miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Hay que ir más allá del Modelo Estándar

Autor por Emilio Silvera    ~    Archivo Clasificado en El Modelo Estánfar    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Gordon Kane (en 2003), un físico teórico de la Universidad de Michigan, decía: “… el Modelo Estándar es, en la historia, la más sofisticada teoría matemática sobre la naturaleza. A pesar de la palabra “modelo” en su nombre, el Modelo Estándar es una teoría comprensiva que identifica las partículas básicas y especifica cómo interactúan. Todo lo que pasa en nuestro mundo (excepto los efectos de la gravedad) es resultado de las partículas del Modelo Estándar interactuando de acuerdo con sus reglas y ecuaciones”.

De acuerdo con el Modelo Estándar, leptones y quarks son partículas verdaderamente elementales, en el sentido de que no poseen estructura interna. Las partículas que tienen estructura interna se llaman hadrones; están constituidas por quarks: bariones cuando están formadas por tres quarks o tres antiquarks, o mesones cuando están constituidas por un quark y un antiquark.

Nuevos datos del experimento BaBar, una colaboración internacional que tiene su sede en California, Estados Unidos, fueron analizados recientemente y los resultados obtenidos parecen indicar que existen posibles fallos en el Modelo Estándar de la Física de Partículas, teoría que hasta el momento es la que explica mejor cómo funciona el universo a escalas subatómicas.

Claro que, ya estamos acostumbrados a que el imparable avance del conocimiento de la física, a medida que se van descubriendo nuevas tecnologías, también nos posibilite para poder avanzar más y más profundamente en los modelos y teorías que manejamos y, lo que podemos ir viendo en los nuevos descubrimientos nos ayudan a mejorar los modelos y teorías actuales para ir adaptando la física a la realidad que la Naturaleza nos muestra.

Sin embargo, y a pesar de ello, lo cierto es que, el llamado Modelo Estándar (en lineas generales) nos ha servido bien como una teoría coherente y de extraordinario éxito en relación a las interacciones que operan en el Universo. De hecho, el Modelo Estándar incorpora las teorías relativistas y cuánticas de interacciones fuertes, electromagnéticas y débiles (dejando fuera la Gravedad) que ha superado todas las pruebas con la evidencia experimental, desde las energías más pequeñas hasta los millones de millones de electrón-voltios que se han alcanzado en los Laboratorios del Fermilab en Illinois; desde la precisión de las medidas de masas de estados ligados o de momentos magnéticos, a baja energía, hasta las fabulosas del acelerador LEP en el CERN y ahora del LHC los dos en Ginebra.

http://upload.wikimedia.org/wikipedia/commons/5/5d/Modelo_Estandar.png?uselang=es

Un átomo de Helio 4 según el modelo estándar, se muestra de color rojo las interacciones electromagnéticas y de color naranja las Fuertes. Entrar en este “universo” de lo muy pequeño resulta verdaderamente fascinante. Ahí podemos ver cosas que, en la vida cotidiana están ausentes y, nos puede parecer habernos transportado a otro mundo donde las cosas funcionan de otra manera.

Según el Modelo Estándar, la gran cantidad de partículas elementales hasta hoy detectadas, cerca de 300, en aceleradores/colisionadores de partículas o en rayos cósmicos, puede ser agrupada en leptones, quarks y hadrones o en leptones y hadrones, ya que los quarks son constituyentes de los hadrones o, también, en leptones, bariones y mesones, pues los hadrones pueden ser divididos en bariones y mesones.

Las interacciones fundamentales tienen lugar como si las partículas que interactúan “intercambiasen” otras partículas entre sí. Esas partículas mediadoras serían los fotones en la interacción electromagnética, los gluones en la interacción fuerte, las partículas W y Z en la interacción débil y los gravitones (aún no detectados) en la interacción gravitacional. Es decir, partículas eléctricamente cargadas interactuarían intercambiando fotones, partículas con carga color interactuarían intercambiando gluones, partículas con carga débil intercambiarían partículas W y Z, mientras que partículas con masa intercambiarían gravitones.

Resultado de imagen de Los Gluones mediadores"Resultado de imagen de La fuerza nuclkear fuerte

Los Gluoners mantienen unidos a los Quarks que forman los nucleones

Las partículas mediadoras pueden no tener masa, pero tienen energía, o sea, son pulsos de energía. Por eso, se llaman virtuales. De los cuatro tipos de partículas mediadoras, las del tipo W y Z tienen masa, pero es común que todas sean llamadas partículas virtuales.

