Ene
25
¿De dónde vino nuestro Sistema solar?
por Emilio Silvera ~ Clasificado en El Sistema Solar ~ Comments (1)
Si alguien nos preguntara: ¿De dónde salió nuestro Sistema Solar?, no lo tendríamos nada fácil para dar una respuesta satisfactoria (por cierta) y, nos tendríamos que limitar a especular conforme a los conocimientos astronómicos que tenemos, sobre lo que aquí pudo pasar hace ahora de ello unos 5.000 millones de años. Por aquel entonces (un poco antes quizás), la región brilló intensamente, una Supernova explotó y dejó tras ella una Nube de Gas y Polvo que se contrajo con la ayuda de la fuerza de Gravedad y, giró y giró mientras se contraía más y más hasta que, en su centro, la presión y la temperatura hicieron surgir una protoestrella.
Los átomos presentes en el centro llegaron a alcanzar una inmensa presión y densidad que, al mismo tiempo, elevó la temperatura hasta millones de grados. Esos átomos se fusionaron y aquél núcleo comenzó a brillar en el centro de un torbellino que no dejaba de girar mientras el fenómeno producía energía y turbulentos remolinos se formaban aquí y allá mientras que, nueva materia se iba acumulando gracias a la fuerza gravitatoria a aquel maremagnum de material candente del que, de vez en cuando, y gracias a la violencia de los giros con ayuda del material plasmático que se había formado, se desprendían grandes conglomerados de material que salían disparados a grandes distancias, sin poder romper la conexión gravitatoria que les seguía uniendo a centro principal.
En aquellos primeros momentos, de haber podido contemplarlo que pudo pasar, posiblemente, habríamos podido ser testigos de un Caos de materiales que se unían y se volvían a desunir entre grandes choques de energías inmensas. Muchos cuerpos llegaron a formarse y, todos ellos, empujados por aquella violencia inicial, daban vueltas y más vueltas en busca de un acomodo final quedando cada cual situados a la distancia adecuada que les dictaba la fuerza de Gravedad, y, para nosotros, el azar vino a situar al planeta Tierra en esta zona habitable y privilegiada que ahora ocupamos. El que los planetas sean algunos rocosos y otros de simple gas, es debido a la ley física de que, los materiales se solidifican y condensan a ciertas temperaturas y, los planetas más alejados del Sol, lógicamente, están sometidos al frío.
Si nos fijamos bien, el Sistema solar es algo así como una obra de arte de la Naturaleza, todo encaja a la perfección, está sincronizado al milímetro y todos los planetas mayores dan vueltas alrededor del Sol aproximadamente en el plano del ecuador solar. En otras palabras: si preparamos un modelo tridimensional del Sol y sus planetas, comprobaremos que se puede introducir en un cazo poco profundo.
Por otra parte, todos los planetas mayores giran entorno al Sol en la misma dirección, en sentido contrario al de las agujas del reloj, si contemplamos el Sistema Solar desde la Estrella Polar.También estos planetas (si exceptuamos a Urano y, posiblemente Venus) hacen un movimiento de rotación alrededor de su eje en el mismo sentido que su revolución alrededor del Sol, es decir, de forma contraria a como lo hacen las agujas del reloj, de la misma manera, el Sol también se mueve en ese sentido.
Los planetas se hallan espaciados a distancias uniformemente crecientes a partir del Sol y describen órbitas casi circulares. Todos los satélites, con muy pocas excepciones, dan vueltas alrededor de sus respectivos planetas en el plano del ecuador planetario, y siempre en sentido contrario al de las agujas del reloj. La regularidad de tales movimientos sugirió, de un modo natural, la intervención de algunos procesos singulares en la creación del Sistema en conjunto.
Ahí, en el llamado Cinturón de Kuiper, tenemos una diversidad de cuerpos (en su mayoría cometas) que orbitan al Sol a distancias que van desde las 35 a los 100 UA. Son objetos de respetable tamaño que oscilan entre los 100 y los 1000 Km de diámetro y, de vez en cuando, en presencia de alguna anomalía que perturba el sistema, alguno de ellos, sale despedido y hace su viaje hacia el Sol de manera que nosotros, lo podemos contemplar en su viaje interestelar.
