domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Hay que recorrer un largo camino para saber

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                      Betelgeuse, la estrella super-gigante que está en el final de su vida

“La masa con la que nace una estrella determina su historia y, sobre todo, la duración de su vida. Llamamos estrellas masivas a todas aquellas estrellas aisladas que explotan como supernovas al final de su existencia debido al colapso gravitatorio. Para que exploten como supernovas deben tener un mínimo de alrededor de ocho masas solares. Estrellas con menos masa pueden explotar, pero no por sí mismas (deben darse otras condiciones). Y hay parámetros secundarios que pueden introducir cambios, pero la masa es determinante.”

RMC 136a

 

El cúmulo estelar RMC 136a, en la Nebulosa de la Tarántula, dentro de la Gran Nube de Magallanes. Credits: ESO/P. Crowther/C.J. Evans

En NGC 3603 los astrónomos pudieron también medir directamente las masas de dos estrellas que pertenecen a un sistema estelar doble, como una validación de los modelos utilizados. Las estrellas A1, B y C en este cúmulo poseen al nacer masas estimadas superiores o cercanas a 150 masas solares

“En cuanto al máximo, el límite está en lo que la naturaleza sea capaz de producir. Hasta hace poco se creía que este límite estaba en torno a monstruos de 150 masas solares, aunque recientes trabajos de investigación y observación lo elevan hasta 300. No obstante, no es un dato seguro ya que, cuanto más masiva es una estrella, menos vive, con lo cual estrellas más grandes serían difíciles de observar.”

La NASA capta con sus telescopios la explosión estelar, que es la más cercana de este tipo desde hace dos décadas. / Image Credit: NASA/Swift/P. Brown, TAMU

Verdaderamente si pudiéramos contemplar de cerca, el comportamiento de una estrella cuando llega el final de su vida, veríamos como es, especialmente intrigante las transiciones de fase de una estrella en implosión observada desde un sistema de referencia externo estático, es decir, vista por observadores exteriores a la estrella que permanecen siempre en la misma circunferencia fija en lugar de moverse hacia adentro con la materia de la estrella en implosión. La estrella, vista desde un sistema externo estático, empieza su implosión en la forma en que uno esperaría.

Resultado de imagen de Implosión de una estrella masivaResultado de imagen de Implosión de una estrella masiva

Al igual que una pesada piedra arrojada desde las alturas, la superficie de la estrella cae hacia abajo (se contrae hacia adentro), lentamente al principio y luego cada vez más rápidamente. Si las leyes de gravedad de Newton hubieran sido correctas, esta aceleración de la implosión continuaría inexorablemente hasta que la estrella, libre de cualquier presión interna, fuera aplastada en un punto de alta velocidad. Pero no era así según las fórmulas relativistas que aplicaron Oppenheimer y Snyder. En lugar de ello, a medida que la estrella se acerca a su circunferencia crítica su contracción se frena hasta hacerse a paso lento. Cuanto más pequeña se hace la estrella, más lentamente implosiona, hasta que se congela exactamente en la circunferencia crítica y, dependiendo de su masa, explosiona como supernova para formar una inmensa nebulosa o, se tranforma en nebulosa planetaria, más pequeña.

Eta Carinae's great eruption in the 1840s created the billowing Homunculus Nebula, imaged here by Hubble. Now about a light-year long, the expanding cloud contains enough material to make at least 10 copies of our sun. Astronomers cannot yet explain what caused this eruption.

