y cada una de éstas es catalizada por un fermento específico (S.Kóstichev, A. Liédev y otros autores).
En 1878 el biólogo alemán Walter Fleming descubrió que se podían teñir unas estructuras existentes en el interior del núcleo y llamo cromatina a la materia que las formaban.
Como las células de la preparación morían al teñirse, y en una preparación existían células en muy diferentes etapas de crecimiento y división, Fleming pudo estudiar estas etapas y comprender cómo evolucionaba la vida de la célula.
Al comenzar el proceso de división celular la cromatina forma una especie de hilos que se denominan, con mucha lógica, cromosomas (cuerpos coloreados) y Fleming llamó al proceso de división celular mitosis, una palabra griega que significa hilo.
En 1887 el biólogo belga Edouart van Beneden contó el número de cromosomas de células de diferentes especies y llegó a la conclusión de que el número de cromosomas es una característica de la especie. Todas las células humanas tienen 46 cromosomas.
También descubrió que los espermatozoides y los óvulos tenían la mitad de los cromosomas de las células normales, y dedujo que al unirse conservaban todos sus cromosomas, con lo que recuperaban el número característico de la especie.
Tanto Fleming como van Beneden comprendieron que eran los cromosomas del huevo los que determinaban las características del animal que se iba a formar, pero no podían saber el mecanismo por el que lo hacían.
Por entonces se empezó a llamar citoplasma al conjunto de protoplasma y orgánulos que están comprendidos entre el núcleo y la pared o membrana celular, y se empezaron a estudiar estos orgánulos.
Así, en 1898 el biólogo alemán Carl Benda descubrió las mitocondrias, que en griego significa hilos de cartílago. Ahora sabemos que son los órganos que se encargan de la obtención de energía a partir de azúcar y oxígeno. Ese mismo año Golgi descubrió el complejo que lleva su nombre.
Aminoácidos y azúcares de la vida están ahí presentes
Hoy día, ya hemos dado el salto del análisis de los procesos vitales a su reproducción, a su síntesis. De esta forma, combinando de manera precisa en una solución acuosa de azúcar, una veintena de fermentos distintos, obtenidos a partir de seres vivos, pueden reproducirse los fenómenos propios de la fermentación alcohólica. En este líquido, donde gran cantidad de proteínas distintas se hallan disueltas, los trastornos que sufre el azúcar son verificados en el mismo orden regular que siguen en la levadura viva, aunque aquí no existe ninguna estructura celular.
Todos estos procesos son, en realidad, terriblemente complejos y están expuestos a que, cualquier alteración del medio incida de manera directa en su devenir. Pero, por otra parte y en las circunstancias adecuadas, no existe ningún factor físico o químico, ni sustancia orgánica o sal inorgánica que, de alguna manera, puedan alterar el curso de las reacciones fermentativas. Cualquier aumento o disminución de la temperatura, alguna modificación de la acidez del medio, del potencial oxidativo y de la composición salina o de la presión osmótica, alterará la correlación entre las velocidades de las distintas reacciones de fermentación, y de esta forma cambia su sucesión temporal. Es aquí donde se asientan todas las premisas de esa unidad entre el organismo y el medio, tan característica de la vida.
Esta organización tan especial de la sustancia viva influye en gran manera, en las células de los organismos actuales, en el orden y la dirección de las reacciones fermentativas, las cuales son la base del proceso metabólico. Cuando se agrupan las proteínas entre sí pueden quedar aisladas de la solución general y conseguir diferentes estructuras protoplasmáticas de muy ágil movimiento. Con total seguridad, sobre la superficie de estas estructuras se encuentran concentrados gran cantidad de fermentos.
Está claro que el orden característico de la organización del protoplasma está basado en las distintas propiedades químicas de las sustancias integradoras de la materia viva.
1.-Todos los seres vivos están formados por células y sus productos. Por tanto la célula es la unidad anatómica del organismo.
2.-Todas las células proceden de otras células preexistentes y éstas, a su vez, de otras células. Esto lo certificaron los viejos científicos con el axioma omnis cellula e cellula, latinajo que significa lo que todos ustedes suponen, que toda célula procede de otra célula.
3.-La célula es la unidad funcional del organismo.
4.-La célula es también la unidad genética del organismo.
Básicamente la célula está formada por tres elementos:
• Núcleo
• Membrana y
• Citoplasma
La membrana envuelve la célula confiriéndole su individualidad. Dicho de otra manera, la célula es una unidad separada de otras células por su membrana.
El citoplasma está formado por un líquido llamado citosol (solución celular) y gran cantidad de gránulos que reciben el nombre genérico de organelos y que más adelante describiremos. Adelantemos que en estos organelos hay una gran actividad ya que se encargan de funciones digestivas y respiratorias.