Algunos astrónomos dicen que somos solo una partíula dentro de varias burbujas cósmicas; en el caso nuestro somos 200 mil millones de estrellas, que hay en solo la Galaxia Vía Láctea, que gira a la fantástica velocidad de 224 Kms por segundo. Considerando que se estima que existen más de cien mil millones de galaxias en el universo observable, y ante tal grandeza no podemos más que sentirnos humildes y…pequeños y comprender que, aún estando aquí y habiendo llegado a comprender el lugar que ocupamos en el contexto de la Galaxia y del Universo mismo, nuestra presencia, incide poco o nada en el devenir del Universo.
Una amiga mía soñó que vagaba por el espacio, perdida, y aunque lo podía contemplar todo, no conocía aquellos lugares llenos de estrellas que ante sus ojos pasaban. Se le acercó un extraterrestre y le preguntó si podía ayudarla. Al decirle que estaba perdida, éste le preguntó por su lugar de residencia para tratar de acercarla en su nave superlumínica, y, a ella, se le ocurrió darle esta dirección:
“Soy del planeta Tierra, el tercero a partir del Sol, situados en la nube interestelar local, Cinturón de Orión de la Galaxia Vía Láctea situada en el Grupo Local de galaxias y perteneciente al supercúmulo de Virgo. Mi casa está situada a 1 UA del Sol dentro del Universo Local en este tiempo presente.”
Cinturón de Gould. La línea indicada como 500 PC (500 parsecs) equivale a una distancia al Sol (en el centro) de 1.630 años-luz; es decir, tiene un diámetro de 3.260 años-luz, que son 31.000 billones de kilómetros.
El conocido como Cinturón de Gould es un sector del Brazo de Orión. El Brazo de Orión es la primera gran estructura a la que pertenecemos; grande en sentido galáctico. Es un larguísimo arco estelar de 10.000 años-luz de longitud y 3.500 de ancho. Mucho más del 99% de lo que ven nuestros ojos a simple vista, en una noche normal, está aquí. Muchas personas de ciudad vivirán y morirán sin ver en persona nada más allá del Brazo de Orión.
Claro que, también existen muchos objetos que, como los púlsares, nos sirven de referencia y guía. ¿Y qué es un púlsar? Pues un pulsar es una estrella de neutrones altamente magnetizada que rota sobre sí misma. Y resulta que su enorme masa las convierte en una especie de péndulos ultraprecisos, con lo que emiten en una frecuencia exacta, reconocible desde cualquier lugar. Su señal es tan intensa que pueden detectarse a millones de años-luz de distancia (nosotros los estamos observando ya en Andrómeda). A todos los efectos, constituyen los faros más precisos y notables del cosmos.
La primera cifra de cada grupo se corresponde con la frecuencia en que emiten estos púlsares, expresada en frecuencia de transición del hidrógeno (la característica más notable del átomo más común del universo). La segunda cifra es el ángulo en radianes, según se ve desde la Tierra en el tiempo presente. Mediante triangulación, es posible determinar sin mucha dificultad desde dónde se veían esos púlsares y cuándo. La respuesta es aquí, ahora; esos tres grupos de cifras son como agitar la mano a escala galáctica: “¡eo! ¡soy yo! ¡estoy aquí! ¡y existo ahora!”.
Con sólo estos tres datos, cualquier civilización extraterrestre que conozca al menos una ciencia parecida a la nuestra puede ubicar con precisión nuestro lugar en el espaciotiempo desde cualquier lugar de este universo (al menos, mientras esos púlsares sigan existiendo). Esta fue una de las genialidades de Carl Sagam, para las placas de oro con un mensaje destinado a los extraterrestres que viajan a bordo de las sondas Pioner de espacio profundo. Las catorce líneas en torno al Sol indican la posición no de tres, sino de catorce púlsares notables, evitando así la posibilidad de confusión y permitiendo su regresión durante largo tiempo.
Este es nuestro lugar en el cosmos, hasta donde somos y sabemos hoy en día; tu dirección y la mía en esa inacabable inmensidad que nos hace sentir tan, tan pequeñitos por la sencilla razón de que –efectivamente– somos por el momento así de pequeñitos. ¡Y algunos se creen grandes y hasta elegidos! ¿Te lo puedes creer?
