Dic
14
Nuevos Paradigmas… ¡¡Pronto!!
por Emilio Silvera ~ Clasificado en Física Relativista ~ Comments (0)
Velocidad de la luz desde la Tierra a la Luna
Un suceso en un cono de luz temporal
Algunos creen que desde que Einstein sacó a la luz su relatividad especial, las leyes de Newton habían quedado olvidadas en un cuarto oscuro y, nada más lejos de la realidad. La física newtoniana siguen utilizándose ampliamente en la vida cotidiana, en la mayoría de los campos de la ciencia y en la mayor parte de la tecnología. No prestamos atención a la dilatación del tiempo cuando hacemos un viaje en avión, y los ingenieros no se preocupan por la contracción de la longitud cuando diseña la nave. La dilatación y la contracción son demasiado pequeñas para que sean tomadas en consideración.
Por supuesto, podríamos utilizar, si quisiéramos, las leyes de Einstein en lugar de las leyes de Newton en la vida de cada día. Las dos dan casi exactamente las mismas predicciones para todos los efectos físicos, puesto que la vida diaria implica velocidades relativas que son muy pequeñas comparadas con la velocidad de la luz.
Las predicciones de Einstein y Newton comienzan a diferir fuertemente sólo cuando las velocidades relativasd se aproximan a la velocidad de la luz, Entonces, y sólo entonces debemos abandonar las predicciones de Newton y atenernos estrictamente a las de Einstein. Este es un ejemplo de una pauta muy general. Es una pauta que se ha repetido una y otra vez a lo largo de la historia de la física del siglo XX: un conjunto de leyes (en este caso las leyes newtonianas) es ampliamente aceptado al principio, porque concuerda muy bien con el experimento.
Pero los experimentos cada vez se hacen más precisos y este conjunto de leyes resultan funcionar bien sólo en un dominio limitado, su dominio de validez (para las leyes de Newton) el dominio de velocidades pequeñas comparadas con la velocidad de la luz en el vacío. Entonces los físicos se esfuerzan, experimental y teóricamente, para comprender qué está pasando en el límite de dicho dominio de validez, finalmente formulan un nuevo conjunto de leyes que es muy acertado dentro, cerca y más allá del límite (en el caso de Newton, la relatividad especial de Einstein, que sí es válida a velocidades próximas a las de la luz tanto como a más bajas velocidades.
La Gravedad se deja sentir por todo el espacio “infinito”
Hoy día, el mundo moderno de la física se funda notablemente en dos teorías principales, la realtividad general y la mecánica cuántica, aunque ambas teorías parecen contradecirse mutuamente. Los postulados que definen la teoría de la relatividad de Einstein y la teoría del quántum estan incuestionablemente apoyados por rigurosa y repetida evidencia empírica. Sin embargo, ambas se resisten a ser incorporadas dentro de un mismo modelo coherente.
Nuevas maneras de sondear la Naturaleza y desvelar sus secretos están en marcha y, más adelante en el futuro, saldrán a la luz nuevas formas y nuevas teorías que, para entonces, sí que se podrán comprobar de manera experimental. Pero sigamos con la relatividad de Einstein que, en su primera fase, la relatividad especial comienza a fracasar cuando se hace presente la Gravedad de una manera importante, entonces, tiene que ser reemplazada por un nuevo conjunto de leyes que llamamos relatividad general; ésta fracasa en presencia de una singularidad interna de un agujero negro y, entonces, debe ser reemplazada por otro nuevo conjunto de leyes que conocemos como Gravedad Cuántica y que aún, no hemos podido dominar.
Einstein nos decía que el espacio se curva en presencia de grandes masas que modelan su geometría
Lo cierto que es que, se ha dado una característica sorprendente en cada transición de un viejo conjunto de leyes a otro nuevo: en cada caso, los físicos (si demostraban ser suficientemente inteligentes) no necesitaban ninguna guía experimental que les dijera dónde empezaría a fallar el viejo conjunto, es decir, que les indicara el límite de su dominio de validez. Ya hemos podido ver eso para la física newtoniana: las leyes de la electrodinámica de Maxwell no encajaban bien con el espacio absoluto de la física newtoniana. En reposo en el espacio absoluto (en aquel sistema del éter), las leyes de Maxwell eran simples y bellas -por ejemplo, las lineas de campo magnético no tienen extremo. En los sistemas en movimiento se vuelven complicadas y feas, las lineas de campo magnético tienen a veces extremos. Sin embargo, las complicaciones tienen una influencia despreciable sobre el resultado de los experimentos cuando los sistmas se mueven., con relación al espacio absoluto, a velocidades pequeñas comparadas con la de la luz; entonces casi ninguna linea de campo tiene extremos. Sólo a velocidades que se aproximan a la de la luz era previsible que las feas complicaciones tuvieran una influencia suficientemente grande como para ser medidas con facilidad: montones de extremos. De este modo, era razonable sospechar, incluso en ausencia del experimento de Michelson-Morley, que el dominio de validez de la física newtoniana podría ser el de las velocidades pequeñas comparadas con la de la Luz, y que las leyes newtonianas podrían venirse abajo a velocidades cercanas a la de la luz.