La gran erupción de Eta Carinae en la década de 1840 creó la nebulosa del Homúnculo, mostrada aquí en una imagen tomada por el Hubble. Con una longitud ahora de un año-luz, la nube en expansión contiene suficiente material para hacer por lo menos 10 copias de nuestro Sol. Los astrónomos aún no pueden explicar qué causó esta explosión. Crédito: NASA, ESA, y el Hubble SM4 ERO Team

Ahí podemos observar a una estrella muy joven, de dos o tres millones de años que, en un futuro lejano será una gran Supernova. Los procesos que podríamos observar al final de la vida de una estrella gigante… ¡Son fascinantes! Ese punto azulado que vemos envuelto en una masa de gas y polvo, no es otra cosa que la estrella Eta Carinae, una variable luminosa azul hipermasiva. Su masa puede osciular entre las 100 y 150 masas solares y, como el límite para la masa de una estrella está estipulado en 120 masas solares, ésta de arriba, para no ser destruída por su propia radiación, eyecta material al espacio interestelar para descongestionarse.

En la escena que antes explicabámos, por mucho tiempo que nos quedemos esperando y comtemplando el suceso, si uno está en reposo fuera de la estrella (es decir, en reposo en el sistema de referencia externo estático), uno nunca podrá ver que la estrella implosiona a través de la circunferencia crítica. Ese fue el mensaje inequívoco que Oppenheimer y Snyder nos enviaron. Para poder ver eso, habría que estar dentro de la estrella, instalado en la materia que está sufriendo la contracción y, no sabemos porque eso es así.

Resultado de imagen de Implosión de una estrella masiva"Resultado de imagen de Implosión de una estrella masiva

¿Se debe esta congelación de la implosión a alguna fuerza inesperada de la relatividad general en el interior de la estrella? No, en absoluto, advirtieron Oppenheimer y Snyder. Más bien se debe a la dilatación gravitatoria del tiempo (el frenado del flujo del tiempo) cerca de la circunferencia crítica. Tal como lo ven los observadores estáticos, el tiempo en la superficie de la estrella en implosión debe fluir cada vez más lentamente cuando la estrella se aproxima a la circunferencia crítica; y, consiguientemente, cualquier cosa que ocurre sobre o en el interior de la estrella, incluyendo su implosión, debe aparecer como si el movimiento se frenara poco a poco hasta congelarse.

Por extraño que esto pueda parecer, aún había otra predicción más extrañas de las fórmulas de Oppenheimer y Snyder: si bien es cierto que vista por observadores externos estáticos la implosión se congela en la circunferencia crítica, no se congela en absoluto vista por los observadores que se mueven hacia adentro con la superficie de la estrella. Si la estrella tiene una masa de algunas masas solares y empieza con un tamaño aproximado al del Sol, entonces vista desde su propia superficie implosiona hacia la circunferencia crítica en aproximadamente una hora, y luego sigue implosionando más allá de la criticalidad hacia circunferencias más pequeñas.

Allá por el año 1939, cuando Oppenheimer y Snyder descubrieron estas cosas, los físicos ya se habían acostumbrados al hecho de que el tiempo es relativo; el flujo del tiempo es diferente medido en diferentes sistemas de referencia que se mueven de diferentes formas a través del Universo. Claro que, nunca antes había encontrado nadie una diferencia tan extrema entre sistemas de referencia. Que la implosión se congele para siempre medida en el sistema externo estático, pero continúe avanzando rápidamente superando al punto de congelación medida en el sistema desde la superficie de la estrella era extraordinariamente difícil de comprender. Nadie que estudiara las matemáticas de Oppenheimer y Snyder se sentía cómodo con semejante distorsión extrema del tiempo. Pero ahí estaba, en sus fórmulas. Algunos podían agitar sus brazos con explicaciones heurísticas, pero ninguna explicación parecía muy satisfactoria. No sería completamente entendido hasta finales de los cincuenta.

Fue Wheeler el que discrepó del trabajo de Oppenheimer y Snyder, alegando, con toda la razón que, cuando ellos habían realizado su trabajo, habría sido imposible calcular los detalles de la implosión con una presión realista (presión térmica, presión de degeneración y presión producida por la fuerza nuclear), y con reacciones nucleares, ondas de choque, calor, radiación y expulsión de masa. Sin embargo, los trabajos desde las armas nucleares de los veinte años posteriores proporcionaron justamente las herramientas necesarias.

