domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Estructuras fundamentales de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Divagando    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                                    Una molécula de Agua y otra de Amoníaco

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

La cosmología  sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

http://www.nfcol.net/NEUROCOL_files/celula.jpg

Ya ahí tenemos pruebas de historia.  Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.

Resultado de imagen de Los QuarksResultado de imagen de Los Quarks

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad y ahora están en nosotros y en todos los objetos del universo, chicos o grandes, todo lo material está hecho de Quarks y Leptones desde una bacteria hasta una galaxia. Por supuesto, también nuestro cerebro y las neuronas que crean pensamientpos.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.

Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.

En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.

Estas y otras muchas maravillas son las que nos permitirán, en un futuro relativamente cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes.

emilio silvera

¡Las estrellas! ¿Qué haríamos sin ellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

La astrofísica nos ha llevado a un nivel de conocimiento muy aceptable… ¡Como punto de partida!

 

¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (big bang, teoría del universo estacionario, etc.

http://es.globedia.com/imagenes/noticias/2010/12/30/541531_1.jpg

Las estrellas enanas rojas son las más abundantes en el Universo y, desde luego, las que tienen la vida más larga. Algunas son casi tan viejas como el universo mismo, el poco material de fusión que consumen las llevan hasta esas edades matusalénicas de miles de millones de años, más de diez mil millones tienen algunas que, nos podrían contar muchas cosas de las que fueron testigos. Otras como nuestro Sol, estrellas de la clase GV2, enana amarilla, es también del tipo más abundante. Luego están una prléyade de estrellas de mayor envergadura que llamamos estrllas gigantes e hiperestrellas que van desde las 10 hasta las casi 150 masas solares, ya que, a partir de ahí, su propia radiación las destruiría

Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferentes de los que en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar la vida.

En relación al título de este trabajo: ¡Las estrellas! ¿Qué haríamos sin ellas? La respuesta es que no haríamos nada, por la semcilla razón de que, sin estrellas, tampoco nosotros estaríamos aquí. ¡Ellas nos trajeron y, en ellas está nuestro destino final! Viajar a las Estrellas.

Según se estima, las estrellas cuando tienen unas 120 masas solares han llegado a un límite en el que, su propia radiación las puede destruir. Sin embargo, se han descubierto estrellas que llegan hasta las 150 masas solares. ¿Por qué se mantienen “vivas” y no explotan. Bueno, todos los indicios apiuntan al hecho de que, para desahogar y esquivar los efectos de la inmensa radiación que produce la fusión nuclear, eyectan de manera periódica, material al espacio interestelar y se tranquiliza. Ahí tenenos el ejemplo de Eta Carinae.

EtaCarinae.jpg

Eta Carinae (η Car / η Carinae) es una estrella del tipo variable luminosa azu hipermasiva, situada en la constelación de la Quilla. Su masa oscila entre 100 y 150 veces la masa solar,  lo que la convierte en una de las estrellas más masivas conocidas en nuestra Galaxia. Asimismo, posee una altísima luminosidad, de alrededor de cuatro millones de veces la del Sol;  debido a la gran cantidad de polvo existente a su alrededor, Eta Carinae irradia el 99% de su luminosidad en la parte infrarroja del espectro, lo que la convierte en el objeto más brillante del cielo en el intervalo de longitudes de onda entre 10 y 20 μm.

Eta Carinae es una estrella muy joven, con una edad entre los 2 y los 3 millones de años, y se encuentra situada en NGC 3372,  también llamada la Gran Nebulosa de Carina o simplemente Nebulosa de Carina. Dicha nebulosa contiene varias estrellas supermasivas, incluyendo, además de Eta Carinae, la estrella HD 83129A.

Comparación entre los tamaños del Sol y VY Canis Majoris una hipergigante. Se trata de la segunda estrella más grande conocida. En su momento fue la mayor estrella conocida, aunque luego se descubrieron otras estrellas de mayor tamaño. En la actualidad la estrella más grande conocida es UY Scuti. Es una de las estrellas más grandes , y posee un radio equivalente a 1708 ± 192 radios solares (un diámetro que correspondería a 2.375.828.000 kil´çometros). Si esta estrella fuera nuestro Sol, englobaría todos los planetas hasta Júpiter y llegaría hasta la mitad de la órbita de Saturno. UY Scuti tiene un volumen de aproximadamente 5 mil millones de veces el del Sol. La segunda estrella más grande conocida actualmente es Westerlund-1-26.