El LHC es un esfuerzo internacional, donde participan alrededor de siete mil físicos de 80 países. Consta de un túnel en forma de anillo, con dimensiones interiores parecidas a las del metro subterráneo de la Ciudad de México, y una circunferencia de 27 kilómetros. Está ubicado entre las fronteras de Francia y Suiza, cerca de la ciudad de Ginebra, a profundidades que van entre los 60 y los 120 metros debido a que una parte se encuentra bajo las montañas del Jura.
Claro que, hablando de lo que nos ocupa, al contemplar la secuencia anterior de conjuntos de leyes (física newtoniana, relativista especial, relativista general, ¿gravedad cuántica?), y una secuencia similar de leyes que gobiernan la estructura de la materia y las partículas elementales, la mayoría de los físicos tienden a creer que estas secuencias están convergiendo hacia un conjunto de leyes últimas que verdaderamente gobiernan el Universo, leyes que obligan al Universo a mostrarse como es y comportarse como nosotros vemos que lo hace, que obligan a la lluvia a condensarse en las cristaleras de las ventanas, obliga al Sol a quemar combustible nuclear para convertir lo elemental y sencillo en más complejo que, más tarde tendrá su función determinada, obliga a los agujeros negros a producir ondas gravitatorias cuando colisionan entre ellos, a que las estrellas masivas, al final de sus vidas exploten como supernovas para formar hermosas Nebulosas y conformar nuevos objetos masivos como púlsares, estrellas de neutrones y agujeros negros… Y, por eso…
¡La Gravedad! Siempre está presente e incide en los comportamientos de la materia
Todo esto ha podido ser comprendido con el paso del tiempo y a medida que se sumaban los descubrimientos y los pensamientos de unos y otros, y, por ejemplo, Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. Einstein generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).
Otras de las conclusiones de la teoría de Einstein en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.
Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.
Todo lo grande está hecho de cosas pequeñas
Claro que, podríamos objetar que, cada conjunto de leyes en la secuencia “tiene un aspecto” muy diferente del conjunto precedente. (Por ejemplo, el tiempo absoluto de la física newtoniana tiene un aspecto muy diferente de los muchos flujos de tiempos diferentes de la relatividad especial.) ¿Por qué, entonces, deberíamos esperar una convergencia? La respuesta es que hay que distinguir claramente entre las predicciones hechas a partir de un conjunto de leyes y las imágenes mentales que las leyes transmiten (lo que las leyes “aparentan”). Yo espero la convergencia en términos de predicciones, pero esto es todo lo que finalmente cuenta. Las Imágenes mentales (un tiempo absoluto en la Física newtoniana frente a los muchos flujos de tiempo en la física relativista) no son importantes para la naturaleza última de la realidad.
Todo ha tenido siempre una explicación aunque no supiéramos darla
Se podría objetar que cada conjunto de leyes en la secuencia, tiene su propio su aspecto y que, no tienen porque converger. El mismo conjunto de leyes de Newton tiene un aspecto muy diferente de los muchos flujos de tiempos diferentes de la relatividad especial. En los aspectos de las leyes no existe ningún tipo de convergencia y, desde luego, las características de cada conjunto de leyes, aunque sean diferentes, no son importantes esas diferencias para el resulta último final de la realidad última a la que la Naturaleza quiere llegar.
Un agujero negro es lo definitivo en distorsión espacio-temporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.
En cuanto a la distorsión del espacio y el tiempo, tenemos que Hermann Minkowski unificaba el espacio y el Tiempo y Einstein lo distorsionaba.
“Las ideas de espacio u tiempo que deseo exponer ante ustedes han brotado del suelo de la física experimental, y en ello reside su fuerza. Son radicales. En lo referente al espacio por sí mismo, y el tiempo por sí mismo, están condenados a desvanecerse en meras sombras, y sólo un tipo de unión de ambos conservará una realidad independiente: ¡El Espaciotiempo!”
Con esas palabras proféticas Minkowski reveló al mundo, en septiembre de 1908, un nuevo descubrimiento sobre la naturaleza del espacio y el tiempo. Einstein había demostrado que el espacio u el tiempo eran “relativos”. La longitud de un objeto y el flujo del tiempo eran diferentes cuando se miran desde diferentes sistemas de referencia.
Minkouski comprendió, de manera perfecta, la profundidad y el verdadero mendaje que la teoría de Eisntein llevaba consigo y, habiéndola entendido a la pefección, le expuso al mundo el nacimiento del espaciotiempo: Ambos, Tiempo y Espacio conformados como un todo.