Entonces, se podría decir que las partículas de materia o partículas reales (leptones, quarks y hadrones) interactúan intercambiando partículas virtuales (fotones, gluones, W y Z, y gravitones). Aquí hay que tener en cuenta que las partículas de materia pueden tener más de una carga, de modo que experimentarían varias interacciones y fuerzas, pero el ámbito de la interacción puede variar mucho, de tal manera que en un determinado dominio una cierta interacción puede ser irrelevante. La fuerza gravitacional, por ejemplo, puede ser despreciada en el dominio subatómico. Es decir, aunque existan cuatro interacciones fundamentales, cuatro cargas y cuatro fuerzas, eso no quiere decir que todas las partículas tengan las cuatro cargas y experimenten las cuatro interacciones. a Gravedad en este ámbito, es tan pequeña que, pasa desapercibida para nuestros actuales instrumentos.


 

Resultado de imagen de Yoichiro Nambu                                       Toshihide Maskawa                                     Makoto Kobayashi

 

¿Por qué hay algo en vez de nada? ¿Por qué hay tantas partículas elementales diferentes? Los señores que arriba vemos a los tres físicos que fueron premiados con el Nobel de Física por sus ideas teóricas que suministraron una comprensión más profunda de lo que sucede en el interior de los bloques más pequeños que forman la materia.

La naturaleza de las leyes de simetría se encuentran en el corazón de este asunto. O más bien, la ruptura de las simetrías, tanto las que parecen haber existido en nuestro universo desde el principio como aquellas que han perdido su simetría original en alguna parte del camino.

 

Resultado de imagen de La simetría rota"Resultado de imagen de La simetría rota

 

 

De hecho, todos somos hijos de la simetría rota. Ello debió ocurrir inmediatamente después del Big Bang, hace unos 14.000 millones de años cuando fueron creadas la materia y la antimateria. El contacto de materia y antimateria es fatal para ambas, se aniquilan mutuamente y se transforman en radiación. Es evidente que la materia, al final, ganó la partida a la antimateria, de otra manera nosotros no estaríamos aquí. Pero estamos, y una pequeña desviación de la simetría perfecta parece que ha sido suficiente –un exceso de una partícula de materia por cada diez mil millones de partículas de antimateria fueron suficientes para hacer que nuestro mundo exista-. Este exceso de la materia fue la semilla de nuestro universo, lleno de galaxias, estrellas y planetas y, eventualmente, de vida. Pero lo que hay detrás de esta violación de la simetría en el cosmos es aún un gran misterio y un activo campo de investigación.

Resultado de imagen de simetría especular

Resultado de imagen de simetría especularResultado de imagen de simetría de cargaResultado de imagen de simetría temporal

La teoría de las partículas elementales considera tres formas básicas de simetría: simetría especular, simetría de carga y simetría temporal (en el lenguaje de la física la simetría especular es denominada P, de paridad; la simetría de carga, C y la simetría temporal,T).

En la simetría especular todos los sucesos ocurren exactamente igual si son observados directamente o reflejados en un espejo. Ello implica que no existe ninguna diferencia entre izquierda y derecha y nadie sería capaz de distinguir su propio mundo de otro reflejado en un espejo. La simetría de carga predice que las partículas cargadas se comportarán exactamente igual que sus antipartículas, las cuales tiene exactamente las mismas propiedades pero carga opuesta. Y de acuerdo con la simetría temporal, las cosas sucederían exactamente igual con independencia de que el tiempo transcurra hacia delante o hacia atrás.

                           Cotidianidad o simetría temporal

El Modelo Estándar es una síntesis de todas las ideas que la física de partículas ha generado durante más de un siglo. Se asienta sobre la base teórica de los principios de simetría de la física cuántica y la teoría de la relatividad y ha resistido a innumerables pruebas. No obstante, varias crisis se sucedieron poniendo en peligro el bien construido edificio del modelo. Estas crisis tuvieron lugar porque los físicos asumían que las leyes de la simetría eran aplicables al micromundo de las partículas elementales. Pero esto no era totalmente  cierto.

La primera sorpresa surgió en 1956 cuando dos físicos teóricos chino-americanos, Tsung Dao Lee y Chen Ning Yang (galardonados con el Premio Nobel al año siguiente, en 1967) comprobaron que la simetría especular (simetría P) era violada por la fuerza  débil.

Una nueva violación de las leyes de la simetría tenía lugar en la desintegración de una extraña partícula llamada kaón (Premio Nobel concedido a James Cronin y Val Fitch en 1980). Una pequeña fracción de los kaones no seguían las leyes de la simetría especular y de carga; se rompía la simetría CP y se desafiaba la estructura misma de la teoría.