                                                    TIPO ESPECTRAL

Existen estrellas hipergigantes que son las que sobrepasan las 30 masas solares, así fueron denominadas cuando se observaron los objetos más brillantes en las Nubes de Magallanes, aunque en realidad, lo que vieron eran cúmulos de estrellas y no estrellas individuales. Sin embargo de estrellas supermasivas existen múltiples ejemplos y, hemos podido comprobar que, la enorme cantidad de material de fusión que consumen las lleva a una vida corta. Las estrellas supermasivas sólo viven unos pocos millones de años, mientras que estrellas como el Sol, llegan a los diez mil millones de años de vida.

Hay muchas clases de estrellas: Estrellas capullos envueltas en una nube de gas y polvo, estrellas de baja o de alta velocidad, con envoltura, con exceso de ultravioleta, de baja luminosidad, de baja masa, de Bario, de Manganeso, de Carbono, de Litio, de Bariones, de campo, de Circonio, de Estroncio, estrellas de Helio, de la rama gigante asintótica, de Manganeso-Mercurio, de metales pesados, de Neutrones, (¿de Quarks?), estrellas de referencia, de Silicio, de Tecnecio, de tipo tardío, de tipo temprano, estrella del Polo, estrella doble, estrella enana, estrella estándar, evolucionada, estrella Flash, estrella fulgurante, magnética, estrella guía, hipergigante, estrella invitada, múltiple, peculiar, pobre en metales, estrella reloj, simbiótica, rica en metales, supermasiva, fijas, gigantes…, cada una de ellas tiene su propia personalidad, su propio color y temperatura y también, una media de vida que depende de manera dirtecta de su masa.

Resultado de imagen de Abundancia de elementos en las estrellasImagen relacionadaImagen relacionadaResultado de imagen de Abundancia de elementos en las estrellasResultado de imagen de Abundancia de elementos en las estrellas

Lo cierto es que, los seres vivos que habitan la Tierra, todos sin excepcón, están basados en el Carbono y hechos de elementos químicos fraguados en las estrellas. De ahí la expresión “Somos polvo de estrellas”

Los elementos químicos se fraguan dentro de ellas, y, también al final de sus vidas, en las explosiones Supernovas, se crean los materiales más complejos de la Tabla Periódica. Estos materiales, van formar parte de las grandes Nebulosas de las que vuelven a surgir nuevas estrellas y nuevos mundos que estarán hechos de todos esos eslementos creados en las estrellas y, como nosotros mismos provenimos de ahí, es fácil oir la expresión: “Somos polvo de estrellas”.

Las estrellas no son ninguna excepción y como todo en nuestro Universo, con el paso del tiempo evolucionan y, a medida que van consumiento su combustibles nuclerar de fusión, van acortando sus vidas que, en funsión de la masa, será más corta o más duradera y también, sus finales serán distintos por la misma causa: Estrellas como el Sol = Enanas Blancas. Estrellas de varias masas solres = Estrella de Neutrones. Estrellas masivas y supermasivas = Agujeros Negros.

Esas transmutaciones que se producen durante un largo período de tiempo, conllevan fenómenos que se producen de distintas maneras en cada una de esas estrellas. En unas, se alcanza la estabilidad al degenerarse los electrones (que son fermiones), que siguen la Ley de Pauli del Principio de esclusión. Ahí aparecen las enanas blancas.  De la misma manera sucede en estrellas más masivas que el Sol pero, al tener más masa, no es suficiente que los electrones se degeneren y, entonces, electrones y protones se fusionan para convertirse en Neutrones que son (al ser fermiones), los que se degeneran y estabiliza a la estrella como de Neutrones. Cuando ya la masa es muy grande, nada puede frenar a la Gravedad y lo que nos queda es un Agujero Negro.