Presión, reacciones nucleares, ondas de choque, calor radiación y expulsión de masa eran todas ellas características fundamentales de una bomba de hidrógeno; sin ellas, una bomba no explosionaría. A finales de los años cincuenta, Stirling Colgate quedó fascinado por el problema de la implosión estelar. Con el apoyo de Edward Teller, y en colaboración con Richard White y posteriormente Michael May, Colgate se propuso simular semejante implosión en un ordenador. Sin embargo, cometieron un error, mantuvieron algunas de las simplificaciones de Oppenheimer al insistir desde el principio en que la estrella fuera esférica y sin rotación, y, aunque tuvieron en cuenta todos los argumentos que preocupaban a Wheeler, aquello no quedó perfeccionado hasta después de varios años de esfuerzo y, a comienzo de los años sesenta ya estaban funcionando correctamente.

Un día a principio de los años sesenta, John Wheeler entró corriendo en la clase de relatividad de la Universidad de Princeton. Llegaba un poco tarde, pero sonreía con placer. Acababa de regresar de una visita a Livermore donde había visto los resultados de las simulaciones recientes de Colgate y su equipo. Con excitación en su voz dibujó en la pizarra un diagrama tras otro explicando lo que sus amigos de Livermore habían aprendido.

Cuando la estrella en implosión tenía una masa pequeña, desencadenaba una implosión de supernova y formaba una estrella de neutrones precisamente en la forma que Fritz Wicky había especulado treinta años antes. Sin embargo, si la estrella original era más masiva lo que allí se producía (aparte de la explosión supernova) era un agujero negro notablemente similar al altamente simplificado  modelo que veinticinco años  calcularon Oppenheimer y Snyder. Vista desde fuera, la implosión se frenaba y se quedaba congelada en la circunferencia crítica, pero vista por alguien en la superficie de la estrella, la implosión no se congelaba en absoluto. La superficie de la estrella se contraía a través de la circunferencia crítica y seguía hacia adentro sin vacilación.

Lo cierto fue que allí, por primera vez, se consiguió simular por ordenador la implosión que debía producir agujeros negros. Está claro que la historia de todo esto es mucho más larga y contiene muchos más detalles que me he saltado para no hacer largo el trabajo que, en realidad, sólo persigue explicar a ustedes de la manera más simple posible, el trabajo que cuesta obtener los conocimientos que no llegan (casi nunca) a través de ideas luminosas, sino que, son el resultado del trabajo de muchos.

Hoy, sabemos mucho más de cómo finaliza sus días una estrella y, dependiendo de su masa, podemos decir de manera precisa que clase de Nebulosa formará, que clase de explosión (si la hay) se producirá, y, finalmente, si el resultado de todo ello será una estrella enana blanca que encuentra su estabilidad final por medio del Principio de exclusión de Pauli (en mecánica cuántica)que se aplica a los fermiones pero no a los Bosones (son fermiones los quarks, electrones, protones y neutrones), en virtud del cual dos partículas idénticas en un sistema, como los electrones en un átomo o quarks en un hadrón (protón o neutrón, por ejemplo), no pueden poseer un conjunto idéntico de números cuánticos.

La estrella azul cerca del centro de esta imagen es Zeta Ophiuchi. Cuando se ve en luz visible aparece como una estrella roja relativamente débil rodeada de otras estrellas tenues y sin polvo. Sin embargo, en esta imagen infrarroja tomada con campo amplio por el Explorador Infrared Survey de la NASA, o WISE, un punto de vista completamente diferente emerge. Zeta Ophiuchi es en realidad una muy masiva y caliente estrella azul, brillante que traza su camino a través de una gran nube de polvo y gas interestelar.

Una estrella masiva alejándose de su antiguo compañero se manifiesta haciendo un imponente surco a través de polvo espacial, como si se tratase de la proa de un barco. La estrella, llamada Zeta Ophiuchi, es enorme, con una masa de cerca de 20 veces la de nuestro Sol. En esta imagen, en los que se ha traducido la luz infrarroja a colores visibles que vemos con nuestros ojos, la estrella aparece como el punto azul en el interior del arco de choque. Zeta Ophiuchi orbitó una vez alrededor de una estrella aún más grande. Pero cuando la estrella explotó en una supernova, Zeta Ophiuchi se disparó como una bala. Viaja a la friolera velocidad de 24 kilómetros por segundo arrastrando con ella un conglomerado de polvo que distorsiona la región por la que pasa.

Mientras la estrella se mueve través del espacio, sus poderosos vientos empujan el gas y el polvo a lo largo de su camino en lo que se llama un arco de choque. El material en el arco de choque está tan comprimido que brilla con luz infrarroja que  WISE puede captar. El efecto es similar a lo que ocurre cuando un barco cobra velocidad a través del agua, impulsando una ola delante de él.  Esta onda de choque queda completamente oculta a la luz visible. Las imágenes infrarrojas como esta son importantes para arrojar nueva luz sobre lo que ocurre en situaciones similares.

Pero, siguiendo con el tema de las implosiones de las estrellas, ¿cuál es la razón por la que la materia no se colapsa, totalmente, sobre sí misma? El mismo principio que impide que las estrellas de neutrones y las estrellas enanas blancas implosionen totalmente y que, llegado un momento, en las primeras se degeneran los neutrones y en las segundas los electrones, y, de esa manera, se frena la compresión que producía la gravedad y quedan estabilizadas gracias a un principio natural que hace que la materia normal sea en su mayor parte espacio vacio también permite la existencia de los seres vivos. El nombre técnico es: El Principio de Exclusión de Pauli y dice que dos fermiones (un tipo de partículas fundamentales) idénticos y con la misma orientación no pueden ocupar simultáneamente el mismo lugar en el espacio. Por el contrario, los bosones (otro tipo de partículas, el fotón, por ejemplo) no se comportan así, tal y como se ha demostrado recientemente por medio de la creación en el laboratorio de los condensados de Bose-Einstein.

¿Cuál es la diferencia?

Resultado de imagen de Condensado de Bose-EinsteinResultado de imagen de Condensado de Bose-Einstein

Los bosones son sociables; les gusta estar juntos. Como regla general, cualquier átomo con un número par de electrones+protones+neutrones es un bosón. Así, por ejemplo, los átomos del sodio ordinario son bosones, y pueden unirse para formar condensados Bose-Einstein.

Izquierda: Los bosones son sociables; los fermiones son antisociales.

Los fermiones, por otro lado, son antisociales. No pueden juntarse en el mismo estado cuántico (por el “Principio de Exclusión de Pauli” de la mecánica cuántica). Cualquier átomo con un número impar de electrones+protones+neutrones, como el potasio-40, es un fermión.

Pero, estábamos diciendo: “…no pueden poseer un conjunto idéntico de números cuánticos.” A partir de ese principio, sabemos que, cuando una estrella como nuestro Sol deja de fusionar Hidrógeno en Helio que hace que la estrella deje de expandirse y quede a merced de la Gravedad, ésta implosionará bajo el peso de su propia masa, es decir, se contraerá sobre sí misma por la fuerza gravitatoria pero, llegará un momento en el cual, los electrones, debido a ese principio de exclusión de Pauli que les impide estar juntos, se degeneran y se moverán de manera aleatoria con velocidades relativista hasta el punto de ser capaces de frenar la fuerza provocada por la gravedad, y, de esa manera, quedará estabilizada finalmente una estrella enana blanca.

Si hablamos de una estrella supermasiva, su produce la implosión arrojando las capas externas al espacio interestelar mientras que el grueso de la estrella se comprime más y más sin que nada la pueda frenar, aquí no sirve el Principipo de exclusión de Pauli para los fermiones y, es tal la fuerza gravitatoria que se desencadena como consecuencia de que la estrella supergigante no puede seguir fusionando y queda a merce4d de una sola fiuerza: La Gravedad, que ésta, la comprime hasta lo inimaginable para convertir toda aquella ingente masa en una singularidad, es decir, un punto de densidad y energía “infinitas” que ni la luz puede escapar de allí, y, el tiempo se ralentiza y el espacio se curva a su alrededor.