El núcleo está separado del resto del citoplasma por otra membrana, la membrana nuclear. En su interior se encuentra el material genético que crea los patrones para producir nuevas células con las características de nuestra especie. Una célula humana siempre producirá otra célula humana.
emilio silvera
Nov
26
¡La Vida se abre paso!
por Emilio Silvera ~ Clasificado en La vida ~ Comments (0)
“Miles de especies viven en un lago subterráneo al que la luz y el aire no han llegado en millones de años.”
Bajo los hielos de la Antártida hay vida en abundancia. Lo acaba de demostrar una expedición norteamericana, llamada Wissard (Whillans Ice Stream Subglacial Access Research Drilling), formada por investigadores de varias universidades y que esta semana ha publicado en Nature sus primeras conclusiones. Bajo una capa de hielo de más de 800 metros de grosor, los científicos han encontrado todo un ecosistema viviendo en un lago subterráneo al que la luz y el aire no han llegado en millones de años.
Las formas de vida descubiertas son microorganismos unicelulares que para subsistir convierten amoniaco y metano en energía. La mayor parte de estos organismos pertenecen al dominio de las Arqueas, en el que se encuentran los seres vivos más antiguos del planeta. La investigación tiene implicaciones para la búsqueda de vida en otros ambientes extremos, tanto en la Tierra como en otros mundos del Sistema Solar.
Para John Priscu, profesor de la Universidad de Montana y jefe científico de la expedición Wissard, “ahora podemos probar al mundo de forma inequívoca que la Antártida no es un continente muerto”. El estudio, en efecto, aporta las primeras pruebas directas de que la vida es capaz de resistir en las más duras condiciones del ambiente subglacial.
Brent Christner, otro de los autores del estudio, afirma que se trata de la primera prueba definitiva de que bajo la capa de hielo antártico “no solo hay vida, sino ecosistemas activos que hemos estado buscando durante décadas. Con este trabajo damos un golpe sobre la mesa y afirmamos: šSí, teníamos razónš”.
Priscu, por su parte, asegura no estar del todo sorprendido de que el equipo haya logrado encontrar por fin vida tras perforar más de 800 metros de hielo hasta llegar al lago subglacial Whillans. No en vano, se trata de un investigador experimentado y que ha trabajado tanto en el Polo Norte como en el Polo Sur. Este otoño, en efecto, cumplirá su campaña número 30 en la Antártida, y hace mucho que predijo este descubrimiento.
Aunque nos parezca imposible, bajo los hielos Antárticos, la vida esatá presente
Hace ya más de una década, Priscu publicó dos artículos en Science describiendo por primera vez cómo la vida microbiana podría vivir y multiplicarse bajo los hielos de la Antártida. Y hace cinco años, publicó otro artículo en el que predijo que el ambiente subglacial antártico podría albergar el humedal más extenso de toda la Tierra, uno que no estaría dominado por aves y otros animales, sino por microorganismos que utilizan los minerales de las rocas heladas para obtener la energía que necesitan para vivir.
Durante la última década, Priscu se ha dedicado a recorrer el mundo dando conferencias sobre lo que podríamos encontrar bajo la Antártida, y recaudando fondos para una expedición que podría cambiar para siempre nuestra visión sobre el mayor continente del planeta.
Microbios que viven a 800 metros bajo el Hielo
Sin embargo, Priscu sí que se muestra muy excitado con respecto a varios detalles del hallazgo, especialmente en la forma de funcionar de estos organismos, sin luz solar y a temperaturas muchos grados bajo cero, y al hecho de que la mayoría de ellos, tal y como revelan los análisis de ADN, sean Arqueas. Arquea es uno de los tres dominios principales de la vida. Los otros dos son Bacteria y Eukariota.
La mayoría de las arqueas subgaciales encontradas utilizan la energía de los enlaces químicos del amoniaco para fijar el dióxido de carbono y llevar a cabo otras funciones metabólicas. Otro grupo de organismos utilizan la energía y el carbono presente en el gas metano para sobrevivir. Para Priscu, probablemente todo este amoniaco y metano procedan de la descomposición de materia orgánica que se depositó en la zona hace cientos de miles de años, cuando la Antártida era aún templada y el mar inundó la parte occidental del continente.
Las emisiones de metano del Ártico este mes se registraron en niveles históricos-altos, causando gran preocupación entre los climatólogos, que citan fusión rápida del hielo marino y el calentamiento del océano Ártico como las principales causas.
También advierte el investigador de que si la Antártida continúa calentándose, se liberarán a la atmósfera enormes cantidades de metano acumulado en el hielo, un poderoso gas de efecto invernadero capaz de acelerar dramáticamente el cambio climático.