Lo cierto es que, la química de las estrellas está presente en los mundos para que pueda surgir la Vida

Decir eso de que los elementos estelares llegaron a la Tierra y pudo surgir la Vida, no es, en realidad, contar gran cosa de lo que pudo pasar para que nosotros ahora, podamos estar aquí contando sobre ello. Los actuales descubrimientos de la Paleontología, la más tradicional de las actividades científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica.

Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutíles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy. Nada surge de manera espontánea, todo se fragua durante un tiempo que tiene marcado por la Naturaleza y, nosotros, hemos tardada (como humanos verdaderos), más de 13.000 millones de años en porde llegar hasta aquí.

Del tronco común de los primates, surgieron dos ramas: la de los grandes simios, como el gorila, el chimpancé y el orangután y la de los homínidos. Los Chimpancés y nosotros tenemos un ancestro común que no era ni Homo ni Pan (pero esa, es otra historia).

El tiempo necesario para que las estrellas fabricaran la materia prima y después, el mundo pusiera su granito de arena para que ésta pudiera evolucionar, con la ayuda de la radiaicón del Sol, el agua corriente, una adecuada atmósfera, la presencia de océanos, las placas tectónicas que reciclan periódicamente el planeta… ¡No, no es nada fácil que la vida surja en un Mundo!

Pero en el Universo, son muchas las cosas que pueden pasar, muchos los objetos que están presentes, imnumerables los fenómenos que de una u otra manera pueden estar pasando de forma continuada y que no siempre, sabemos comprender.

Resultado de imagen de Las imágenes más extrañas y bellas del UniversoResultado de imagen de Objetos inimaginables del universo

     ¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas

Simplemente se trata del fenómeno que conocemos como “Halo atmosférico”, un anilo o arco de luz que parece rodear al Sol (también a la Luna), resultado de la refracción y la reflexión de la luz solar o lunar por los cristales de hielo de los cirros. Los halos solares y lunares más comunes un diámetro angular de 46º. Por lo general, el borde del halo muestra un efecto prismático, estandio la luz azul refractada hacia el borde exterior y la rpoja al interior. Como resultado de la refracción preferencial de la luz hacia el borde del halo , la zona del cielo interior a un halo es más oscura que la interior. Los halos lunares solo pueden ser vistos claramente cuando la Luna es brillante, típicamente en un intervalo de cinco días en torno a la Luna llena.

Resultado de imagen de Imágenes en el Blog de emilio silvera

El Halo Galáctico está referido a cualquier material situado en una distribución aproximadamente esférica de una galaxia, y que se extiende hasta más allá de las regiones visibles. Puede referirse a la población de estrellas viejas (Población II), incluyendo a los cúmulos globulares, con poca o ninguna rotación alrededor del centro galáctico; o gas tenue, altamente ionizado y de alta temperatura que envuelve a toda la galaxia, incluso, muchas veces el halo galáctico está referido a una especie de neblina inconcreta que circunda toda la galaxia sin que termine de hacerse presente pero, ahí está.

File:Ngc604 hst.jpg

Alguna vez podemos contemplar una que nos parece más o menos atractiva pero, no sabemos discernir sobre lo que en realidad estamos contemplando. Por ejempo, arriba tenemos la conocida como NGC 604,  una región H II gigante en la galaxia del Triángulo. Una región H II es una de gas y plasma brillante que puede alcanzar un tamaño de cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de luz ultravioleta extrema (con longitudes de onda inferiores a 912 Ångstroms) que ionizan la Nebulosa a su alrededor.

File:Ssc2005-02a.jpg

                                               Las regiones H II son muy abundantes en Galaxia

Cada molécula de hidrógeno ionizado contribuye con dos partículas al gas, es decir, con un protón y un electrón. Las Regiones H II son calientes con temperaturas típicas de 10 000 K, y son entre 10 y 100 000 veces más densas que las regiones H I. Se encuentran normalmente alrededor de las estrellas O y B jóvenes y masivas, siendo el gas ionizado por su intensa luz ultraviloleta, haciendo que éste brille. La Nebulosa de orión es una famosa Región H II.