Resultado de imagen de Formación de una estrella de neutrones"

Si la estrella original es más masiva, la degeneración de los electrones no será suficiente para frenar la fuerza gravitatoria y, los electrones se fusionaran con los protones para convertirse en neutrones que, bajo el mismo principio de exclusión sufrirán la degeneración que frenará la fuerza de gravedad quedando entonces una estrella de neutrones. Por último, si la estrella es, aún más masiva, ni la degeneración de los neutrones será suficiente para frenar la inmensa fuerza gravitatoria generada por la masa de la estrella que, continuará la implosión contrayéndose cada vez más hasta desaparecer de nuestra vista convertida en un agujero negro.

¿Qué forma adoptará, qué transición de fase se produce en la materia dentro de una Singularidad?

¡Resulta todo tan complejo!

emilio silvera

¿La Conciencia? ¡Qué complejidad!

Autor por Emilio Silvera    ~    Archivo Clasificado en conciencia    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

            “Nada es tan difícil como evitar el auto-engaño” Decía Ludwig Wittgestein

Nuestra estrategia para explicar la base neuronal de la conciencia consiste en centrarse en las propiedades más generales de la experiencia consciente, es decir, aquellas que todos los estados conscientes comparten. De estas propiedades, una de las más importantes es la integración o unidad. La integración se refiere a que el sujeto de la experiencia no puede en ningún momento dividir un estado consciente en una serie de componentes independientes. Esta propiedad está relacionada con nuestra incapacidad para hacer conscientemente dos cosas al mismo tiempo, como por ejemplo, estar ahora escribiendo este comentario para ustedes y al mismo tiempo mantener una conversación sobre el Universo con otros amigos.

Muchas y variadas son las opciones que tenemos a nuestro alcance. No pocas veces nos encontramos en una encrucijada entre la razón y el corazón y nos perdemos sin saber cuál es la decisión correcta. No siempre resulta fácil elegir el camino a seguir y… ¡Es tan importante acertar!

Otra propiedad clave de la experiencia consciente, y una que aparentemente contrasta con la anterior, es su extraordinaria diferenciación o informatividad: En cada momento podemos seleccionar uno entre miles de millones de estados conscientes posibles en apenas una fracción de segundo. Nos enfrentamos, pues, a la aparente paradoja de que la unidad encierra la complejidad: el cerebro tiene que afrontar la sobreabundancia sin perder la unidad o coherencia. La tarea de la ciencia consiste en mostrar de qué manera la consigue.

Los últimos pensamientos sobre la mente y la conciencia están centrados en el constructivismo y nos viene a decir que cada cual, se fabrica su propia realidad, y, al hilo de ese pensamiento se me vienen a la mente algunas lecciones de neuropsicología y lo que es la integración bajo tensión, me explico:

Algunas de las indicaciones más sobresalientes de la ineludible unidad de la experiencia consciente provienen del examen de ciertos fenómenos patológicos. Muchos trastornos neuropsicológicos demuestran que la conciencia puede doblarse o encogerse y, en ocasiones, incluso dividirse, pero que nunca tolera que se rompa la coherencia. Por ejemplo, aunque un derrame cerebral en el hemisferio derecho deja a muchas personas con ese lado del cuerpo paralizado y afectado por una pérdida sensorial completa, algunas personas niegan su parálisis, un fenómeno que se conoce como anosognosia.

Resultado de imagen de anosognosia."

“La anosognosia, enfermedad + gnosis, conocimiento: “desconocimiento de la enfermedad”) es la situación referida a los pacientes que no tienen percepción de sus déficits funcionales neurológicos.”

Resultado de imagen de Sharon Stone

Sharon Stone

                 Ella también pasó por la experiencia de un derrame cerebral

“Perdí bastante visión durante dos años, también la audición, no podía escribir, me costaba caminar, no podía hablar bien y perdí mucha memoria. y me llevó mucho tiempo volver a funcionar, me costaba por el tema de la memoria, en el set, solo en los últimos dos años puedo decir que estoy recuperada totalmente”.

 

Sin embargo, algunos, cuando se le presentan pruebas de que su brazo y su pierna derecha no pueden moverse,  llegan incluso a negar que se trate de sus extremidades y las tratan como si fuesen cuerpos extraños. Otras personas con daños bilaterales masivos en la región occipital no pueden ver nada y, sin embargo, no reconocen que estén ciegos (síndrome de Antón).

Resultado de imagen de Todo está en nuestro cerebroResultado de imagen de Todo está en nuestro cerebro

Resultado de imagen de Todo está en nuestro cerebroResultado de imagen de Todo está en nuestro cerebro

                                          Todo está en nuestros cerebros

Las personas con cerebro dividido ofrecen una demostración más de que la conciencia siente horror por los vacíos o las discontinuidades. Las personas con hemi-inantención, un complejo síndrome neuropsicológico que se suele dar cuando se producen lesiones en el lóbulo parietal derecho, no son conscientes del lado izquierdo de las cosas, a veces incluso de toda la parte izquierda del mundo.

El cerebro izquierdo es objetiva y racional. Con la parte izquierda de nuestro cerebro, tratamos de ser objetivos y racionales. Podemos centrarnos en los detalles y hechos analíticos y tratamos de ser razonable y práctico. La parte izquierda del cerebro es responsable de procesar números y palabras, así que ahí es donde logramos por ejemplo la aritmética, ciencias e idiomas. Se podría decir que en esta parte del cerebro está la realidad de nuestro mundo consciente.

El cerebro derecho es subjetivo e intuitivo. La parte derecha de nuestro cerebro es más bien subjetiva. En lugar de tomar decisiones racionales y conscientes, esta parte se basa en la intuición. Nuestro pensamiento en el lado derecho es espontáneo e influido por las emociones, tales como nuestro estado de ánimo, o disparadores emocionales externos. Con esta parte del cerebro, usamos nuestra imaginación, la fantasía y las creencias personales para decidir por nosotros. Estamos dispuestos a asumir riesgos y centrarse en objetivos más que el proceso que se necesita para llegar allí. Apreciamos imágenes y elementos emocionales, en lugar de información objetiva.

cerebro

Pongo estos ejemplos para que podamos ver la complejidad de lo que el cerebro encierra. No es fácil llegar a saber lo que ahí se cuece.

Asisto con otras muchas personas a un mismo lugar para escuchar y ser testigos de una conferencia de Física. Tal reunión dará lugar a una multitud de pensamientos, los suyos y los míos, algunos mutuamente coherentes, otros no. Son tan poco individuales y recíprocamente independientes como son un todo coherente al estar oyendo todos el mismo tema, sin embargo, casi nadie coincide al clasificar la manera de encajar lo que allí se expone, así que, no son ni lo uno ni lo otro: ninguno de ellos está separado, sino que cada uno pertenece al ámbito de los otros pero además al de ninguno. Mi pensamiento pertenece a la totalidad de mis otros pensamientos, y el de cada uno, a la totalidad de pensamientos de cada uno…los únicos estados de conciencia que de forma natural experimentamos se encuentran en las consciencias personales, en las mentes, en todos los yo y tu particulares y concretos…el hecho consciente universal no es “los sentimientos y los pensamientos existen”, sino “yo pienso” y “yo siento”. De ahí, sin lugar a ninguna duda surge, la idea de que cada cual, dentro de su mente, se inventa su realidad del mundo que le rodea.