 

 

Como ya se ha explicado el Modelo Estándar comprende todas las partículas elementales conocidas y tres de las cuatro fuerzas fundamentales. Pero, ¿por qué son estas fuerzas tan diferentes?. ¿Y por qué las partículas tienen masas tan diferentes?. La más pesada, el quark top, es más de tres mil cien veces más pesado que el electrón. ¿Por qué tienen todas masa? La fuerza débil destaca en este aspecto una vez más: sus portadores, las partículas Z y W son muy pesadas, mientras que el fotón, que transmite la fuerza electromagnética, carece de masa.

La mayoría de los físicos piensa que el llamado mecanismo de Higgs es el responsable de que la simetría original entre fuerzas fuera destruido dando a las partículas sus masas en las primeras etapas del universo.

Resultado de imagen de Yoichiro Nambu

El camino hacia ese descubrimiento fue trazado por Yoichiro Nambu quien, en 1960, fue el primero en introducir la violación espontánea de la simetría en la física de partículas. Es por este descubrimiento por el que se le concede el Premio Nobel de Física.

Tenemos algunos ejemplos banales de violación espontánea de la simetría en la vida diaria. Un lápiz en equilibrio sobre su punta lleva una existencia totalmente simétrica en la cual todas las direcciones son equivalentes. Pero esta simetría se pierde cuando cae -ahora sólo una dirección cuenta-. Por otro lado su condición es ahora más estable, el lápiz no puede volver a caer, ha llegado a su nivel más bajo de energía.

Resultado de imagen de El vacío tiene el nivel de energía más bajo posible en el cosmos."

El vacío tiene el nivel de energía más bajo posible en el cosmos. En efecto, un vacío en física es precisamente un estado con la menor energía posible. Sin embargo, no está totalmente vacío. Desde la llegada de la física cuántica, el vacío está lleno de una burbujeante sopa de partículas que aparecen e inmediatamente desaparecen en invisibles y ubicuos campos cuánticos. Estamos rodeados por campos cuánticos que se extienden por el espacio; las cuatro fuerzas fundamentales de la naturaleza también son descritas como campos. Uno de ellos, el gravitacional, es conocido por todos nosotros. Es el que nos mantiene pegados a la tierra y determina la dirección arriba-abajo.

Nambu indicó que las propiedades del vacío son de gran interés para el estudio de la rotura espontánea de la simetría. Un vacío, que es el estado más bajo de energía, no se corresponde con el estado de mayor simetría. Tan pronto como el lápiz se cae, la simetría del campo cuántico queda rota y sólo una de las muchas direcciones posibles es elegida. En las últimas décadas los métodos de Nambu para tratar la violación de la simetría espontánea en el Modelo Estándar han sido refinados y son frecuentemente usados hoy para calcular los efectos de la fuerza fuerte.

Resultado de imagen de simetría especular

Hablar de todo esto nos lleva hacia caminos amplios y de un largo recorrido.

¡Pero faltan los campos! Los cuatro campos. Sabemos que un cuerpo con masa crea alrededor de sí un campo gravitacional, un campo de fuerza que ejerce una fuerza sobre otro cuerpo masivo y viceversa. Análogamente, un cuerpo cargado eléctricamente, crea un campo electromagnético (si está en reposo, se percibe sólo su componente eléctrico, si está en movimiento se manifiesta también el componente magnético) y ejerce una fuerza electromagnética sobre otro cuerpo electrizado y viceversa.

Resultado de imagen de Campo de la fuerza fuerteResultado de imagen de Campo de la fuerza débil

De la misma manera, está el campo de la fuerza fuerte y el campo de la fuerza débil. O sea, hay cuatro campos fundamentales: el electromagnético, el fuerte, el débil y el gravitacional. Las  partículas mediadoras son los quantos de los campos correspondientes: los fotones son los quantos del campo electromagnético, los gluones son los quantos del campo fuerte, las partículas W y Z del campo débil y los gravitones serían los quantos del campo gravitatorio.