Las Regiones H II pueden ser detectadas en la Galaxia por sus intensas emisiones en e infrarrojo. La radioemisión es debida al bremsstrahlung del gas ionizado, y la radiación infrarroja a la emisión térmica del polvo. Cuando una molécula de agua (H2O) es bombardeada por partículas cargadas (iones), o por fotones de suficiente energía, pierde uno de sus electrones

http://bitacoradegalileo.files.wordpress.com/2010/12/m42_hallasnr.jpg

Las Regiones H II aquí muy presentes y dada su gran extensión. La nebulosa de Orión es uno de los objetos astronómicos más fotografiados, examinados, e investigados. De ella se ha obtenido información determinante acerca de las de estrellas y planetas y a partir de nubes de polvo y gas en colisión. Los astrónomos han observado en sus entrañas discos protoplanetarios, enananas marrones, fuertes turbulencias en el movimiento de partículas de gas y efectos fotoionizantes cerca de estrellas muy masivas próximas a la nebulosa. Además, en lugares como este se han hallado mol´çeculas complejas como azúcares y aminoácidos que son necesarios para la formación de la vida.

Una región H I es una nube formada por hidrógeno atómico frío, poco denso y no ionizado con temperaturas de alrededor de 100 K. Las regiones HI no emiten radiación en el rango visual, sólo en la región de radio. La notación H I se refiere al hecho de que los átomos de Hidrógeno no están ionizados como lo están en los que están presentes en la regiones H II (arriba). Cada átomo de Hidrógeno neutro contribuye al gas justo con una partícula. la Densidad de las regiones H I es demasiado como para que se formen moléculas de hidrógeno, y la luz estelar disociará cualquier molécula formada, de manera que el gas permanece en forma de átomo. El Hidógeno neutro contrinuye aproximadamernte a la mitad de toda la materia interestelar en masa y en volumen,  con una densidad media de 1 Átomo/ cm3. Las regiones H I son frías.

Del asomnbroso universo son miuchas las cosas que desconocemos, y, poco a poco, vamos pudiendo descubrir muchos de sus misterios que nos acercan cada vez más, a saber dónde estamos y lo que podemos o no podemos esperar de lo que hay en nuestro entorno.

El Sol de desplaza por el sendero abiertio en una tenue nube de gas interestelar conocida como Local Fluff.

Lo de que la Voyager 1 había dejado atrás la zona bajo influencia directa del viento solar y se encontraba ya surcando el espacio interplantario se convirtió rápidamente en una de las grandes noticias astronómicas del año, en especial por toda la carga simbólica que representa que, por primera vez, un ingenio construido por la Humanidad había traspasado por fín  esa frontera invisible que nos separa y aisla del océano estelar.

          La Voyager I cruzó la última frontera del Sistema Solar

Pero para los científicos de la misión la llegada a este nuevo reino con una sonda aún operativa y capaz de seguir enviado al menos hasta 2020 es un regalo del que esperan grandes resultados. Y es que más allá del límite solar se extiende una región tan amplia como desconocida, y mucho más compleja de lo que podamos imaginar.

El movimiento de esta estrella binaria fue un misterio durante más de 30 años, e incluso se presentó como un posible fracaso de la Relatividad General de Einstein. Ahora un equipo  encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha resuleto el misterio. Se observan hechos que no siempre podemos explicar y, persistimos en la búsqueda de las respuestas hasta que las podemos encontrar.

Resultado de imagen de Estrellas binarias en movimiento Imagen GIFsImagen relacionada

En el efecto periastro se puede contemplar el brillo de una estrella binaria que tiene una órbita altamente excéntrica. Cuando la separación entre las componentes es mínima. Es de hecho, un aumento del efecto de reflexión en el instante del periastro, y surge por la misma causa: la irradiación de una estrrella por la otra.

Hemos llegado a saber de nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí estan presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Resultado de imagen de La edad del UniversoImagen relacionadaImagen relacionadaImagen relacionadaImagen relacionadaImagen relacionada

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Ésta es una situación en resulta especialmente apropiado utilizar las unidades “naturales” la , longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada en el ser humano.