Científicos del Centro de Investigaciones Espaciales de la Academia Polaca de Ciencias, Laboratorio Nacional Los Alamos, y el Southwest Research Institute y de la Universidad de Boston sugieren que la cinta de emisiones ampliadas de átomos neutros energéticos, descubierta el año pasado por el satélite IBEX de la NASA, se podría explicar por un efecto geométrico que surge debido a la aproximación del Sol al límite entre una nube de gas interestelar local y otra nube de gas muy caliente, llamada la Burbuja Local. Si esta hipótesis es correcta, IBEX está tomando materia de una nube interestelar vecina caliente, a la cual el Sol puede entrar dentro de cien años. Pero, regresemos al Sistema Solar que nos salimos del tema.
La Burbuja Local es una región de baja densidad (aproximadamente o,oo7 átomos por cm3 de materia interestelar que rodea a todo el Sistema Solar. La Burbuja tiene aproximadamente 100 pc de radio y contiene a las estrellas de la vecindad inmediata del Sol. El Sistema Solar parece encontrarse a unos 10-20 pc del borde de la Burbuja. La baja densidad de gas en la Burbuja local puede deberse a una onda de choque de una antigua supernova que barrió la región.
En verdad, no tenemos motivos para el aburrimiento y, entre los muchos incidentes inesperados que podrían aparecer de manera inesperada, están esos grandes pedruzcos que, como Eros, un gigantón, el segundo asteroide cercano a la Tierra en tamaño después de Ganímedes. Mide 34 kilómetros de longitud y que hace bien poco visitó las cercanías de la Tierra como no lo había hecho desde 1975. A pesar de sus desproporcionadas dimensiones -más de 300 campos de fútbol del tamaño del Bernabéu uno detrás de otro-, no supone peligro alguno para nuestro planeta. Se situará a 26,7 millones de kilómetros, lo que sigue siendo una distancia considerable, y atravesará el cielo nocturno a través de las constelaciones de Leo, Sextante y Hidra. Será fácilmente visible incluso con telescopios modestos. Los aficionados a la astronomía no pueden perderse su visita ya que se trata de una ocasión única. No volverá a saludarnos hasta 2056. Aquellos que quieran ver el cuerpo en España podrán hacerlo a partir de las 4.00 horas del 1 de febrero.
Claro que, ¿quién nos asegura que, por circunstancias fortuitas no se podría desviar de su camino actual?
Como ya conocemos sus consecuencias, preferimos que no pase tal acontecimiento y se deje las cosas como estám que ya, con nuestras propios problemas, tenemos más que bastante para or tirando sin tener que lidiar, además, con un gigante venido de fuera.
Claro que, la mejor parte de la historia estaba por suceder. Y, la vida, apareció sobre la Tierra. La materia “inerte” evolucionó hasta su nivel más alto, y la química-biológica hizo su presencia en el planeta para que surgieran, primeros seres diminutos y simples y más tarde, la evolución, posibilitó una mayor complejidad que nos trajo (al menos a alguna especie), hasta la consciencia. Con ese consciente luminoso del SER, pudimos saber de nosotros y del mundo que nos rodea, y, allí, amigos, comenzó otra historia que aún no ha terminado.
Largo, muy largo ha sido el camino andado pero, al fín, podemos discernir entre lo que pudo pasar y lo que podrá suceder. Mientras tanto, nos toca investigar para tratar de saber de dónde venimos y, saliendo al espacio, podríamos tomar consciencia de, hacia donde vamos. Lo cierto es que, aún la ciencia no sabe de donde podemos venir y, la versión más moderna es que, los hombres no son monos y, aunque sí debimos tener un antepasado común que no era Homo ni era Pan, a partir de el, dos ramos divergieron: Los Chimpancés por una lado y el hombre por el otro y, a partir de ese momento, nació la humanidad que, gracias a su cerebro y a sus maneras bípedas, se pudo separar de sus parientes lejanos.