Hay una historia (adaptada de Taylor y Wheeler (1992) que ilusta la idea subyacente al descubrimiento de Minkowski pero, la dejaré para otra ocasión. El tema de las leyes de Newton, las dos versiones relativistas y la no hallada gravedad cuántica, nos daría para glunos abultados tomos que, no pueden ser escritos aquí
emilio silvera
Dic
14
Unos se van y otros llegaran. Todo sigue su curso
por Emilio Silvera ~ Clasificado en Anécdotas de personajes de la Ciencia ~ Comments (0)
Marvin Minsky falleció a los 88 años tras una vida dedicada a la reflexión sobre el pensamiento y el diseño de máquinas capaces de aprender
Marvin Lee Minsky
Marvin Minsky creía que, en el futuro, los humanos seremos máquinas reparables y los robots tendrán una inteligencia equiparable a la nuestra. Aunque ese tiempo aún no ha llegado, el camino que Minsky inició en la década de los años 50 como uno de los padres de la inteligencia artificial ha cambiado para siempre el desarrollo de ordenadores y otras tecnologías que algún día podrían llegar a cumplir el mayor de sus sueños: tener sentido común.
Robots del futuro que tendrán consciencia de Ser
Minsky murió el pasado domingo en Boston a los 88 años tras una vida dedicada a la investigación, la música y la ciencia-ficción. En 1968, Stanley Kubrick llamó a su puerta para que le asesorara sobre su película 2001, una odisea del espacio, en la que el mítico ordenador HAL se rebela contra sus creadores humanos. Minsky, que estuvo a punto de morir aplastado por maquinaria durante el rodaje, siempre fue un acérrimo defensor de la ciencia ficción para explicar las complejidades de la investigación: “Ayuda a dejar más claras las implicaciones de tu trabajo”, explicó.
Tras servir un año en la Marina durante la II Guerra Mundial, este neoyorquino se doctoró en matemáticas. En 1956 fue uno de los cuatro fundadores del campo de la inteligencia artificial en una mítica conferencia celebrada en el Dartmouth College de New Hampshire. Junto a él estaban John McCarthy, de la Universidad de Stanford y Allen Newell y Herbert Simon, ambos de Carnegie Mellon. Minsky es el único que quedaba vivo.
‘Parque Jurásico’
Tres años después del acto fundacional el matemático creó el Laboratorio de Inteligencia Artificial del Instituto Tecnológico de Massachusetts (MIT), donde desarrolló casi toda su carrera. Los primeros ejemplos de su trabajo en los cincuenta y sesenta fueron un escáner visual para llevarlo en la cabeza, manos robóticas con sensores táctiles, el microscopio confocal, que aún se usa en biología, o las primeras redes neuronales capaces de aprender.
Uno de los mensajes constantes de Minsky fue que, en esencia, no hay diferencia entre la inteligencia humana y la robótica. Profundizar en el conocimiento del cerebro ayudaría a desarrollar máquinas cada vez más inteligentes que podrían llegar a hacer todo lo que hacen las personas.
Medio siglo después de la conferencia de Dartmouth, a Minsky le sorprendía la poca gente que intentaba entender el pensamiento a un nivel superior. “¿Cómo puede un chaval de tres o cuatro años ser tan bueno en el razonamiento basado en el sentido común que aparentemente ninguna máquina puede hacer?”, se preguntaba Minsky en 2006 en una entrevista en Tech Review. La gran diferencia, dijo, es que, cuando los pequeños tienen problemas para entender algo, piensan automáticamente: “¿Qué me pasa?, ¿Por qué estoy perdiendo el tiempo con esto? o ¿Por qué no me funciona esta forma de pensar, habrá alguna mejor?”.
En 1968, Stanley Kubrick llamó a su puerta para que le explicara hasta dónde podrían ser capaces de llegar las máquinas inteligentes
Su trabajo pionero también supuso una transformación revolucionaria en computación, la de convertir las enormes calculadoras que eran los primeros ordenadores en las máquinas versátiles y personales que son ahora. Minsky recibió en vida importantes galardones, como el premio Turing en 1970 y el Fronteras del Conocimiento en 2013.
En una entrevista con EL PAÍS en verano de 2014, el matemático recordó otra de sus contribuciones, cuando inspiró el argumento de Parque Jurásico a Michael Crichton. “Apenas fueron cinco minutos de conversación en la playa de Santa Mónica. Los suficientes para hablar de fósiles, células y dinosaurios”, explicó.
Fuente: El Pais.
Dic
14
Todo lo grande está hecho de cosas pequeñas
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
De acuerdo a la física el menor intervalo de tiempo es el cronón o tiempo de Planck, que equivale a 10-43 segundos y se mide como el tiempo que tarda un fotón viajando a la velocidad de la luz en atravesar una distancia igual a la longitud de Planck.”
El tiempo de Planck o cronón (término acuñado en 1926 por Robert Lévi) es una unidad de tiempo, considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el tiempo de Planck representa el instante de tiempo más pequeño en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:
- segundos
donde:
- es la constante de Planck reducida (conocida también como la constante de Dirac).
- G es la constante de Gravitación Universal;
- c es la velocidad de la luz en el vacío.
Los números entre paréntesis muestran la desviación estándar.
Hablamos de las cosas muy pequeñas, las que el ojo desnudo no puede ver, tales como los núcleos atómicos, las moléculas, bacterias, y demás objetos subatómicos que necesitan de microscopio electronico para poder vislumbrar lo que ahí está presente.
Si hablamos del Tiempo de Planck, hay que decir que es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por , donde G es la constante gravitacional (6, 672 59 (85) x 10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2л = 1,054589 x 10-34 Julios segundo), c, es la velocidad de la luz (299.792.458 m/s).
El valor del tiempo del Planck es del orden de 10-44 segundos. En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del Universo. Todo, desde Einstein, es relativo. Depende de la pregunta que se formule y de quién nos de la respuesta.
¿El Tiempo? Muchos Filósofos lo quisieron explicar pero… ¡No pudieron!
Si preguntamos ¿Qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio 133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Baricéntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio, etc. etc. Cada una de estas versiones del tiempo, tiene una respuesta diferente, ya que, no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo Universal. Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta.
… Y que el mismo tiempo suele borrar
En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas, los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es solo uno; ese que comenzó cuando nació el Universo y que finalizará cuando este llegue a su final.
Lo cierto es que, para las estrellas supermasivas, cuando llegan al final de su ciclo y deja de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella), y, la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un Agujero Negro, una singularidad, donde dejan de existir el “tiempo” y el espacio. A su alrededor nace un horizonte de sucesos que, si se traspasa, se es engullido por la enorme gravedad del Agujero Negro.
En la singularidad no se distorsiona, se para
El tiempo, de ésta manera, deja de existir en estas regiones del Universo que conocemos como singularidad. El mismo Big Bang -dicen- surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.
Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y Agujeros Negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del Universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son a menudo esféricas. El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercumulos a escalas muy grandes.
Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble. Su densidad es de 1017 kg/m3, los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del Universo.
Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del Universo. Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.
“Magia es cualquier tecnología suficientemente avanzada”
Arthur C. Clarke
Pero también es magia el hecho de que, en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver, estructuras complejas matemáticas que hacen posible que la Humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.
Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: La teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Gotinga en Alemania. Aquello fue como abrir de golpe, todas las ventanas cerradas durante 2.000 años, de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante. Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.
Su ensayo de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios. La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas. La revolución rienmaniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias. En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la Literatura en toda Europa. Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del Universo y su evolución mediante su asombrosa teoría de la relatividad general Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del Universo. El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.
Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico. Era huraño, solitario y sufría crisis nerviosas. De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis.
Riemann nació en 1.826 en Hannover, Alemania, segundo de los seis hijos de un pobre pastor luterano que trabajó y se esforzó como humilde predicador para alimentar a su numerosa familia que, mal alimentada, tendrían una delicada salud que les llevaría a una temprana muerte. La madre de Riemann también murió antes de que sus hijos hubieran crecido.
A edad muy temprana, Riemann mostraba ya los rasgos que le hicieron famoso: increíble capacidad de cálculo que era el contrapunto a su gran timidez y temor a expresarse en público. Terriblemente apocado era objeto de bromas de otros niños, lo que le hizo recogerse aún más en un mundo matemático intensamente privado que le salvaba del mundo hostil exterior.
Para complacer a su padre, Riemann se propuso hacerse estudiante de teología, obtener un puesto remunerado como pastor y ayudar a su familia. En la escuela secundaria estudió la Biblia con intensidad, pero sus pensamientos volvían siempre a las matemáticas. Aprendía tan rápidamente que siempre estaba por delante de los conocimientos de sus instructores, que encontraron imposible mantenerse a su altura. Finalmente, el director de la escuela dio a Riemann un pesado libro para mantenerle ocupado. El libro era la Teoría de números de Adrien-Marie Legendre, una voluminosa obra maestra de 859 páginas, el tratado más avanzado del mundo sobre el difícil tema de la teoría de números. Riemann devoró el libro en seis días.
Cuando el director le preguntó: “¿Hasta dónde has leído?”, el joven Riemann respondió: “Este es un libro maravilloso. Ya me lo sé todo”.
Sin creerse realmente la afirmación de su pupilo, el director le planteó varios meses después cuestiones complejas sobre el contenido del libro, que Riemann respondió correctamente.
Con mil sacrificios, el padre de Riemann consiguió reunir los fondos necesarios para que, a los 19 años pudiera acudir a la Universidad de Gotinga, donde encontró a Carl Friedrich Gauss, el aclamado por todos “Príncipe de las Matemáticas”, uno de los mayores matemáticos de todos los tiempos. Incluso hoy, si hacemos una selección por expertos para distinguir a los matemáticos más grandes de la Historia, aparecerá indudablemente Euclides, Arquímedes, Newton y Gauss.
Hannover, Alemania
Los estudios de Riemann no fueron un camino de rosas precisamente. Alemania sacudida por disturbios, manifestaciones y levantamientos, fue reclutado en el cuerpo de estudiantes para proteger al rey en el palacio real de Berlín y sus estudios quedaron interrumpidos.
En aquel ambiente el problema que captó el interés de Riemann, fue el colapso que, según el pensaba, suponía la geometría euclidiana, que mantiene que el espacio es tridimensional y “plano” (en el espacio plano, la distancia más corta entre dos puntos es la línea recta; lo que descarta la posibilidad de que el espacio pueda estar curvado, como en una esfera).
Para Riemann, la geometría de Euclides era particularmente estéril cuando se la comparaba con la rica diversidad del mundo. En ninguna parte vería Riemann las figuras geométricas planas idealizadas por Euclides. Las montañas, las olas del mar, las nubes y los torbellinos no son círculos, triángulos o cuadrados perfectos, sino objetos curvos que se doblan y retuercen en una diversidad infinita. Riemann, ante aquella realidad se rebeló contra la aparente precisión matemática de la geometría griega, cuyos fundamentos., descubrió el, estaban basados en definitiva sobre las arenas movedizas del sentido común y la intuición, no sobre el terreno firme de la lógica y la realidad del mundo.
Euclides nos habló de la obviedad de que un punto no tiene dimensión. Una línea tiene una dimensión: longitud. Un plano tiene dos dimensiones: longitud y anchura. Un sólido tiene tres dimensiones: longitud, anchura y altura. Y allí se detiene. Nada tiene cuatro dimensiones, incluso Aristóteles afirmó que la cuarta dimensión era imposible. En Sobre el cielo, escribió: “La línea tiene magnitud en una dirección, el plano en dos direcciones, y el sólido en tres direcciones, y más allá de éstas no hay otra magnitud porque los tres son todas.” Además, en el año 150 d. C. el astrónomo Ptolomeo de Alejandría fue más allá de Aristóteles y ofreció, en su libro sobre la distancia, la primera “demostración” ingeniosa de que la cuarta dimensión es imposible.
En realidad, lo único que Ptolomeo demostraba era que, era imposible visualizar la cuarta dimensión con nuestros cerebros tridimensionales (de hecho, hoy sabemos que muchos objetos matemáticos no pueden ser visualizados, aunque puede demostrarse que en realidad, existen). Ptolomeo puede pasar a la Historia como el hombre que se opuso a dos grandes ideas en la ciencia: el sistema solar heliocéntrico y la cuarta dimensión.
La ruptura decisiva con la geometría euclidiana llegó cuando Gauss pidió a su discípulo Riemann que preparara una presentación oral sobre los “fundamentos de la geometría”. Gauss estaba muy interesado en ver si su discípulo podía desarrollar una alternativa a la geometría de Euclides.
Riemann desarrolló su teoría de dimensiones más altas.
Parte real (rojo) y parte imaginaria (azul) de la línea crítica Re(s) = 1/2 de la función zeta de Riemann. Pueden verse los primeros ceros no triviales en Im(s) = ±14,135, ±21,022 y ±25,011. La hipótesis de Riemann, por su relación con la distribución de los números primos en el conjunto de los naturales, es uno de los problemas abiertos más importantes en la matemática contemporánea.
Finalmente, cuando hizo su presentación oral en 1.854, la recepción fue entusiasta. Visto en retrospectiva, esta fue, sin discusión, una de las conferencias públicas más importantes en la historia de las matemáticas. Rápidamente se entendió por toda Europa la noticia de que Riemann había roto definitivamente los límites de la geometría de Euclides que había regido las matemáticas durante los milenios.
Riemann creó el tensor métrico para que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresar a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la relación entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2. El teorema de Pitágoras, por supuesto, es la base de toda la arquitectura; toda estructura construida en este planeta está basada en él. Claro que, es una herramienta para utilizar en un mundo tridimensional.)
El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema para dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del espacio en presencia de grandes masas. Precisamente, el tensor de Riemann, permitió a Einstein formular su teoría de la gravedad y, posteriormente lo utilizo Kaluza y Klein para su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de supergravedad, supersimetría y, finalmente las supercuerdas.
Para asombro de Einstein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854, que le había enviado su amigo Marcel Grossman, rápidamente se dio cuenta de que allí estaba la clave para resolver su problema. Descubrió que podía incorporar todo el cuerpo del trabajo de Riemann en la reformulación de su principio. Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de a relatividad general. Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E=mc2. La reinterpretación física de la famosa conferencia de Riemann se denomina ahora relatividad general, y las ecuaciones de campo de Einstein se sitúan entre las ideas más profundas de la historia de la ciencia.
emilio silvera
Dic
14
Todo lo que existe está en el Universo: Los pensamientos también
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (0)
Constituido por innumerables galaxias de estrellas que se erigen en el centro de sistemas planetarios, multitud de Nebulosas de las que “nacen” nuevas y brillantes estrellas y mundos, multitud de objetos exóticos como los la variedad que encierran las estrellas de neutrones como púlsares y magnétares, o, los agujeros negros misteriosos y, todo ello, en un espacio de una magnitud inimaginable para nuestras mentes que, rodeados de los objetos y las cosas cotidianas, no se paran a pensar en esas inmensas verdades que están ahí, en la lejanía del espacio-tiempo inconmensurable.
La Humanidad, nuestra especie, siempre miró hacia los confines del cielo estrellado y se hacía preguntas que no podía contestar. En muchos de los trabajos que aquí se han expuesto quedaron reflejadas aquellas Civilizaciones antiguas que nos hablaban, con sus grabaciones en la piedra de los lejanos confines del cosmos que ellos imaginaban. Hemos podido llegar un nivel de tecnología que nos permite otear horizontes muy lejanos y captar, con nuestros ingenios, galaxias que se podría decir, sin temor a equivocarnos, que están situados en los confines del Universo.
Podemos examinar la radiación que emiten las estrellas jóvenes, estudiar nebulosas lejanas y captar los extraños átomos y moléculas que las conforman y, al mismo tiempo, observar como se van creando las condiciones precisas de gravitación, vientos estelares y otros fenómenos cósmicos para que, los nuevos mundos y las nuevas estrellas surjan a la vida. Somos testigos de un carrusel cosmológico que gira y gira “eternamente” envuelto en ciclos de destrucción y creación que se suceden en presencia de energías inimaginables, para que todo siga igual al mismo tiempo que todo cambia.
Lo cierto es que hemos encontrado mundos muy parecidos a la Tierra
Nuestro Universo ofrece las mejores condiciones para que la Vida, hiciera acto presencia en él. Sin embargo, siempre habrá dos bandos que discrepan en ese sentido: Por un lado están aquellos que creen en la presencia de la vida en múltiples mundos en las galaxias que pueblan el espacio del universo inmenso, y, por la otra parte, están aquellos que niegan tal posibilidad y se aferran a que, para que surgiera la vida en la Tierra, se tuvieron que dar tal cúmulos de condiciones que es imposible que se vuelvan a repetir en ningún otro lugar.
También es cierto que otros muchos mundos no podrían albergar la vida ni en el extremo de las posibilidades conocidas por nosotros y que denominamos extremófila por estar presente en condiciones que nunca, antes de ser descubierta, pudimos imaginar que pudiera existir. Existen regiones del Universo que son extremadamente peligrosas donde la radiación y las energías extremas están presentes y, ningún mundo que pudiera existir por sus alrededores tendría la posibilidad de albergar ninguna clase de vida.
Somos conscientes de que no podemos vivir aislados y desde siempre hemos tratado de saber qué ocurría más allá, en la lejanía de las estrellas donde algunos imaginativos pensaban que otras criaturas habitaban un sin fín de mundos que, como la Tierra, tendrían las condiciones necesarias para ello. Para ellos, el Universo ofrecía todas las posibilidades a favor y en contra, su diversidad era tanta que mundos llenos de vida pululaban alrededor de estrellas situadas a decenas, cientos, miles o millones de años-luz de nosotros y, también, había mundos imposibles donde nada podía surgir a la vida.
Ni afirmar ni negar podemos. En lo referente a la vida en otros mundos, todo podría ser posible y la vida tanto inteligente como vegetativa en múltiples formas y con distintos metabolismos, como ocurre aquí en nuestro planeta, es posible que esté presente en aquellos mundos que como el nuestro tengan aquellos requisitos necesarios para su sustento. Atmósfera calentada por una estrella benigna que caliente el planeta, océanos y bosques, y, en defintiiva, todo aquellos que es necesario para mantener latente formas de vida que como la nuestra, parecida o totalmente diferentes, se desarrollen en un ambiente adecuado a las condiciones que cada especie pudiera requerir.
Charles Darwin con la imagen de Io, la luna de Júpiter misteriosa. Creo que hasta el los lugares más inhóspitos, la vida podría estar presente, su actividad volcánica y la presencia de agua, así lo posibilitan.
La vida más resistente que se conoce es la vida invisible: los microoganismos y las bacterias. Los seres vivos capaces de sobrevivir en condiciones extremas se llaman extremófilos. Sobreviven en condiciones que serían letales para cualquier otra forma de vida. Resisten temperaturas extremas, por encima del grado de ebullición del agua y por debajo del de congelación, condiciones de acidez, de falta de luz solar y de oxígeno, de presión, de salinidad… Pueden permanecer en estado de letargo durante miles de años y volver a reanimarse al contacto con el agua.
Lo único que necesitan los extremófilos es: materia orgánica, agua y una fuente de energía. La materia orgánica abunda por todo el Cosmos. Pueden emplear una fuente de energía distinta a la luz solar. De hecho, a comienzos de los 90, se descubrió una bacteria que vivía en el subsuelo, a 7 kms de profundidad, y se alimentaba a base de petróleo. Lo que sí necesita la vida extremófila es agua en estado líquido. O, al menos, así lo creemos. Hasta hoy, no hay pruebas de que ninguna forma de vida pueda sobrevivir sin agua líquida. Pero podemos estar equivocados.
Hasta ahora, la Tierra es el único lugar del universo donde está confirmada la existencia de agua en estado líquido. Pero en el propio Sistema Solar hay planetas y satélites con agua helada. Si se demostrara que los extremófilos pueden sobrevivir con agua helada, se abrirían nuevas posibilidades en la búsqueda de vida extraterrestre.
L
Líquenes, hongos y bacterias que pueden estar presentes en cualquier lugar inhóspito de alguna luna
Y, no me extrañaría que cuando se haga el primer viaje a Marte, encuentren ésta clase de vida en los túneles que dejaron las correntías de lava en el pasado volcánico de aquel planeta, ya que, el el subsuelo, las temperaturas son más altas y el agua líquida discurrirá por los vericuetos rocosos.
En el planeta rojo se detectaron focos de metano y, las Arquea son productora de metano. Se han encontrado microorganismos productores de metano en dos ambientes extremos en la Tierra: enterrados bajo kilómetros de hielo en Groenlandia y en los suelos cálidos del desierto. Estos descubrimientos hacen más plausible la esperanza que tenemos sobre la existencia de vida en Marte.
Han pasado más de 150 años desde que Darwin publicara su famosa obra El origen de las especies. Sus ideas han prevalecido en el transcurrir del tiempo y ni los nuevos descubrimientos ni los muchos avances logrados han podido dejar de lado la idea de la evolución. Más de doscientos años después de su nacimiento, sus ideas siguen en el candelero de la Biología y nos habla de que, la vida, como el decía, puede surgir en cualquier charca embarrada y caliente. Sus ideas han sido profundamente analizadas por los mejores especialistas en biología que han tenido que reconocer su influencia en el mundo científico de los distintos campos de la biología, en general, y de la biología evolutiva, en particular.
Pero es interesante ejemplarizar su capacidad sintetizadora y premonitoria en el por aquel entonces, campo novedoso de la biología, la extremofila, a partir de la exploración de los lagos salobres del río negro en Argentina. A finales de 1831, Darwin se embarcó en el Beagle (ya contamos aquí aquella historia), tardaron meses en atravesar el Atlántico. Desembarcaron el Maldonado y recorrieron las costas de Uruguay y Argentina realizando numerosas observaciones geológicas, botánicas, zoológicas y antropológicas. Ciertamente, aquella “excursión” investigadora por méritos propios pasó a los anales de la Historia.
La imagen está referida a la Misión Planck de la ESA
En cada tiempo hemos hecho las cosas como hemos podido, siempre en busca del saber y queriendo descubrir los secretos que la Naturaleza esconde. Darwin partió en el Beagle hacia lo desconocido en un viaje peligroso y aventurero en busca de lo desconocido. Ahora, nosotros mucho más adelantados, buscamos lo mismo: Saber. Sin embargo, utilizamos otros medios que, como la Misión Planck de la Esa, por ejemplo, vamos a la búsqueda del origen del Universo.
La misión que data de 2.009, no es algo improvisado que se hizo a la ligera, estuvo planificándose y preparándose durante dos décadas de manera muy cuidadosa y con exquisito esmero para cuidar hasta el último detalle dentro de las más avanzadas técnicas que la ciencia actual podía permitirse. El telescopio espacial Planck nos ha ayudado a comprender mejor la historia del Universo, desde una fracción de segundo después del Big Bang a la evolución de las estrellas y de las galaxias a lo largo de estos 13.700 millones de años. Aunque la fase de observaciones científicas ya haya terminado, el legado de esta misión sigue vivo. Planck se lanzó en el año 2009 y pasó 4.5 años observando el firmamento para estudiar cómo evolucionó la materia cósmica con el paso del tiempo.