     Algunos se montan en barco y se ven cayendo por una catarata

        Otros creen viajar hacia fantásticos mundos

                 Otros se limitan a disfrutar del paisaje y disfrutar de su tiempo libre

No todos, ante la misma situación, vemos lo mismo. Es un buen reflejo de la arrogancia humana el hecho de que se hayan erigido sistemas filosóficos enteros sobre la base de una fenomenología subjetiva: la experiencia consciente de un solo individuo con inclinaciones filosóficas. Tal como Descartes reconoció y estableció como punto de partida, esta arrogancia es justificada, por cuanto nuestra experiencia consciente es la única ontología sobre la cual tenemos evidencia directa. La inmensa riqueza del mundo fenoménico que experimentamos -la experiencia consciente como tal- parece depender de una nimiedad del menaje de ese mundo, un trozo de tejido gelatinoso del interior del cráneo.

Sí, estamos condicionados por el entorno, las experiencias, la información…¡Los sentidos!

Nuestro cerebro, un actor “secundario” y “fugaz” que casi ninguno llega a ver sobre el escenario de la conciencia, parece ser el guardián del teatro entero. Como a todos se nos hace dolorosamente obvio cuando nos vemos ante una escena de desgracia humana, en un ser querido cercano, supondrá una agresión al cerebro y puede modificar permanentemente todo nuestro mundo. De ahí, el hecho cierto, de que las sensaciones tales como los sentimientos o el dolor, inciden de manera directa, a través de los sentidos, en nuestra consciencia que, como decimos, siempre es particular e individualizada, nadie podrá nunca compartir su consciencia y, sin embargo ésta, estará también siempre, supeditada al mundo que la rodea y de la que recibe los mensajes que, aún siendo los mismos, cada cual nos interpretará a su manera muy particular y, al mismo tiempo, dentro de unos cánones pre-establecidos de una manera común de ver y entender el mundo al que pertenecemos.

Amigos, tenemos una jungla en la cabeza, y, su enmarañada ramificación es tan descomunalmente compleja que, de momento, lo único que podemos hacer es ir abriéndonos camino a machetazos de la ciencia que, sin duda alguna, finalmente nos permitirá deambular por esa intrincada selva que llamamos cerebro y que es la residencia de nuestras mentes ese lugar donde generan las ideas, los pensamientos y los sentimientos.

Comparación entre estructuras del universo y de la vida

                                            En un trabajo anterior debajo de esta imagen decía:

“Los procesos científicos que comentamos en este lugar, los fenómenos del Universo que hemos debatido y, también,  los misterios y secretos que el inmenso Cosmos nos oculta han contribuido, aunque inadvertidamente, a comprometer e involucrar a nuestra especie en la vastedad del universo. La astronomía ha venido a descorrer el velo, que supuestamente, aislaban la Tierra de los ámbitos etéreos que están situados mucho más allá de la Luna, todo eso, nos llevó lejos al auténtico Universo que ahora, sí -parece que- conocemos. La Física cuántica llegó para destruir esa barrera invisible que separaba lo grande de lo muy pequeño y que supuestamente, separaba al observador distante del mundo observado; descubrimos que estamos inevitablemente enredados en aquello que estudiamos.”

 

 

 

Como veréis, aquello que aquí decía, viene a corroborar que, nuestras mentes, están inmersas en el “mundo” que nos rodea, en el Universo que nos acoge y del que queremos saber a través de la información que nos transmiten los sentidos y, siendo consciente de la inmensa tarea que hemos echado sobre nuestras espaldas, también hemos llegado a saber que será “casi” imposible cumplirla. Sin embargo, esa otra parte del cerebro que intuye y siembra en nuestras mentes ilusiones, hace que no desfallezcamos, sino que, al contrario, cada día y con cada nuevo descubrimienro, nuestra fuerza crece y se ve revitalizada en esa ilusión de saber…¡cómo puede ser el mundo, la Naturaleza, el Universo!

¡Ah! Eso sí, algunos tienen una conciencia acomodaticia, ya que, en caso contrario, ¿cómo explicar sus comportamientos?

emilio silvera