Desde entonces, no es que hayamos aprendido tanto como para poder decir que tenemos nuestro planetas entre las manos, pero sí, podemos ser conscientes de como debemos cuidarlo para que, nuestros habitats (el nuestro y el de los miles de seres que con nosotros lo comparten), pueda ser acogedor y, para ello, debemos poner todo nuestro empeño. ¿Pero, lo hacemos?
Sí, en una pequeña parte del Sistema Solar que se sitúa en el Brazo de Orión, a 30.000 años-luz del centro galáctico, estamos situadios nosotros, tan ricamente instalados en esa maravilla que arriba podemos contemplar y que es bañada por la luz y el calor del Astro Sol, el que nos da la energía de la Vida y hace posible que todo sea tal como lo conocemos. En otros lugares, no podrían ser tan afortunados. Allí, en cientos de miles de planetas, ni existe el agua corriente, ni tiene la atmósfera adecuada, ni están situados a una distancia idónea del Sol que los alumbra, ni…, ni…
Todo esto es nuestro entorno y está en nuestro Sistema solar… ¿queremos conservarlo?
emilio silvera
Ene
25
Y seguimos investigando y obsevando el Universo
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (1)
En el año 1.609 Galileo Galilei apuntó por primera vez al cielo con un telescopio. Fue el comienzo de 400 años de descubrimientos que aún continúan. El 27 de Octubre de 2.006 la Unión Astronómica Internacional (UAI) anunció la declaración por la UNESCO del 2009 como el Año Internacional de la Astronomía (AIA-IYA2009), ratificada por la ONU el 19 de Diciembre de 2.007. Por todo el mundo fueron celebrados grandes eventos, conferencias, celebraciones con intervención de la gente corriente de la calle, en Colegios y Universidades y, se escribieron miles de artículos conmemorando la celebración que era como un homenaje a todo lo conseguido, a todos los secretos desvelados desde que Galelei nos enseñara, por primera vez, la existencia de otros planetas fuera de la Tierra.
El Año Internacional de la Astronomía (AIA-IYA2009) representará una celebración global de la Astronomía y de su contribución a la sociedad, a la cultura, y al desarrollo de la humanidad. Su objetivo principal es motivar a todos los ciudadanos de todo el mundo s replantearse su lugar en el Universo a través de todo un camino de descubrimientos que se inició hace ya 400 años.”
En aquellas celebraciones, pude colaborar aportando mi “granito de arena” en publicaciones, charlas y otras celebraciones acordes al evento histórico ya de aquellas celebraciones. Recuerdo que por aquellas fechas, en un lugar denominado Imagina 65, decían:
LA ZONA DE LOS NOMBRES: Emilio Silvera Vázquez
“Emilio Silvera Vázquez ha escrito centenares de artículos, la mayoría de ellos de temas científicos y dedicados al espacio sideral y goza de un gran prestigio allende las fronteras de Huelva. ¿Cuál ha sido el secreto de su éxito? Sobre Emilio Silvera, no se ha escrito todavía una biografía imparcial y completa, un extenso artículo que nos ayude a comprender su compleja y descollante personalidad.”
El Universo es inimaginablemente grande. Los planetas de nuestro sistema solar orbítan el Sol en un espacio de doce mil millones de kilómetros. Eso de por sí es un número enorme pero se queda pequeño cuando se compara con la distancia a la estrella más cercana al Sol, Próxima Centauri. Esa estrella está a 38,000,000,000,000 kilómetros de nosotros.Es decir, a 4,22 años-luz del Sol.
Con las velocidades que hoy podemos alcanzar, una expedición a esa estrella tardaría en llegar unos 28.000 años.
Como Próxima Centauri es uno de los objetos más cercanos a nosotros, está claro que los números se vuelven gigantescos si hablamos de cosas en nuestra Galaxia o más lejanas aún. Para describir estas distancias tan grandes, los astrónomos usan una unidad que llaman el año-luz. Aunque suena como una unidad de tiempo, un año-luz, es en realidad, una medida de distancia. La luz viaja a 299.792.458 metros por segundo, y un año-luz se refiere a la distancia que viaja la luz durante un año, que se traduce en 9,460,800,000,000 kilómetros. A través de esta Unidad y otras inventadas para medir las enormes distancias del Universo (Unidad Astroniomica, parsec, kiloparsec, megaparsec…), siendo las más correintes del “tiempo-luz”—segundos-luz, minutos-luz, y años-luz—para tratar de ayudar a tener un sentido de la escala y dar una perspectiva de dónde están estos objetos en el Universo.