En otras palabras, los cuatro campos fundamentales son el campo de fotones (electromagnético), el de gluones (fuerte), el de partículas W y Z (débil) y el de gravitones (gravitacional). El problema en esa bella simetría de cuatro cargas, cuatro interacciones, cuatro fuerzas, cuatro tipos de partículas mediadoras y cuatro campos es que aún no fue detectado ningún gravitón y la gravedad, en sí, no encaja bien en esa teoría llamada Modelo Estándar y, por eso precisamente, se dice que es incompleto y que necesitamosm una teoría cuántica de la Gravedad. En ese aspecto, yo, no las tengo todas conmigo, dado que la fuerza de Gravedad parece una teoría aparte y no quiere mezclarse con las otras. Sin embargo, dicen los de la teoría de cuerdas que allí, sí encajan las cuatro fuerzas.

d

Mucho, muchísimo nos queda por explicar en relación al Modelo estándar y a todo lo que en él está unido. Sin embargo, en física se avanza poco a poco, vamos conociendo cositas que unidas a otras cositas finalmente forman un todo en el que podemos contemplar una perspectiva más amplia y general y, a veces, hasta puede llegar a enseñarnos la belleza que encierram esos cuadros que pinta la Naturaleza y que nosotros, osados, tratamos de descubrir.

emilio silvera


  1. Partículas Elementales del Modelo Standard « Humanidades, el 12 de octubre del 2012 a las 5:33

    […] Gordon Kane (en 2003), un físico teórico de la Universidad de Michigan, decía: “… el Modelo Estándar es, en la historia, la más sofisticada teoría matemática sobre la naturaleza. A pesar de la palabra “modelo” en su nombre, el Modelo Estándar es una teoría comprensiva que identifica las partículas básicas y especifica cómo interactúan. Todo lo que pasa en nuestro mundo (excepto los efectos de la gravedad) es resultado de las partículas del Modelo Estándar interactuando de acuerdo con sus reglas y ecuaciones”. (“Hay que ir más allá del Modelo Stándar“) […]

  2. ¡La Física! ¿Quién tendrá la llave? : Blog de Emilio Silvera V., el 18 de junio del 2013 a las 6:35

    […] acuerdo con el Modelo Estándar, leptones y quarks son partículas verdaderamente elementales, en el sentido de que no poseen estructura interna. Las […]

 

  1. 1
    Fandila
    el 28 de septiembre del 2012 a las 0:26

    Algunas puntualizaciones a mi manera sobre los temas del artículo.
    ¿Por qué en la base material “primera” habría de existir simetría? Tal simetría sería equivalente a decir que sus “elementos” serían todos iguales e incluso que todo el conjunto fuese compacto. O de otro modo decir que bubiese una estabilidad perfecta.
     
    Si se admitiese una base primera ilimitada y no continua (Discontinuidad material) a través del tiempo, lógicamente no podría haber sido estable o ninguna evolución hubiera sido posible. Ello implica también la necesaria existencia de elementos distintos. Es decir la simetría en mayor o menor medida ya vendrá rota en el tiempo(La variabilidad del ser).
     
    Las interacciones virtuales de la espuma cuántica en el vacío (Las que no prosperan hacia lo macro porque son “incompletas”) habrán de darse entre elementos diferenciados o no se hubieran producido esos porcentajes de materia, aunque pequeños, 4% a 6% aprox.
     
    Esto implica la no consideración de un Big Bang único a a partir de un punto, sino el progresivo nacimientos de aglomeraciones, que a su vez se aglomerarían hasta producir los elementos macros, polvo estelar, estrellas… etc.
    Pese a considerar un caos, un plasma primigenio, éste ni sería único ni de iguales caracteristicas en el espacio tiempo. La fuerzas físicas sobre sus elementos podrían actuar como un bloque sobre grandes bolsas de plasma, todo ello dependiendo de las condiciones de presión y temperatura. La gravedad, en comparación con las otras fuerzas sería insignificante, pero cierta en las aglomeraciones.
     
    Considerar unas partículas sumamente estables como electrones fotones… leptones en general, no implica la no existencia de sus estructuras, aunque sean dinámicas.
     
    En cuanto al problema de la masa, es sabido que ésta no es más que la barrera (Pero tridimensional) que unos componentes muy energéticos y encerrados en un ámbito propio, el del elemento o partícula, provocan sobre el medio aún en la inmovilidad del elemento o partícula, al oponerse a dicho medio (Su presión energética), lo que por otro lado constituye la inercia.
     
    La masa propia de cada elemento va en relación a su capacidad de adquirir energía de “vacío” en su formación, incorporándola a su estructura interna. También puede adquirir masa debido a la velocidad o con arreglo a las interacciones en que participe (Bosones W a partir de quarks, por ejemplo).
     
    Saludos cordiales
     

    Responder
    • 1.1
      emilio silvera
      el 28 de septiembre del 2012 a las 3:14

      Hola, amigo:
      Como de costumbre, haces interesantes aportaciones que, son buenas para pensar en cómo pudo ser. Ahí tenemos tántos misterios que, tal complejidad se presta (al no poseer el conocimiento exacto de lo que pasó), a la especulación y las más diversas hipótesis y teorías que, poco a poco, se van acercando a la verdad que buscamos.
      Un saludo.

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting