domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Las Galaxias! ¡La Entropía! ¡El Universo! ¡La Vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

«

 

Hiparco de Nicea (Niceac. 190 a. C.-c. 120 a. C.)

 

Fue un astrónomo, geógrafo y matemático griego. Entre sus aportaciones cabe destacar: el primer catálogo de estrellas; la división del día en 24 horas de igual duración (hasta la invención del reloj mecánico en el siglo XIV las divisiones del día variaban con las estaciones); el descubrimiento de la precesión de los equinoccios, la distinción entre año sidéreo y año trópico, mayor precisión en la medida de la distancia Tierra-Luna y de la oblicuidad de la eclíptica, invención de la trigonometría (por lo cual es considerado el padre de la trigonometría) y de los conceptos de longitud y latitud geográficas.”

 

La Vía Láctea (como otras galaxias espirales) es una zona de reducción de entropía,  así se deduce de varios

Resultado de imagen de Las galaxias espirales como sistemas vivos"Resultado de imagen de Las galaxias espirales como sistemas vivos

En planteamiento más prudente señala que el entropía y superar dicho Pero un sistema podría producir emtropía negativa sin estar vivo, como en el caso de contracción por efecto de la gravedad que hemos comentado a lo largo de estos trabajos. Desde este punto de vista, no hay frontera claramente definida entre los objetos vivos y la materia “inerte”. Yo, por mi parte creo que, la materia nunca es inerte y, en cada momento, simplemente ocupa la fase que le ha tocado representar en ese punto del espacio y del tiempo.

http://www.ecolo.org/lovelock/photos/Gaia.JimSandy.Lovelock1.jpg

                               James y Sandy Lovelock ¿Qué haríamos sin ellas?

El mero hecho de que la frontera entre la vida y la ausencia de vida sea difuso, y que el lugar en el que haya que trazar la línea sea un tema de discusión, es, sin embargo, un descubrimiento Como ya hemos visto en las explicaciones de otros trabajos expuestos aquí, es natural que los sistemas simples se organicen en redes al borde del caos y, una vez que lo hacen, es natural que la vida surja allí donde hay  “una pequeña charca caliente” que sea adecuada para ello. Esto es parte de un proceso más o menos continuo, sin que haya un salto repentino en el que comience la vida. Desde ese punto de

http://universodoppler.files.wordpress.com/2011/05/ig272_kees_saturn_titan_02.jpg

                                       ¡La vida! podría estar presente… ¡ en tantos lugares…!

Gracias a la teoría de Lovelock sobre la naturaleza de la vida estamos a punto de poder conseguirlo, y es posible que antes de los próximos 50 años se lance al espacio un telescopio capaz de Hay dos etapas del descubrimiento de estas otras Gaias. En primer lugar debemos ser capaces de detectar otros planetas del tamaño de la Tierra que describan órbitas alrededor de otras estrellas; luego tenemos que analizar la atmósfera de esos planetas para entropía están en marcha. Los primeros planetas “extrasolares” se detectaron utilizando técnicas Doppler, que ponían de manifiesto unos cambios pequeñísimos en el movimiento de las estrellas alrededor de las cuales orbitaban dichos planetas. Este efecto, que lleva el nombre del físico del siglo XIX Christian Doppler, modifica la posición de las líneas en el espectro de la luz de un objeto, desplazándolas en una cantidad que depende de lo rápido que el objeto se mueva con respecto al observador.

http://farm6.static.flickr.com/5010/5348863194_0e954d8a95.jpg

Zonas habitables, los astrónomos han ignorado las enanas blancas en su agujeros negros y las estrellas de neutrones captan toda la atención como destinos finales de las estrellas, la mayor parte nunca llegarán a ese extremo. Aproximadamente el 97 por ciento de las estrellas de nuestra galaxia no son lo bastante masivas para acabar en ninguna de esas dos En lugar de eso, los astrónomos creen que terminarán sus vidas como enanas blancas, densos y calientes trozos de materia inerte en los que las reacciones nucleares terminaron hace mucho. Estas estrellas tienen aproximadamente el tamaño de la Tierra y se mantienen en contra del colapso gravitatorio mediante el Principio de Exclusión de Pauli, el cual evita que los electrones ocupen el mismo estado al mismo tiempo. Pero, a todo esto, hay que pensar en el tirón gravitatoria que una de estas estrellas podría incidir sobre cualquier planeta.

 

 

Para hacernos una idea de lo que es este tipo de observaciones, pensemos que el tirón gravitatorio que  Júpiter  ejerce sobre el Sol produce en éste un cambio de velocidad de unos 12,5 metros por segundo, y lo desplaza (con respecto al centro de masa del Sisterma solar) a una distancia de 800.000 kilómetros, más de la mitad del diámetro de este astro, cuando el Sol y Júpiter orbitan en torno a sus recíprocos centros de masa. La velocidad de este movimiento es comparable a la de un corredor olímpico de 100 metros lisos y, para un observador situado fuera del

Resultado de imagen de Estrellas con planeta en imagenen GIPs"Resultado de imagen de Estrellas con planeta en imagenen GIPs

Se trata del tipo de desplazamiento que se ha detectado en la luz a partir de los

Resultado de imagen de El sistema Alpha CentauriResultado de imagen de El sistema Alpha Centauri

                                                              Sistema Alfa Centauri

Hay otras técnicas que podrían servir para identificar planetas más pequeños. Si el planeta pasa directamente por delante de su estrella (una ocultación o un tránsito), se produce un empalidecimiento regular de la luz procedente de dicha estrella. Según las estadísticas, dado que las órbitas de los planetas extrasolares podrían estar inclinadas en cualquier dirección con respecto a nuestra posición, sólo el 1 por ciento de estos planetas estará en órbitas tales que podríamos ver ocultaciones y, en cualquier caso, cada tránsito dura sólo unas pocas horas (una vez al año para un planeta que tenga una órbita como la de la Tierra; una vez cada once años para uno cuya órbita sea como la de Júpiter.

 

 

Resultado de imagen de La misión Kepler de la NASAResultado de imagen de La misión Kepler de la NASAResultado de imagen de La misión Kepler de la NASAResultado de imagen de La misión Kepler de la NASA

 

 

Cuando los humanos miramos al espacio y pensamos en sus increíbles distancias, es inevitable imaginar que sería posible encontrar algún sitio como nuestra casa.

 

El Observatorio Espacial Kepler buscaba exoplanetas similares a la Tierra

 

Existen, sin embargo, proyectos que mediante el sistema de lanzar satélites al espacio que controlaran el movimiento (cada uno de ellos) de un gran número de estrellas con el fin de buscar esas ocultaciones. Si se estudian 100.000 estrellas, y 1.000 de ellas muestran tránsitos, la estadística resultyante implicaría que practicamente toda estrella similar al Sol está acompañada por planetas. Sin embargo, aunque todas las búsquerdas de este tipo son de un valor inestimable, la técnica Doppler es la que, de momento, se puede

SIM Lite concept

La mejor perspectiva que tenemos en el momento inmediato, es la que nos ofrece el satélite de la NASA llamado SIM (Space Interforometry Mission) que mediante la técnica de interferometría (combinar los

Resultado de imagen de El Satélite GAIA de la Agencia Espacial EuropeaResultado de imagen de El Satélite GAIA de la Agencia Espacial Europea

Resultado de imagen de El Satélite GAIA de la Agencia Espacial EuropeaResultado de imagen de El Satélite GAIA de la Agencia Espacial Europea

“El satélite de la Agencia Espacial Europea pasó 22 meses cartografiando el firmamento con un nivel de detalle nunca visto. Ahora, los astrónomos han utilizado esos datos para crear un nuevo mapa del cielo que nos muestra nuestra galaxia, la Vía Láctea, con una precisión ¡increíble. (Fue lanzado al Espacio el 19 de diciembre de 2013).

Resultado de imagen de Lanzamiento del Satélite GAIA de la Agencia Espacial EuropeaResultado de imagen de Lanzamiento del Satélite GAIA de la Agencia Espacial EuropeaResultado de imagen de Lanzamiento del Satélite GAIA de la Agencia Espacial Europea

Cuenta atrás para el lanzamiento del satélite GAIA. El telescopio europeo Gaia cartografiará mil millones de estrellas …
Resultado de imagen de Mapa de estelar captadas por GAIA"

La Agencia Espacial Europea lanzó un satélite de nombre GAIA y que tuvo como misión principal, no precisamente buscar otras Gaias, sino trazar un

Resultado de imagen de Observatorio astronómico de Paranal"

Fotografía cedida del observatorio astronómico de Paranal, cerca del lugar donde se levanta el imponente cerro que en la próxima década albergará el Telescopio Europeo Extremadamente Grande, E-ELT, el mayor ojo que desde la Tierra rastreará el Universo en busca de vida en otros mundos. EFE/Marcelo Hernández/Observatorio Austral Europeo

Resultado de imagen de Observatorio astronómico de Paranal"
Fotografía cedida del observatorio astronómico de Paranal, cerca del lugar donde se levanta el imponente cerro que en… medio del árido desierto de Atacama, allí donde la existencia parece una quimera, se levanta el imponente cerro que en la próxima década albergará el Telescopio Europeo Extremadamente Grande, E-ELT, el mayor ojo que desde la Tierra rastreará el Universo en busca de vida en otros mundos.

Dentro de los próximos 10 años, deberíamos tener localizados decenas de miles de sistemas planetarios extrasolares en las zonas de la Vía Láctea próxima a nosotros. Sin embargo, seguiría tratándose de observaciones indirectas y, para captar los espectros de algunos de esos planetas, se necesita dar un salto más en nuestra actual tecnológía que, como he dicho, resulta indificiente para realizar ciertas investigaciones que requieren y exigen mucha más precisión.

Los nuevos proyectos y las nuevas generaciones de sofisticados aparatos de alta precisión y de IA avanzada, nos traerán, en los próximos 50 años, muchas alegrías y sorpresas que ahora, ni podemos imaginar.

Cambiemos de tema: ¿Qué es una partícula Partícula

Resultado de imagen de Diagrama de Feynman de particulas virtualesResultado de imagen de Diagrama de Feynman de particulas virtuales

Diagrama de Feynmann. No pocas veces hemos dicho que, en una partícula

Por partícula-antipartícula que aparece de la “nada” y luego se aniquila rápidamente sin liberar energía.  Las partículas virtuales pueblan la totalidad del espacio en enormes cantidades, aunque no pueden ser observadas directamente.

En estos procesos no se viola el principio de conservación de la masa y la energía siempre que las partículas virtuales aparezcan y desaparezcan lo suficientemente rápido como para que el cambio de masa o energía no pueda ser detectado.  No obstante, si los miembros de una partícula agujero negro; la energía requerida para hacer a las partículas reales es extraída del agujero negro.

 

Gran Colisionador de Hadrones LHC. A las 14:22 del dia 23 de Noviembre del 2009, el detector ATLAS protones en el LHC, seguido del detector CMS, y mas tarde los detectores ALICE y LHCb. Estas primeras colisiones solo son para probar la sincronizacion de las colisiones de haces de protones con cada uno de los detectores, lo cual resultó  con éxito en cada uno de los experimentos y, marca un avance muy alentador hacia la tan esperada etapa de toma de datos donde se pueda buscar el Higgs, Super Simetria, Dimensiones Extras, y tantas otras cosas mas que surgen del intelecto humano.

Es sin duda, un momento para recordar, especialmente para aquellos que han invertido parte de su vida en un proyecto tan grande e

Muchas han Pero, continuémos con la virtualidad de las partículas. La vida media de una partícula electrón y un positrón pueden existir durante unos 4×10-21 s, aunque un par de fotones de radio con longitud de onda de 300.000 km pueden vivir hasta un segundo.

En realidad, lo que llamamos espacio vacío, está rebosante de partículas virtuales que bullen en esa “nada” para surgir y desaparecer continuamente en millonésimas de segundo.  ¡los misterios del Universo!

 

Planck, era de.

En la teoría del Big Bang, fugaz periodo de tiempo entre el propio Big Bang y el llamado Tiempo de Planck, cuando el Universo tenía 10-43 segundo de edad y la temperatura era de 1034 k.