Extraños objetos pueden ser observados en el Universo en los que, energías inimaginables están presentes. ESO Utilizando el Atacama Large Millimeter/submillimeter Array (ALMA), los astrónomos han descubierto que los planetas que orbitan la estrella Fomalhaut deben ser mucho más pequeños de lo que se pensaba en un principio.
Colores
Los grandes telescopios y las nuevas técnicas hacen que podamos ver imágenes de objetos esparcidos por el Universo en bellos colores. En muchas imágenes los colores son aproximados a lo que usted vería si se pudiese acercar lo suficiente y sus ojos fuesen lo suficientemente sensitivos. Los telescopios pueden ver mucho más que nuestros ojos. Son más sensitivos, pueden distinguir luz y color más ténue y son receptivos a otras formas de luz (ondas electromagnéticas) fuera del espectro visible—ultravioleta, infrarrojo, rayos-X, ondas de radio y otros. Para las imágenes realizadas con esas partes invisibles del espectro se asignan colores de manera que la luz “más roja” se le asigna rojo y la luz “más azul” se le asigna el color azul. De esta forma se hace un mapa de la luz invisible, como los rayos-X o la luz infrarroja para crear imágenes que podemos ver.
La joven estrella S106 IR expulsa material a gran velocidad y perturba el gas y el polvo que la rodean. Así la captó el Hubble como un ángel de alas extendidas hacia el espacio infinito.
Alguna de las imágenes que hemos podido contemplar antes se tomaron utilizando filtros especiales que se concentran en un proceso físico particular, como determinadas composiciones o temperaturas y estas frecuentemente se le asignan colores de manera que puedan mostrar mejor la información. Son demostraciones hermosas de cómo la astronomía moderna puede ser parecida al arte.
LAS ESTRELLAS:
Que por cierto, son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también proto-estrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y súper-gigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.
Una buena colección de proto-estrellas que pronto entraran en la secuencia principal
La masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima es de 0,08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones.
La luminosidad de las estrellas varían desde alrededor de medio millón la luminosidad del Sol para las más calientes hasta menos de una milésima de la del Sol para enanas más débiles.
Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.
Las estrellas brillan como resultado de la conversión de masa en energía por medio de reacciones nucleares, siendo las más importantes las que involucran al hidrógeno.
Por cada kilogramo de hidrógeno quemado de esta forma, se convierte en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein E=mc2, los siete gramos equivalen a una energía de 6,3 x 1014 Julios.
Las reacciones nucleares no sólo aportan el calor y la luz de las estrellas, sino que también producen elementos más pesados que el hidrógeno y el helio. Estos elementos pesados han sido distribuidos por todo el Universo mediante explosiones de supernovas o por medio de Nebulosas planetarias y vientos estelares.
Las estrellas pueden clasificarse de muchas maneras:
- Mediante la etapa evolutiva, en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca o estrella de neutrones.
- A partir de sus espectros, que indica su temperatura superficial conocida como clasificación de Morgan-Keenan.
- En Población I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados.
¿Pero que pasa en las Nebulosas?
En estas nubes se fraguan los mundos merced a la dinámica del universo que lo hace cambiante y evolutivo. Nada permanece y todo se transforma. Las cosas ocurren de cierta manera que puede ser prevista al aplicar esas fuerzas y esas constantes que hacen de nuestro “mundo” lo que podemos observar y, de esa manera, porque esas constantes universales son como las conocemos, la vida está presente y, si la carga del electrón o la masa del protón cambiara aunque solo fuese una diezmillonésima, ya la vida no sería posible tal como la conocemos.
“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, los experimentadores dicen que no es un entero, de modo que podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión entre ella y los neutrinos, pero esto ha fracasado.”