El equipo de científicos también demostró que los microorganismos que viven en el lago Whillans no pueden ser fruto de la contaminación de los materiales de los propios científicos, tal y como se sospecha que ocurrió con los hallados en el lago subglacial de Vostok. Los escépticos, por su parte, apoyan esta posibilidad y sugieren que los microorganismos encontrados son los que llevaban consigo los propios investigadores.
“Hemos llegado hasta el extremo -asegura Priscu- para garantizar que no hemos contaminado en absoluto uno de los ambientes más puros y prístinos del planeta y que nuestras muestras tienen la máxima integridad”.
4.000 especies
En cuanto a las especies encontradas, resulta muy dificil su identificación, pero, afirma Christner por su parte, “hemos visto una columna de agua que probablemente tiene unas 4.000 šcosasš que podríamos llamar especies. Existe una increíble diversidad”.
El equipo de Wissard volverá a perforar durante el próximo verano austral. Wissard es el primer esfuerzo multidisciplinar a gran escala para examinar directamente la biología del ambiente subglacial antártico. La masa de hielo de la Antártida cubre una superficie equivalente a una vez y media la de los Estados Unidos y contiene el 70% del agua dulce de la Tierra.
Muy por debajo de la gruesa capa de hielo que cubre la Antártida, hay lagos de agua dulce sin una conexión directa con el océano. Estos lagos son de gran interés para los científicos, que tratan de entender el transporte de agua y la dinámica del hielo bajo la superficie congelada del continente.
El lago Whillans es uno de los más de 200 lagos que se conocen bajo la superficie del continente helado y el río subterráneo que lo alimenta fluye bajo la plataforma de Ross, una masa de hielo del tamaño de Francia, y desemboca en el océano, a gran profundidad, al que proporciona grandes cantidades de nutrientes y contribuye a la circulación de las corrientes marinas.
¡No conocemos ni nuestra peropia casa… ¡Y queremos viajar hacia las lejanas estrellas! ¡Ilusos!
Nov
25
¿Vida fuera de la Tierra? Antes de que termine el siglo
por Emilio Silvera ~ Clasificado en La vida ~ Comments (0)
“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente precopernicana. La experiencia nos ha enseñado de forma repetida que este de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”
Así se expresaba Fred Hoyle.
Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.
Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).
Las grandes correntías que en el pasado hicieron el Gran Cañçon de Marte, dejó su huella en el presente
los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.
Cuando los técnicos de la Misión Cassini-Huygen la vieron partir hacia Saturno, nunca imaginaron lo mucho que de aquel Proyecto obtendría la Humanidad en conocimientos para el futuro.
Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.
Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.
Sí, según parece en Europa hay más agua que en la propia Tierra
En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.
Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.
Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.
Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.
Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.
Del extraordinario viaje emprendido dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.
No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran era aquel “mundo”.
Con su espesa atmósfera, sus océanos de metano… ¡Recuerda la Tierra joven!
Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.
Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió. De ahí que la NASA, pusiera su a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.
La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.
La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.
¡Ya veremos!
emilio silvera
Nov
25
Fuerzas invisibles que inciden en nuestras vidas
por Emilio Silvera ~ Clasificado en Ciencias de la Tierra ~ Comments (0)
Es ampliamente sabido que el planeta Tierra actúa como un gran imán cuyas líneas de campo geomagnéticosurgen de un polo (el polo sur magnético) y convergen en el otro polo (polo norte magnético). El eje longitudinal de este imán tiene una desviación de aproximadamente 11^o con respecto al eje de rotación. Por ello, los polos del campo magnético generado no coinciden exactamente con los polos geográficos.
Este campo geomagnético es producido por la combinación de varios campos generados por diversas fuentes, pero en un 90% es generado por la exterior del núcleo de la Tierra (llamado Campo Principal o “Main Field”).
Por otra , la interacción de la ionosfera con el viento solar y las corrientes que fluyen por la corteza terrestre componen la mayor del 10% restante. Sin embargo, durante las tormentas solares (eventos de actividad solar exacerbada) pueden introducirse importantes variaciones en el campo magnético terrestre.
Las grandes tormentas solares inciden sobre nosotros y nuestras obras
Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.
La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.
En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.
Muchas veces he comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).
La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.
La gravedad está relacionada con la masa del cuepo, y, en una singularidad es inmensa, mientras que, en otros cuerpos (como la luna y la Tierra) es más moderada. Entre partículas es imperceptible.
- La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
- La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
- Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.
La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.
La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.
Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.
Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio da a entender, no hay carga eléctrica; es neutro.
La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.
La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10–15 metros, o lo que es lo mismo, 0’000000000000001 metros.
La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.
La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.
Una de las fuentes productoras de rayos cósmicos son las estrellas
Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.
emilio silvera