Durante este periodo, se piensa que los efectos de la Gravitación cuántica fueron dominantes.  La comprensión teórica de esta fase es virtualmente inexistente.

Plasma.

                                                               El plasma en remanentes de Supernovas

Según algunos el cuarto estado de la materia que consiste en electrones y otras partículas subatómicas sin ninguna estructura de un orden Se trata de un Gas altamente ionizado en el que el número de electrones libres es aproximadamente igual al número de iones positivos.  Como dije antes, a veces descrito como el cuarto estado de la materia, las plasmas aparecen en el espacio interestelar, en las atmósferas de las estrellas (incluyendo el Sol), en tubos de

Resultado de imagen de ionización de los átomos"Resultado de imagen de ionización de los átomos

Debido a que las partículas en un plasma están cargadas, su comportamiento difiere en algunos aspectos a un gas.  Los plasmas pueden ser creados en un laboratorio calentando un gas a baja presión hasta que la energía cinética media de las partículas del gas sea comparable al potencial de ionización de los átomos o moléculas de gas.  A muy altas temperaturas, del orden de 50.000 K en adelante, las colisiones entre las partículas del gas causan una ionización en cascada de este.  Sin embargo, en algunos casos, como en lámparas fluorescentes, la temperatura permanece muy baja al estar las partículas del plasma continuamente colisionando con las paredes del recipiente, causando enfriamiento y recombinación.  En esos casos la ionización es solo parcial y requiere un mayor aporte de energía.

En los reactores termonucleares, es posible mantener una enorme temperatura del plasma confinándolo lejos de las paredes del contenedor usando El estudio de los plasmas se conoce como física de plasmas y, en el futuro, dará muy buenos beneficios utilizando en nuevas tecnologías como la nanotecnología que se nos viene encima y será el asombro del mundo.

 

Son muchos los mundos que pululan por las distintas galaxias del Universo, e incontables serán los que tengan vida

Pluralidad de mundos.

Hipótesis de que el Universo contiene otros planetas habitados aparte de la Tierra.

Desde tiempos inmemoriales, grandes pensadores de los siglos pasados, dejaron constancia de sus pensamientos y creencia de que, allá arriba, en los cielos, otras estrellas contenían mundos con diversidad de vida, como en el planeta Tierra.  Tales ideas, han acompañado al Hoy, con los conocimientos que poseemos, lo que sería una locura es precisamente pensar lo contrario.  ¡que estamos solos!

La Vía L

Láctea (una sola Galaxia de los cientos de miles de millones que pueblan el Universo), tiene más de 100.000 millones de estrellas.  Miles de millones de Sistemas Solares.  Cientos de miles de millones de planetas.  Muchos miles y miles de estrellas como el Sol de tamaño mediano, amarillas de tipo G.

¿Cómo podemos pensar que solo el planeta Tierra alberga vida?

Protogalaxia.

Galaxia en proceso de protogalaxia cercana, lo cual indica que todas o la mayoría de las galaxias se formaron hace mucho tiempo.

Los cientificos pensaban que no existía protón.

En 1968 se escubrieron nuevas partículas dentro del protón, las cuales fueron llamadas quarks.

Existen tres quarks dentro de cada protón, quarks se mantienen unidos entre sí mediante otras partículas llamadas gluones.

 

Protón.

Partícula masiva del Grupo o familia de los Hadrones que se clasifica como Barión.  Esta hecho por dos quarks up y un quark down y es, consecuentemente una partícula masiva con 938,3 MeV, algo menos que la del neutron.  Su carga es positiva y su lugar está en el neutrones con la denominación de nucleones.

Resultado de imagen de Este diagrama esquemático de un púlsar ilustra las líneas de campo magnético en blanco, el eje de rotación en verde y los dos chorros polares de radiación en azul."

Este diagrama esquemático de un púlsar ilustra las líneas de Pulsar.

Fuente de púlsares desde que se descubriera el primero en 1.976.  Los púlsares son estrellas de neutrones en rápida rotación, con un diámetro de 20-30 km.  Las estrellas se hallan altamente magnetizadas (alrededor de 108 teslas), con el eje magnético inclinado con respecto, al eje de rotación.  La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos.