Comentario de un físico desesperado
Extraños mundos que pudieran ser
Está muy claro que nuestro Universo es es debido a una serie de parámetros que poco a poco hemos ido identificando y hemos denominado Constantes de la Naturaleza. colección de números misteriosos son los culpables, los responsables, de que nuestro Universo sea tal como lo conocemos y que, a pesar de la concatenación de movimientos caóticamente impredecibles de los átomos y las moléculas, nuestra experiencia es la de un mundo estable y que posee una profunda consistencia y continuidad.
En mecánica cuántica, el comportamiento de un electrón en un átomo se describe por un orbital, que es una distribución de probabilidad más que una órbita. En la figura, el sombreado indica la probabilidad relativa de «encontrar» el electrón en punto se tiene la energía correspondiente a los números cuánticos dados. Pensemos (como digo antes), que si la carga del electrón variara, aunque sólo fuese una diezmillonésima , los átomos no se podrían constituir, las moléculas consecuentemente tampoco y, por ende, ni la materia… ¡Tampoco nosotros estaríamos aquí! ¡Es tan importante el electrón!
Sí, nosotros también hemos llegado a saber que con el paso del tiempo aumenta la entropía y las cosas cambian. Sin embargo algunas cosas no cambian, continúan siempre igual, sin que nada les afecte. Ésas precisamente, son las constantes de la naturaleza que desde mediados del siglo XIX, comenzó a la atención de físicos como George Johnstone Stoney (1.826-1.911, Irlanda).
Parece, según todas las trazas, que el universo, nuestro universo, alberga la vida inteligente porque las constantes de la naturaleza son las que aquí están presentes; cualquier ligera variación en alguna de éstas constantes habría impedido que surgiera la vida en el planeta que habitamos. El universo con las constantes ligeramente diferentes habría nacido muerto, no se hubieran formado las estrellas ni se habrían unido los quarks para construir nucleones (protones y neutrones) que formarán los núcleos que al ser rodeados por los electrones construyeron los átomos, que se juntaron para formar las células que unidas dieron lugar a la materia. Esos universos con las constantes de la naturaleza distintas a las nuestras estarían privados del potencial y de los elementos necesarios para desarrollar y sostener el de complejidad organizada que nosotros llamamos vida.
Hasta el momento no se ha podido observar ningún cambio en las constantes de la Naturaleza
Nadie ha sabido responder a la pregunta de si las constantes de la naturaleza son realmente constantes o llegará un momento en que comience su transformación. Hay que tener en cuenta que para nosotros la escala del tiempo que podríamos considerar muy grande, en la escala de Tiempo del Universo podría ser ínfima. El universo, por lo que sabemos, tiene 13.500 millones de años. Antes que nosotros, el reinado sobre el planeta correspondía a los dinosaurios, amos y señores durante 150 millones de años, hace de ello 65 millones de años. Mucho después, hace apenas 2 millones de años, aparecieron nuestros antepasados directos, que después de una serie de cambios evolutivos desembocó en lo que somos hoy.
Estas observaciones de quásares brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.
Todo ello pudo suceder como consecuencia de que unos 500 millones de años después del Big Bang se formaron las primeras estrellas que, a su vez, dieron lugar a las primeras galaxias. El material primario del universo fue el hidrógeno, el más sencillo y simple de los elementos que componen la tabla periódica. Hoy día, 13.500 millones de años después, continúa siendo el material más abundante del universo junto al helio.
hacer posible el resurgir de la vida, hacían falta materiales mucho más complejos que el hidrógeno. Éste era demasiado simple y había que fabricar otros materiales que, como el carbono, el hidrógeno pesado, el nitrógeno, oxígeno, etc, hicieran posible las combinaciones necesarias de materiales diferentes y complejos que al ser bombardeados por radiación ultravioleta y rayos gammas provenientes del espacio, dieran lugar a la primera célula orgánica que sería la semilla de la vida.
¿Quién, entonces, fabricó esos materiales complejos si en el universo no había nadie?
Buena pregunta. Para contestar tengo que exponer aquí algunas características de lo que es una estrella, de cómo se formar, como puede ser y cuál será su destino final. Veamos:
El nacimiento de una proto-estrella
Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.
Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo unidas a las de los gases se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma. Su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno, que se transforman en un material más complejo, el helio, y ése es el en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.
Con la imagen de arriba como ilustración, hace algún tiempo que se publicó la noticia en la página web de la ESO, se muestra la masa determinada de una estrella que supera el límite anterior (152-150 masas solares) por un factor de 2, usando una combinación de obtenidos en el observatorio Paranal y con el telescopio espacial Hubble. Se trata de la estrella R136a1 en el centro de la nebulosa “Tarántula” en la Gran Nube de Magallanes. Esto es muy interesante, porque hasta ahora se creyó que cualquier estrella mayor que 150 masas solares se desintegra por el efecto de la presión de radiación que supera a la gravedad. En realidad, también R136a1 está desintegrándose, teniendo ahora “sólo” 260 masas solares, después de una vida corta de 1,5 millones de años. Pero los autores calculan que reunió, cuándo nació, un total de 320 masas solares.
Mucho tiempo ha pasado que esta imagen era el presente, y, sin embargo, el Universo supone una ínfima fracción marcada por el Tic Tac cósmico de las estrellas y galaxias que conforman la materia de la que provenimos. Es un gran misterio para nosotros que sean las estrellas las que fabrican los materiales que, más tarde, llegan a conformar a seres vivos que, en algunos caso, tienen consciencia.
“La ciencia no puede resolver el misterio final de la Naturaleza. Y esto se debe a que, en el último análisis, nosotros somos parte del misterio que estamos tratando de resolver”.
Max Planck
De acuerdo con su perspectiva universal, en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que lleva el de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Se conocen las Unidades de Planck.
Planck con sus unidades nos llevo al extremo de lo pequeño
Mp = | (hc/G)½ = | 5’56 × 10-5 gramos |
Lp = | (Gh/c3) ½ = | 4’13 × 10-33 centímetros |
Tp = | (Gh/c5) ½ = | 1’38 × 10-43 segundos |
Temp.p = | K-1 (hc5/G) ½ = | 3’5 × 1032 ºKelvin |
Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.
“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales sean medidas por las inteligencias más diversas con los métodos más diversos.”
Las estrellas masivas tienen una vida más corta que las estrellas medianas o enanas que, al consumir menos combustible nuclear de fusión duran miles de millones de años.
Las estrellas viven el tiempo que sus masas le permiten. Una estrella masiva devora tanto material nuclear que sólo puede realizar la fusión durante un tiempo corto de unos millones de años en el mejor de los casos. Son las estrellas enanas rojas las que más tiempo de vida pueden tener al fusionar el hidrógeno de manera lenta en “pequeñas proporciones. Incluso nuestro Sol, que fusiona 4.654.600 Tn cada segundo de Hidrógeno en 4.650.000 Tn de Helio, Las 4.600 toneladas que se pierden en la transición, son eyectadas al Espacio Interestelar en forma de luz y calor, de lo que, a la Tierra llega la diezmillonésima parte. A pesar de esa inmensa cantidad consumida, el Sol tiene 5.000 millones de años de edad, y, según los cálculos le quedan otros 5.000 millones de años de vida.
R136a1 en el centro de la nebulosa “Tarántula” en la Gran Nube de Magallanes. La masa máxima de las estrellas para que sean estables puede rondar las 150 masas solares, es decir, ser 150 veces mayor que nuestro Sol y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.
Dependiendo de la temperatura de la estrella y de los materiales que contiene…
He dicho antes, el brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E=mc2) por medio de reacciones nucleares. Las enormes temperaturas de millones de grados de su núcleo hace posible que los protones de los átomos de hidrógeno se fusionen y se conviertan en átomos de helio.
Por cada kilogramo de hidrógeno quemado de esta manera se convierten en energía aproximadamente siete gramos de masa. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo cuando al final la estrella explota en súper NOVA, lanzando sus capas exteriores al espacio que de esta , deja “sembrado” de estos materiales el “vacío” estelar.
Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Éstas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, expulsan las capas exteriores para formar una Nebulosa planetaria y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones y, si aún son mayores, su final está en agujeros negros.
Siempre que intento dar un paseo por el Universo, es grande que… ¡Me pierdo!
emilio silvera