Mp = (hc/G)½ = 5’56 × 10-5 gramos
Lp = (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros , lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

Lo cierto es que, desde el comienzo del Tiempo, allá por los confines impenetrables de la lejanía del Big Bang (si es que fue así realmente como nació el Universo), se tuvieron que esperar algunos cientos de millones de años para que suregieran las primeras estrellas, pasar por las Eras de la Radiación, la Era Leptónica, la de la Materia, que se produjera la descongelación de los fotones para que el Universo se hiciera de luz… Después de miles de millones de años, el Universo tenía los elementos necesarios para que, la Vida, pudiera surgir en los mundos adecuados y… ¡Aquí estamos!

Aquí estamos tratando de saber lo mismo que quisieron saber nuestros ancestros filósofos: ¿De dónde venimos? ¿Qué hacemos aquí? ?Hacia Dónde vamos? ¿Tendremos algún destino predeterminado…?

Y seguiremos, dentro de nuestra inmensa ignorancia, haciendo preguntas mientras estémos por aquí creyéndo saber mucho más, de lo que en realidad sabemos.

emilio silvera

La Vida extraterrestre ¿dónde puñetas estará?

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Stephen Hawking lanza el mayor proyecto de búsqueda de vida extraterrestre
 

 

Resultado de imagen de Stephen Hawking lanza el mayor proyecto de búsqueda de vida extraterrestre

22/7/2015 de SpaceDaily

El cosmólogo británico Stephen Hawking  presentó en 2.015 la mayor búsqueda de vida inteligente en el Universo hasta la fecha, un proyecto de 10 años y 143 millons de euros para escudriñar los cielos. Fuente: Geo.tv

El cosmólogo Stephen Hawking ha presentado el mayor proyecto de búsqueda de vida inteligente extraterrestre, una exploración de los cielos durante 10 años por 100 millones de dólares. El emprendedor ruso Yuri Milner de Silicon Valley, que financia la iniciativa llama Breakthrough Listen, afirmó que se tratará de la búsqueda científica más intensiva jamás emprendida para buscar señales de civilizaciones alienígenas.

Resultado de imagen de Otras formas de vida en en otros mundosResultado de imagen de Otras formas de vida en en otros mundosResultado de imagen de Otras formas de vida en en otros mundosResultado de imagen de Otras formas de vida en en otros mundos

¿Otros mundos otras formas de vida? Cualquier cosa que podamos imaginar puede ser posible

“En un Universo infinito debe de haber otras formas de vida”, afirmó Hawking durante la presentación en la Academia de Ciencias de la Real Sociedad en Londres. “En algún lugar del Cosmos, quizás, puede que haya vida inteligente mirando”. “En cualquier caso, no hay pregunta mayor. Es hora de comprometernos a encontrar la respuesta, a buscar vida más allá de la Tierra. Es importante para nosotros saber si estamos solos en la oscuridad”.

El proyecto empleará algunos de los mayores telescopios de la Tierra, buscando señales de radio o láser a mucha más profundidad que antes en el Universo.

Stephen Hawking llevó la búsqueda de vida extraterrestre a tu móvil: el proyecto Listen

Martin Rees, el Astrónomo Real británico y uno de los líderes del proyecto, afirma que la tecnología moderna permite búsquedas mucho más sensibles que antes, aunque ha prevenido acerca de las expectativas de encontrar vida alienígena inteligente. “Es una apuesta enorme, por supuesto, pero la ganancia sería colosal… incluso aunque la posibilidad de éxito sea pequeña”, afirma el astrofísico.

El proyecto será 50 veces más sensible que búsquedas anteriores y cubrirá una área del cielo 10 veces mayor, según los expertos. Sondeará por lo menos cinco veces más en el espectro de radio y lo hará 100 veces más rápido, a la vez que realizará la búsqueda más amplia y profunda de transmisiones láser en el óptico. Todos los datos serán públicos, permitiendo a todos aquéllos que tengan interés realizar su propio rastreo.

Publica: emilio silvera