A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a un faro.

“Un equipo conformado por astrónomos que trabajan con ondas de radio y otro que lo hace con rayos gamma, han logrado producir un gran avance al haber encontrado herramientas naturales de origen cósmico para realizar detecciones de las elusivas ondas gravitacionales que fueron predichas hace casi un siglo por Albert Einstein.”

Los periodos de los pulsos son típicamente de 1 s., pero varían desde los 1’56 ms (púlsares de milisegundo) hasta los cuatro con tres s. Estos periodos rotacionales van decreciendo a medida que la estrella pierde energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas.

Las medidas precisas de tiempos en los púlsares han revelado la existencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado de objetos de masa planetaria.  Han púlsares, notablemente los púlsares del Cangrejo y Vela.

Se crean en explosiones de supernovas de estrellas supergigantes y otros a partir de enanas blancas, se piensa que puedan existir cien mil en la Vía Lácte

Quasars.

Objeto con un alto desplazamiento al rojo y con apariencia de estrella, aunque es probablemente el núcleo activo muy luminoso de una galaxia muy distante.

El nombre es una contracción del ingles quasi stellar, debido a su apariencia estelar. Los primeros quasars descubiertos eran intensos fuentes de radio.

Debido a las grandes distancias indicadas por el desplazamiento al rojo del núcleo debe ser hasta 100 veces más brillante que la totalidad de una galaxia quasars varían en brillo en una escala de tiempo de semanas, indicando que esta inmensa cantidad de energía se origina en un volumen de unas pocas semanas-luz de longitud.  La fuente puede, por tanto, ser un disco de acreción alrededor de un agujero negro de 107 o 108 masas solares.

Resultado de imagen de Quasar

El primer quasar en ser identificado como tal en 1.963 fue la radiofuente 3c 273 con un desplazamiento al rojo de 0,158, siendo todavía el quasar más brillante, óptimamente hablando, observado desde la Tierra, con magnitud 13.  Miles de quasar han sido descubiertos desde entonces.  Algunos tienen desplazamiento al rojo tan grandes como 4,9, implicando que lo vemos tal como eran cuando el Universo tenía sólo una décima parte de la edad En esta brevísima reseña no puede dejarse constancia de todo lo que se sabe sobre quasars, sin embargo, dejamos los rasgos más sobresalientes para que el lector obtenga un conocimiento básico de estos objetos estelares.

Para finalizar la reseña diré que, algunas galaxias aparentemente normales pueden contener remanentes de actividad quasar en sus núcleos, y algunas galaxias Seyfert y galaxias Markarian tienen núcleos que son intrínsecamente tan brillantes como algunos quasars.

Existen algunas evidencias de que los quasars aparecen en los núcleos de los espirales, y es esa interacción con una galaxia vecina la que proporciona gas o estrellas al núcleo formado por un agujero negro masivo, alimentando así la emisión del quasar.  Salvo mejor parecer.

                                  ¿Qué es la radiación cósmica de Radiación cósmica de fondo.

Antes, hemos comentado por alguna parte que, se trata de emisión radio de microondas proveniente de todas las direcciones (isotrópica) y que corresponde a una curva de cuerpo negro.

Estas propiedades coinciden con las predichas por la teoría del Big Bang, como habiendo sido generada por fotones liberados del Big Bang cuando el Universo tenía menos de un millón de años (Universo bebé) de antigüedad.

La teoría del Big Bang también supone la existencia de radiaciones de fondo de neutrinos y gravitatoria, aunque aun no tenemos los medios para detectarlas.  Sin embargo, los indicios nos confirman que la teoría puede llevar todas las papeletas para que le toque el premio.

Últimamente se ha detectado que la radiación cósmica de fondo no está repartida por igual por todo el Universo, sino que, al contrario de lo que se podía esperar, su reparto es anisotrópico, el reparto está relacionado con la De todas lasm maneras, ¿No es una maravilla todo el Universo? El que nosotros, estemos aquí para contarlo así lo testifica.

emilio silvera.