Los científicos que trabajan con los datos de Planck presentaron la imagen más precisa de la radiación cósmica de microondas (CMB, los restos de la radiación del Big Bang que quedaron grabados en el firmamento cuando el Universo tenía apenas 380.000 años.
La señal CMB es la imagen más precisa de la distribución de masa en el Universo primitivo. En ella se pueden detectar minúsculas fluctuaciones de temperatura que se corresponden con regiones que, en un principio, presentaban densidades ligeramente diferentes, y que constituyen las semillas de todas las estructuras, estrellas y galaxias que podemos ver hoy en día. Jan Tauber, científico del proyecto Planck para la ESA, declaraba:
“Planck nos ha proporcionado la imagen a cielo completo de la señal CMB más precisa de la historia, con la que podremos poner a prueba una gran variedad de modelos sobre el origen y la evolución del cosmos”
El objetivo principal de Gaia es crear un mapa en 3D de alta precisión de nuestra galaxia, la Vía Láctea, observando repetidamente mil millones de estrellas para determinar su posición precisa en el espacio y sus movimientos a través de él. La sonda espacial Gaia es otro de los muchos proyectos que tratan de investigar dónde estamos situados en el contexto de nuestra Galaxia, la Vía Láctea.
La Agencia Espacial Europea (ESA) ha dado luz verde a la misión Euclides, que se lanzará en 2020 con el objetivo de estudiar la misteriosa energía oscura que compone el 73% del Universo. La misión Euclides contará con un telescopio de 1,2 metros de diámetro que nutrirá una cámara de 576 millones de píxeles con imágenes en muy alta resolución de 2.000 millones de galaxias, equivalente a las del Telescopio Espacial Hubble. Con esos datos, y mediante tecnología de infrarrojos, los científicos desarrollarán una cartografía de las grandes estructuras del Universo y medirán la distancia entre las galaxias captadas por la cámara.
El telescopio WISE ha llegó al final de su fase de mapear en infrarrojo, pero continuó con la misión de realizar el seguimiento de los más cercanos cometas y asteroides, además de enanas marrones. Se ideó un telescopio infrarrojo que orbitar
ala Tierra y que ha sido empleado para mapear objetos fríos, polvorientos o lejanos que los telescopios de luz visible no pueden observar. Durante 2010 ha tomó más de 1,8 millones de fotografías utilizando su telescopio de 16 pulgadas y cuatro detectores de longitudes de onda infrarrojas, observando el cielo una vez y media, descubriendo estrellas, cometas y más de 33.500 asteroides en el proceso.
“Un sistema de cinco planetas, de los cuales dos tienen un radio 1,41 y 1,61 veces superior al de la Tierra y están en la zona habitable”. Este es el título de un estudio que investigadores internacionales publican esta semana en Science. El hallazgo ha sido posible gracias a las observaciones del telescopio espacial Kepler de la NASA. La estrella anfitriona es Kepler-62 y los dos planetas protagonistas se han bautizado como Kepler-62 e y f, orbitando más lejos que sus compañeros b, c y d. A Kepler-62 e y f llega un flujo solar desde su estrella parecido al que reciben Venus y Marte por parte de nuestro Sol. Respectivamente, los dos exoplanetas reciben alrededor de 1,2 y 0,41 veces la radiación solar que alcanza la Tierra. Basándose en modelos y simulaciones computacionales, los científicos consideran que el tamaño de estos dos nuevos planetas sugiere que podrían ser rocosos, como la Tierra, o estar compuestos de agua sólida.
Ante tal inmensidad nos podemos sentir insignificantes pero… ¡No lo somos! Desde que generamos ideas y pensamientos y con nosotros están los sentimientos… ¡Dejamos de serlo!
Si miramos al cielo en una noche oscura y estamos en el lugar adecuado, podremos contemplar, la inmensidad en la que estamos inmersos y situados en un pequeño planeta apto para albergar la vida, podemos admirar parte de nuestra Galaxia, la Vía Láctea que nunca hemos podido contemplar en su totalidad al estar confinados en el planeta y no tener los medios para salir fuera y poder tomar una imagen completa del lugar en el que vivimos. Podemos hacerlo con otras galaxias lejanas y, de la nuestra, sólo la conocemos por datos parciales que podemos ir juntando en los diversos estudios que para ello hemos llevado a cabo y seguimos llevando con misiones que, como las que más arriba se reseñan, nos facilitan datos precisos para que podamos saber, de nuestro lugar en el Universo desde esta Galaxía que es sólo una de entre cien mil millones.
Desde un lugar minúsculo, un pequeño terrón de roca y agua que orbita una estrella mediana que le suministra la luz y el calor necesario para que podamos estar aquí, sin pararnos a pensar en nuestra ínfima medida en el contexto del Universo, lo cierto es que lo queremos conquistar.
¡Ilusos!
emilio silvera